def embed_map(map, path="map.html"): """ Embeds a linked iframe to the map into the IPython notebook. Note: this method will not capture the source of the map into the notebook. This method should work for all maps (as long as they use relative urls). """ map.create_map(path=path) return idisp.IFrame(src="files/{path}".format(path=path), width="100%", height="510")
def macro(code: str) -> Tuple[display.DisplayObject]: """ >>> url = "https://test.com" >>> assert macro(url) and macro(''' {} ... ... '''.format(url))[0].data.strip() == url """ lines = code.splitlines() if lines and lines[0].strip(): if len(lines) is 1 and lines[0][:1].strip(): type = mimetypes.guess_type(code)[0] is_image = type and type.startswith('image') disp = partial(display.Image, embed=True) if is_image else display.Markdown if fnmatch(code, "* [[]*[]](*)*"): url = code.rsplit(')', 1)[0].rsplit('(', 1)[1].split(' ', 1)[0] if url and url != '#': return (display.Markdown(data=code), *macro(url)) if fnmatch(code, 'http*://*'): return is_image and display.Image(url=code) or display.IFrame( code, width=600, height=400), return display.Markdown(data=code), return tuple()
for (input_image, target) in train_data: print('.', end='') n = n + 1 if (n+1) % 100 == 0: print() train_step(input_image, target, epoch) print() # saving (checkpoint) the model every 20 epochs if (epoch + 1) % 20 == 0: checkpoint.save(file_prefix=checkpoint_prefix) print('Time taken for epoch {} is {} sec\n'.format(epoch + 1, time.time()-start)) checkpoint.save(file_prefix=checkpoint_prefix) fit(EPOCHS) display.IFrame( src="https://tensorboard.dev/experiment/lZ0C6FONROaUMfjYkVyJqw", width="100%", height="1000px") # restoring the latest checkpoint in checkpoint_dir checkpoint.restore(tf.train.latest_checkpoint(checkpoint_dir)) # Run the trained model on a few examples from the test dataset for k, j in test_data.take(5): generate_images(generator, k, j)
# plot the training and validation losses plotter.plot(size_histories) a = plt.xscale('log') plt.xlim([5, max(plt.xlim())]) plt.ylim([0.5, 0.7]) plt.xlabel('epoch [log scale]') plt.savefit('./results_plot/Overfit_and_Underfit_4.png') plt.clf() #%load_ext tensorboard #%tensorboard --logdir {logdir}/sizes display.IFrame( src="https://tensorboard.dev/experiment/vW7jmmF9TmKmy3rbheMQpw/#scalars&_smoothingWeight=0.97", width="100%", height="800px") # prevent overfitting shutil.rmtree(logdir/'regularizers/Tiny', ignore_errors=True) shutil.copytree(logdir/'sizes/Tiny', logdir/'regularizers/Tiny') regularizer_histories = {} regularizer_histories['Tiny'] = size_histories['Tiny'] # solution 1 # weight regularization l2_momdel = tf.keras.Sequential([ layers.Dense(512, activation = 'elu', kernel_regularizer = regularizers.l2(0.001), input_shape = (features,)),
layers.Dense(512, activation='elu'), layers.Dense(512, activation='elu'), layers.Dense(1, activation='sigmoid') ]) size_histories['large'] = compile_and_fit(large_model, "sizes/large") # Plot the training and validation losses plotter.plot(size_histories) a = plt.xscale('log') plt.xlim([5, max(plt.xlim())]) plt.ylim([0.5, 0.7]) plt.xlabel("Epochs [Log Scale]") plt.show() ''' # View in TensorBoard %tensorboard --logdir {logdir}/sizes display.IFrame( src="https://tensorboard.dev/experiment/vW7jmmF9TmKmy3rbheMQpw/#scalars&_smoothingWeight=0.97", width="100%", height="800px") !tensorboard dev upload --logdir {logdir}/sizes ''' # Strategies to prevent overfitting shutil.rmtree(logdir / 'regularizers/Tiny', ignore_errors=True) shutil.copytree(logdir / 'sizes/Tiny', logdir / 'regularizers/Tiny') regularizer_histories = {'Tiny': size_histories['Tiny']}
fig, axs = plt.subplots(2, len(img_indices), figsize=(15, 8)) for i, img in enumerate(images): axs[0][i].imshow(img.cpu().permute(1, 2, 0)) for i, img in enumerate(integrated_grads): axs[1][i].imshow(np.moveaxis(normalize(img),0,-1)) plt.show() plt.close() """# **Homework 9 - Explainable AI (Part 2 BERT)** # Question 21 - 24 ### You are recommended to visualize on this website directly: https://exbert.net/exBERT.html """ from IPython import display display.IFrame("https://exbert.net/exBERT.html", width=1600, height=1600) """# Import Packages (For Questions 25 - 30)""" # Install transformers !pip install transformers==4.5.0 # Import all packages needed import numpy as np import random import torch from sklearn.decomposition import PCA from sklearn.metrics import pairwise_distances from transformers import BertModel, BertTokenizerFast