Ejemplo n.º 1
0
    def update_mask(self):
        """
        Regenerate the masks for MaskRCNN and free-hand added (in case they are changed), and show in imageview.
        
        !!!ISSUE: getLocalHandlePositions: moving handles changes the position read out, dragging roi as a whole doesn't.
        """

        # Binary mask from ML detection
        if len(self.selected_ML_Index) > 0:
            # Delete items in dictionary that are not roi items
            roi_dict = self.selected_cells_infor_dict.copy()
            del_key_list = []
            for key in roi_dict:
                print(key)
                if 'ROIitem' not in key:
                    del_key_list.append(key)
            for key in del_key_list:
                del roi_dict[key]

            self.MLmask = ProcessImage.ROIitem2Mask(
                roi_dict,
                mask_resolution=(self.MLtargetedImg.shape[0],
                                 self.MLtargetedImg.shape[1]))
        # Binary mask of added rois
        self.addedROIitemMask = ProcessImage.ROIitem2Mask(
            self.roi_list_freehandl_added,
            mask_resolution=(self.MLtargetedImg.shape[0],
                             self.MLtargetedImg.shape[1]))

        self.intergrate_into_final_mask()
    def create_mask(self):
        """
        Create untransformed binary mask, sent out the signal to DMD widget for
        further transformation.

        Returns
        -------
        None.

        """
        flag_fill_contour = self.fillContourButton.isChecked()
        flag_invert_mode = self.invertMaskButton.isChecked()
        contour_thickness = self.thicknessSpinBox.value()
        target_laser = self.transform_for_laser_menu.selectedItems()[0].text()
        
        # Get the list of rois from the current ROIitems in "Select" Drawwidget.
        list_of_rois = self.get_list_of_rois()
        
        # Signal to mask requesting widget.
        current_mask_sig = [list_of_rois, flag_fill_contour, contour_thickness, flag_invert_mode, target_laser]
        
        #---- This is the roi list sent to DMD to generate final stack of masks.----
        self.sig_to_calling_widget["mask_{}".format(self.mask_index_spinbox.value())] = current_mask_sig
        
        # Show the untransformed mask
        self.current_mask = ProcessImage.CreateBinaryMaskFromRoiCoordinates(list_of_rois, \
                                                       fill_contour = flag_fill_contour, \
                                                       contour_thickness = contour_thickness, \
                                                       invert_mask = flag_invert_mode)
        self.untransformed_mask_dict["mask_{}".format(self.mask_index_spinbox.value())] = self.current_mask
        
        self.mask_view.setImage(self.current_mask)
Ejemplo n.º 3
0
    def create_voltage_signal(self, list_of_rois):
        filled_mask = OriginalImage = np.zeros((1000, 1000))

        for roi in list_of_rois:
            filled_mask += polygon2mask((1000, 1000), (roi + 5) * 100)

        filled_mask = (filled_mask > 0).astype(int).transpose()
        fig, axs = plt.subplots(1, 1)
        axs.imshow(filled_mask)

        scanning_voltage = 5
        points_per_contour = int(self.points_per_contour_textbox.text())
        sampling_rate = int(self.sampling_rate_textbox.text())

        contourScanningSignal = ProcessImage.mask_to_contourScanning_DAQsignals(
            filled_mask,
            OriginalImage,
            scanning_voltage,
            points_per_contour,
            sampling_rate,
            repeats=1)

        contourScanningSignal = np.vstack(
            (contourScanningSignal[0][0], contourScanningSignal[1][0]))

        self.galvoThread = pmtimagingTest_contour()
        self.galvoThread.setWave_contourscan(sampling_rate,
                                             contourScanningSignal,
                                             points_per_contour)
Ejemplo n.º 4
0
    def gaussian_fit(self):

        # The upper edge.
        upper_position = self.current_pos + self.init_step_size
        # The lower edge.
        lower_position = self.current_pos - self.init_step_size

        # Generate the sampling positions.
        sample_positions = np.linspace(lower_position, upper_position,
                                       self.total_step_number)

        degree_of_focus_list = []
        for each_pos in sample_positions:
            # Go through each position and write down the focus degree.
            degree_of_focus = self.evaluate_focus(round(each_pos, 6))
            degree_of_focus_list.append(degree_of_focus)
        print(degree_of_focus_list)

        try:
            interpolated_fitted_curve = ProcessImage.gaussian_fit(
                degree_of_focus_list)

            # Generate the inpterpolated new focus position axis.
            x_axis_new = np.linspace(lower_position, upper_position,
                                     len(interpolated_fitted_curve))

            # Generate a dictionary and find the position where has the highest focus degree.
            max_focus_pos = dict(
                zip(interpolated_fitted_curve,
                    x_axis_new))[np.amax(interpolated_fitted_curve)]

            if False:  # Plot the fitting.
                plt.plot(sample_positions,
                         np.asarray(degree_of_focus_list),
                         'b+:',
                         label='data')
                plt.plot(x_axis_new,
                         interpolated_fitted_curve,
                         'ro:',
                         label='fit')
                plt.legend()
                plt.title('Fig. Fit for focus degree')
                plt.xlabel('Position')
                plt.ylabel('Focus degree')
                plt.show()

            max_focus_pos = round(max_focus_pos, 6)
            print(max_focus_pos)
            # max_focus_pos_focus_degree = self.evaluate_focus(round(max_focus_pos, 6))
        except:
            print("Fitting failed.")
            max_focus_pos = [False, self.current_pos]

        return max_focus_pos
Ejemplo n.º 5
0
    def create_mask(self):
        flag_fill_contour = self.fillContourButton.isChecked()
        flag_invert_mode = self.invertMaskButton.isChecked()
        contour_thickness = self.thicknessSpinBox.value()

        list_of_rois = self.get_list_of_rois()

        self.mask = ProcessImage.CreateBinaryMaskFromRoiCoordinates(list_of_rois, \
                                                       fill_contour = flag_fill_contour, \
                                                       contour_thickness = contour_thickness, \
                                                       invert_mask = flag_invert_mode)

        self.mask_view.setImage(self.mask)
Ejemplo n.º 6
0
    def finalmask_to_DMD_mask(self,
                              laser,
                              dict_transformations,
                              flag_fill_contour=True,
                              contour_thickness=1,
                              flag_invert_mode=False,
                              mask_resolution=(1024, 768)):
        """
        Same goal as transform_to_DMD_mask, with input being the final binary mask and using find_contour to get all vertices and perform transformation,
        and then coordinates to mask.
        """

        self.final_DMD_mask = ProcessImage.binarymask_to_DMD_mask(self.final_mask, laser, dict_transformations, flag_fill_contour = True, \
                                                                  contour_thickness = 1, flag_invert_mode = False, mask_resolution = (1024, 768))

        return self.final_DMD_mask
Ejemplo n.º 7
0
    def receive_mask_coordinates(self, sig):
        ## Receive untransformed mask coordinates, transform them, create mask,
        ## send mask to DMD.

        [list_of_rois, flag_fill_contour, contour_thickness,
         flag_invert_mode] = sig

        list_of_rois = self.transform_coordinates(list_of_rois)

        self.mask = ProcessImage.CreateBinaryMaskFromRoiCoordinates(list_of_rois, \
                                                       fill_contour = flag_fill_contour, \
                                                       contour_thickness = contour_thickness, \
                                                       invert_mask = flag_invert_mode,
                                                       mask_resolution = (768,1024))
        fig, axs = plt.subplots(1, 1)
        axs.imshow(self.mask)
        self.DMD.send_data_to_DMD(self.mask)
Ejemplo n.º 8
0
    def analyze_single_image(self,
                             Rawimage,
                             axis=None,
                             show_result=True,
                             show_each_cell=False):

        MLresults = self.DetectionOnImage(Rawimage,
                                          axis=axis,
                                          show_result=show_result)

        cell_Data, cell_counted_inRound, total_cells_counted_in_coord = \
            ProcessImage.retrieveDataFromML(Rawimage, MLresults, show_each_cell = show_each_cell)

        print(
            "Number of cells counted so far: {}".format(cell_counted_inRound))
        print("Number of cells counted in image: {}".format(
            total_cells_counted_in_coord))

        return cell_Data
Ejemplo n.º 9
0
    def evaluate_focus(self, obj_position=None):
        """
        Evaluate the focus degree of certain objective position.

        Parameters
        ----------
        obj_position : float, optional
            The target objective position. The default is None.

        Returns
        -------
        degree_of_focus : float
            Degree of focus.

        """

        if obj_position != None:
            self.pi_device_instance.move(obj_position)

        # Get the image.
        if self.source_of_image == "PMT":
            self.galvo_image = self.galvo.run()
            plt.figure()
            plt.imshow(self.galvo_image)
            plt.show()

            if False:
                with skimtiff.TiffWriter(
                        os.path.join(
                            r'M:\tnw\ist\do\projects\Neurophotonics\Brinkslab\Data\Xin\2020-11-17 gaussian fit auto-focus cells\trial_11',
                            str(obj_position).replace(".", "_") +
                            '.tif')) as tif:
                    tif.save(self.galvo_image.astype('float32'), compress=0)

        degree_of_focus = ProcessImage.local_entropy(
            self.galvo_image.astype('float32'))
        time.sleep(0.2)

        return degree_of_focus
Ejemplo n.º 10
0
    def receive_mask_coordinates(self, sig_from_CoordinateWidget):
        """
        Receive untransformed mask coordinates, transform them, create mask, send mask to DMD.

        PARAMETERS
        ----------
        sig_from_CoordinateWidget : list.  [[signal for first frame], [signal for second frame], ...]
                Signal sent out from CoordinateWidget which contains list of ROIs
                and other parameters for transformation and mask generation.
        """
        for each_mask_key in sig_from_CoordinateWidget:
            print(f"len {len(sig_from_CoordinateWidget)}")
            list_of_rois = sig_from_CoordinateWidget[each_mask_key][0]
            flag_fill_contour = sig_from_CoordinateWidget[each_mask_key][1]
            contour_thickness = sig_from_CoordinateWidget[each_mask_key][2]
            flag_invert_mode = sig_from_CoordinateWidget[each_mask_key][3]
            for_which_laser = sig_from_CoordinateWidget[each_mask_key][4]

            list_of_rois_transformed = self.transform_coordinates(
                list_of_rois, for_which_laser)

            mask_single_frame = ProcessImage.CreateBinaryMaskFromRoiCoordinates(
                list_of_rois_transformed,
                fill_contour=flag_fill_contour,
                contour_thickness=contour_thickness,
                invert_mask=flag_invert_mode,
                mask_resolution=(768, 1024),
            )
            fig, axs = plt.subplots(1, 1)
            axs.imshow(mask_single_frame)
            print("each_mask_key {}".format(each_mask_key))
            # Here the self.mask is always a 3-dimentional np array with the 3rd axis being number of images.
            if each_mask_key == "mask_1":
                self.mask = mask_single_frame[:, :, np.newaxis]
            else:
                self.mask = np.concatenate(
                    (self.mask, mask_single_frame[:, :, np.newaxis]), axis=2)

        self.DMD_actuator.send_data_to_DMD(self.mask)
Ejemplo n.º 11
0
    def intergrate_into_final_mask(self):
        # Binary mask of added rois
        self.addedROIitemMask = ProcessImage.ROIitem2Mask(
            self.roi_list_freehandl_added,
            mask_resolution=(self.MLtargetedImg.shape[0],
                             self.MLtargetedImg.shape[1]))
        #Display the RGB mask, ML mask plus free-hand added.
        self.Mask_edit_viewItem.setImage(gray2rgb(self.addedROIitemMask) * self.mask_color_multiplier + \
                                         gray2rgb(self.MLmask) * self.mask_color_multiplier + gray2rgb(self.MLtargetedImg))

        self.final_mask = self.MLmask + self.addedROIitemMask

        # In case the input image is 2048*2048, and it is resized to fit in MaskRCNN, need to convert back to original size for DMD tranformation.
        if self.final_mask.shape[0] != self.Rawimage.shape[
                0] or self.final_mask.shape[1] != self.Rawimage.shape[1]:
            self.final_mask = resize(
                self.final_mask,
                [self.Rawimage.shape[0], self.Rawimage.shape[1]],
                preserve_range=True).astype(self.final_mask.dtype)
#        self.final_mask = np.where(self.final_mask <= 1, self.final_mask, int(1))

        plt.figure()
        plt.imshow(self.final_mask)
        plt.show()
Ejemplo n.º 12
0
    def FluorescenceAnalysis(self, folder, round_num, save_mask=True):
        """
        # =============================================================================
        # Given the folder and round number, return a dictionary for the round
        # that contains each scanning position as key and structured array of detailed
        # information about each identified cell as content.
        #
        #   Returned structured array fields:
        #   - BoundingBox of cell ROI
        #   - Mean intensity of whole cell area
        #   - Mean intensity of cell membrane part
        #   - Contour soma ratio
        # =============================================================================

        Parameters
        ----------
        folder : string.
            The directory to folder where the screening data is stored.
        round_num : string.
            The target round number of analysis.
        save_mask: bool.
            Whether to save segmentation masks.

        Returns
        -------
        cell_Data : pd.DataFrame.
            Sum of return from func: retrieveDataFromML, for whole round.
        """
        RoundNumberList, CoordinatesList, fileNameList = self.retrive_scanning_scheme(
            folder, file_keyword="Zmax")
        # RoundNumberList, CoordinatesList, fileNameList = self.retrive_scanning_scheme(folder, file_keyword = 'Zfocus')

        if not os.path.exists(
                os.path.join(folder, "MLimages_{}".format(round_num))):
            # If the folder is not there, create the folder to store ML segmentations
            os.mkdir(os.path.join(folder, "MLimages_{}".format(round_num)))

        for EachRound in RoundNumberList:

            cells_counted_in_round = 0

            background_substraction = False
            # =============================================================================
            #             For background_substraction
            # =============================================================================
            # If background images are taken
            background_images_folder = os.path.join(
                folder, "background {}".format(EachRound))
            # print(background_images_folder)
            if os.path.exists(background_images_folder):
                # If the background image is taken to substract out
                background_substraction = True
                print("Run background substraction.")

                # Get all the background files names
                background_fileNameList = []
                for file in os.listdir(background_images_folder):
                    if "calculated background" not in file:
                        if "tif" in file or "TIF" in file:
                            background_fileNameList.append(
                                os.path.join(background_images_folder, file))

                background_image = ProcessImage.image_stack_calculation(
                    background_fileNameList, operation="mean")

                # # Smooth the background image
                # background_image = ProcessImage.average_filtering(
                #     background_image, filter_side_length = 25)

                # Save the individual file.
                with skimtiff.TiffWriter(
                        os.path.join(background_images_folder,
                                     "calculated background.tif"),
                        imagej=True,
                ) as tif:
                    tif.save(background_image.astype(np.uint16), compress=0)

            if EachRound == round_num:

                # Start numbering cells at each round
                self.cell_counted_inRound = 0

                for EachCoord in CoordinatesList:

                    # =============================================================================
                    #             For fluorescence:
                    # =============================================================================
                    print(EachCoord)
                    # -------------- readin image---------------
                    for Eachfilename in enumerate(fileNameList):
                        if (EachCoord in Eachfilename[1]
                                and EachRound in Eachfilename[1]):
                            if "Zmax" in Eachfilename[1]:
                                try:
                                    ImgNameInfor = Eachfilename[1][
                                        0:Eachfilename[1].index(
                                            "_PMT"
                                        )]  # get rid of '_PMT_0Zmax.tif' in the name.
                                except:
                                    ImgNameInfor = Eachfilename[1][
                                        0:Eachfilename[1].index(
                                            "_Cam"
                                        )]  # get rid of '_Cam_Zmax.tif' in the name.
                            elif "Zfocus" in Eachfilename[1]:
                                ImgNameInfor = Eachfilename[1][
                                    0:len(Eachfilename[1]) -
                                    16]  # get rid of '_PMT_0Zfocus.tif' in the name.
                            elif "Zpos1" in Eachfilename[1]:
                                ImgNameInfor = Eachfilename[1][0:len(
                                    Eachfilename[1]
                                )]  # get rid of '_PMT_0Zfocus.tif' in the name.
                            _imagefilename = os.path.join(
                                folder, Eachfilename[1])
                    # ------------------------------------------

                    # =========================================================================
                    #                     USING MASKRCNN...
                    # =========================================================================
                    # Imagepath      = self.Detector._fixPathName(_imagefilename)
                    Rawimage = imread(_imagefilename)

                    # Background substraction
                    if background_substraction == True:
                        Rawimage = np.abs(Rawimage - background_image)

                        camera_dark_level = 100

                        # # Normalize to the illumination intensity
                        # Rawimage = np.uint16(Rawimage \
                        #         / ((background_image - camera_dark_level)\
                        #             /(np.amin(background_image) - camera_dark_level)))

                    #                    if ClearImgBef == True:
                    #                        # Clear out junk parts to make it esaier for ML detection.
                    #                        RawimageCleared = self.preProcessMLimg(Rawimage, smallest_size=300, lowest_region_intensity=0.16)
                    #                    else:
                    #                        RawimageCleared = Rawimage.copy()

                    image = ProcessImage.convert_for_MaskRCNN(Rawimage)

                    # Run the detection on input image.
                    results = self.Detector.detect([image])

                    MLresults = results[0]

                    if save_mask == True:
                        fig, ax = plt.subplots()
                        # Set class_names = [None,None,None,None] to mute class name display.
                        visualize.display_instances(
                            image,
                            MLresults["rois"],
                            MLresults["masks"],
                            MLresults["class_ids"],
                            class_names=[None, None, None, None],
                            ax=ax,
                            centre_coors=MLresults["Centre_coor"],
                            Centre_coor_radius=2,
                            WhiteSpace=(0, 0),
                        )  # MLresults['class_ids'],MLresults['scores'],
                        # ax.imshow(fig)
                        fig.tight_layout()
                        # Save the detection image
                        fig_name = os.path.join(
                            folder, "MLimages_{}\{}.tif".format(
                                round_num, ImgNameInfor))
                        plt.savefig(fname=fig_name,
                                    dpi=200,
                                    pad_inches=0.0,
                                    bbox_inches="tight")

                    # segmentationImg = Image.fromarray(fig) #generate an image object
                    # segmentationImg.save(os.path.join(folder, 'MLimages_{}\{}.tif'.format(round_num, ImgNameInfor)))#save as tif

                    # Use retrieveDataFromML from ImageProcessing.py to extract numbers.
                    if self.cell_counted_inRound == 0:
                        (
                            cell_Data,
                            self.cell_counted_inRound,
                            total_cells_counted_in_coord,
                        ) = ProcessImage.retrieveDataFromML(
                            Rawimage,
                            MLresults,
                            str(ImgNameInfor),
                            self.cell_counted_inRound,
                            show_each_cell=False)
                    else:
                        (
                            Cell_Data_new,
                            self.cell_counted_inRound,
                            total_cells_counted_in_coord,
                        ) = ProcessImage.retrieveDataFromML(
                            Rawimage,
                            MLresults,
                            str(ImgNameInfor),
                            self.cell_counted_inRound,
                            show_each_cell=False)
                        if len(Cell_Data_new) > 0:
                            cell_Data = cell_Data.append(Cell_Data_new)

                    # Count in total how many flat and round cells are identified.
                    cells_counted_in_round += total_cells_counted_in_coord

                print("Number of round/flat cells in this round: {}".format(
                    cells_counted_in_round))

        # Save to excel
        cell_Data.to_excel(
            os.path.join(
                os.path.join(
                    folder,
                    round_num + "_" +
                    datetime.now().strftime("%Y-%m-%d_%H-%M-%S") +
                    "_CellsProperties.xlsx",
                )))

        return cell_Data
Ejemplo n.º 13
0
    def bisection(self):
        """
        Bisection way of finding focus.

        Returns
        -------
        mid_position : float
            DESCRIPTION.

        """
        # The upper edge in which we run bisection.
        upper_position = self.current_pos + self.init_step_size
        # The lower edge in which we run bisection.
        lower_position = self.current_pos - self.init_step_size

        for step_index in range(1, self.total_step_number + 1):
            # In each step of bisection finding.

            # In the first round, get degree of focus at three positions.
            if step_index == 1:
                # Get degree of focus in the mid.
                mid_position = (upper_position + lower_position) / 2
                degree_of_focus_mid = self.evaluate_focus(mid_position)
                print("mid focus degree: {}".format(
                    round(degree_of_focus_mid, 5)))

                # Break the loop if focus degree is below threshold which means
                # that there's no cell in image.
                if not ProcessImage.if_theres_cell(
                        self.galvo_image.astype('float32')):
                    print('no cell')
                    mid_position = False
                    break

                # Move to top and evaluate.
                degree_of_focus_up = self.evaluate_focus(
                    obj_position=upper_position)
                print("top focus degree: {}".format(
                    round(degree_of_focus_up, 5)))
                # Move to bottom and evaluate.
                degree_of_focus_low = self.evaluate_focus(
                    obj_position=lower_position)
                print("bot focus degree: {}".format(
                    round(degree_of_focus_low, 5)))
                # Sorting dicitonary of degrees in ascending.
                biesection_range_dic = {
                    "top": [upper_position, degree_of_focus_up],
                    "bot": [lower_position, degree_of_focus_low]
                }

            # In the next rounds, only need to go to center and update boundaries.
            elif step_index > 1:
                # The upper edge in which we run bisection.
                upper_position = biesection_range_dic["top"][0]
                # The lower edge in which we run bisection.
                lower_position = biesection_range_dic["bot"][0]

                # Get degree of focus in the mid.
                mid_position = (upper_position + lower_position) / 2
                degree_of_focus_mid = self.evaluate_focus(mid_position)

                print("Current focus degree: {}".format(
                    round(degree_of_focus_mid, 5)))

            # If sits in upper half, make the middle values new bottom.
            if biesection_range_dic["top"][1] > biesection_range_dic["bot"][1]:
                biesection_range_dic["bot"] = [
                    mid_position, degree_of_focus_mid
                ]
            else:
                biesection_range_dic["top"] = [
                    mid_position, degree_of_focus_mid
                ]

            print("The upper pos: {}; The lower: {}".format(
                biesection_range_dic["top"][0],
                biesection_range_dic["bot"][0]))

        return mid_position
    def PMT_image_processing(self):
        """
        Reconstruct the image from np array and save it.

        Returns
        -------
        None.

        """
        for imageSequence in range(self.repeatnum):
            
            try:
                self.PMT_image_reconstructed_array = self.data_collected_0[np.where(self.PMT_data_index_array == imageSequence+1)]

                Dataholder_average = np.mean(self.PMT_image_reconstructed_array.reshape(self.averagenum, -1), axis=0)

                Value_yPixels = int(self.lenSample_1/self.ScanArrayXnum)
                self.PMT_image_reconstructed = np.reshape(Dataholder_average, (Value_yPixels, self.ScanArrayXnum))
                
                self.PMT_image_reconstructed = self.PMT_image_reconstructed[:, 50:550] # Crop size based on: M:\tnw\ist\do\projects\Neurophotonics\Brinkslab\Data\Xin\2019-12-30 2p beads area test 4um
                # self.PMT_image_reconstructed = self.PMT_image_reconstructed[:, 70:326] # for 256*256 images
                
                # Evaluate the focus degree of re-constructed image.
                self.FocusDegree_img_reconstructed = ProcessImage.local_entropy(self.PMT_image_reconstructed.astype('float32'))
                print('FocusDegree_img_reconstructed is {}'.format(self.FocusDegree_img_reconstructed))
                
                # Save the individual file.
                with skimtiff.TiffWriter(os.path.join(self.scansavedirectory, 'Round'+str(self.RoundWaveformIndex[0]) + '_Grid' + str(self.Grid_index) +'_Coords'+str(self.currentCoordsSeq)+'_R'+str(self.CurrentPosIndex[0])+'C'+str(self.CurrentPosIndex[1])+'_PMT_'+str(imageSequence)+'Zpos'+str(self.ZStackOrder)+'.tif'), imagej = True) as tif:                
                    tif.save(self.PMT_image_reconstructed.astype('float32'), compress=0, metadata = {"FocusPos: " : str(self.FocusPos)})
               
                plt.figure()
                plt.imshow(self.PMT_image_reconstructed, cmap = plt.cm.gray) # For reconstructed image we pull out the first layer, getting 2d img.
                plt.show()                

                #---------------------------------------------For multiple images in one z pos, Stack the arrays into a 3d array--------------------------------------------------------------------------
                # if imageSequence == 0:
                #     self.PMT_image_reconstructed_stack = self.PMT_image_reconstructed[np.newaxis, :, :] # Turns into 3d array
                # else:
                #     self.PMT_image_reconstructed_stack = np.concatenate((self.PMT_image_reconstructed_stack, self.PMT_image_reconstructed[np.newaxis, :, :]), axis=0)
                #     print(self.PMT_image_reconstructed_stack.shape)
                    
                #---------------------------------------------Calculate the z max projection-----------------------------------------------------------------------
                if self.repeatnum == 1: # Consider one repeat image situlation 
                    if self.ZStackNum > 1:
                        if self.ZStackOrder == 1:
                            self.PMT_image_maxprojection_stack = self.PMT_image_reconstructed[np.newaxis, :, :]

                        else:

                            self.PMT_image_maxprojection_stack = np.concatenate((self.PMT_image_maxprojection_stack, self.PMT_image_reconstructed[np.newaxis, :, :]), axis=0)

                    else:
                        self.PMT_image_maxprojection_stack = self.PMT_image_reconstructed[np.newaxis, :, :]
                        
                # Save the max projection image
                if self.ZStackOrder == self.ZStackNum:
                    self.PMT_image_maxprojection = np.max(self.PMT_image_maxprojection_stack, axis=0)
                    
                    # Save the zmax file.
                    with skimtiff.TiffWriter(os.path.join(self.scansavedirectory, 'Round'+str(self.RoundWaveformIndex[0])+ '_Grid' + str(self.Grid_index) + '_Coords'+str(self.currentCoordsSeq)+'_R'+str(self.CurrentPosIndex[0])+'C'+str(self.CurrentPosIndex[1])+'_PMT_'+str(imageSequence)+'Zmax'+'.tif'), imagej = True) as tif:                
                        tif.save(self.PMT_image_maxprojection.astype('float32'), compress=0, metadata = {"FocusPos: " : str(self.FocusPos)})

                
            except:
                print('No.{} image failed to generate.'.format(imageSequence))
Ejemplo n.º 15
0
    def analyze_images_in_folder(self,
                                 folder,
                                 generate_zmax=False,
                                 show_result=True,
                                 save_mask=True,
                                 save_excel=True):
        """
        Given the folder, perform general analysis over the images in it.

        Parameters
        ----------
        folder : str
            Path to the folder.
        generate_zmax : bool, optional
            Whether to calcaulate the z-max projection first. The default is False.
        show_result : bool, optional
            If show the machine learning segmentation results. The default is True.
        save_mask : bool, optional
            DESCRIPTION. The default is True.
        save_excel : bool, optional
            DESCRIPTION. The default is True.

        Returns
        -------
        cell_Data : pd.dataframe
            DESCRIPTION.

        """
        flat_cell_counted_in_folder = 0
        total_cells_counted_in_folder = 0

        # If need to do zmax projection first
        if generate_zmax == True:
            ProcessImage.cam_screening_post_processing(folder)
            # Here a new folder for maxProjection is generated inside, change the path
            folder = os.path.join(folder, 'maxProjection')

        # If background images are taken
        if os.path.exists(os.path.join(folder, 'background')):
            # If the background image is taken to substract out
            background_substraction = True

            # Get all the background files names
            background_fileNameList = []
            for file in os.listdir(os.path.join(folder, 'background')):
                if "tif" in file:
                    background_fileNameList.append(
                        os.path.join(folder, 'background', file))

            background_image = ProcessImage.image_stack_calculation(
                background_fileNameList, operation="mean")

        # Get a list of file names
        fileNameList = []
        for file in os.listdir(folder):
            if "tif" in file and "LED" not in file:
                fileNameList.append(file)

        print(fileNameList)

        # Analyse each image
        for image_file_name in fileNameList:
            print(image_file_name)
            Rawimage = imread(os.path.join(folder, image_file_name))

            if background_substraction == True:
                Rawimage = np.abs(Rawimage - background_image)

            # Analyze each image
            # Run the detection on input image.
            MLresults = self.DetectionOnImage(Rawimage,
                                              axis=None,
                                              show_result=show_result)

            if save_mask == True:

                if not os.path.exists(os.path.join(folder, 'ML_masks')):
                    # If the folder is not there, create the folder
                    os.mkdir(os.path.join(folder, 'ML_masks'))

                fig, ax = plt.subplots()
                # Set class_names = [None,None,None,None] to mute class name display.
                visualize.display_instances(
                    Rawimage,
                    MLresults['rois'],
                    MLresults['masks'],
                    MLresults['class_ids'],
                    class_names=[None, None, None, None],
                    ax=ax,
                    centre_coors=MLresults['Centre_coor'],
                    Centre_coor_radius=2,
                    WhiteSpace=(
                        0, 0))  #MLresults['class_ids'],MLresults['scores'],
                # ax.imshow(fig)
                fig.tight_layout()
                # Save the detection Rawimage
                fig_name = os.path.join(
                    folder, 'ML_masks', 'ML_mask_{}.png'.format(
                        image_file_name[0:len(image_file_name) - 4]))
                plt.savefig(fname=fig_name,
                            dpi=200,
                            pad_inches=0.0,
                            bbox_inches='tight')

            if flat_cell_counted_in_folder == 0:
                cell_Data, flat_cell_counted_in_folder, total_cells_counted_in_coord = \
                    ProcessImage.retrieveDataFromML(Rawimage, MLresults, image_file_name, flat_cell_counted_in_folder)
            else:
                Cell_Data_new, flat_cell_counted_in_folder, total_cells_counted_in_coord = \
                    ProcessImage.retrieveDataFromML(Rawimage, MLresults, image_file_name, flat_cell_counted_in_folder)
                if len(Cell_Data_new) > 0:
                    cell_Data = cell_Data.append(Cell_Data_new)
            total_cells_counted_in_folder += total_cells_counted_in_coord

        if save_excel == True:
            # Save to excel
            cell_Data.to_excel(
                os.path.join(
                    folder, 'CellsProperties_{}flat_outof_{}cells.xlsx'.format(
                        flat_cell_counted_in_folder,
                        total_cells_counted_in_folder)))

        return cell_Data
Ejemplo n.º 16
0
    def FluorescenceAnalysis(self, folder, round_num, save_mask=True):
        """
        # =============================================================================
        # Given the folder and round number, return a dictionary for the round
        # that contains each scanning position as key and structured array of detailed 
        # information about each identified cell as content.
        #
        #   Returned structured array fields:
        #   - BoundingBox of cell ROI
        #   - Mean intensity of whole cell area
        #   - Mean intensity of cell membrane part
        #   - Contour soma ratio
        # =============================================================================
        
        Parameters
        ----------
        folder : string.
            The directory to folder where the screening data is stored.
        round_num : string.
            The target round number of analysis.
        save_mask: bool.
            Whether to save segmentation masks.
            
        Returns
        -------
        cell_Data : pd.DataFrame.
            Sum of return from func: retrieveDataFromML, for whole round.
        """
        RoundNumberList, CoordinatesList, fileNameList = self.retrive_scanning_scheme(
            folder, file_keyword='Zmax')
        # RoundNumberList, CoordinatesList, fileNameList = self.retrive_scanning_scheme(folder, file_keyword = 'Zfocus')

        if not os.path.exists(
                os.path.join(folder, 'MLimages_{}'.format(round_num))):
            # If the folder is not there, create the folder
            os.mkdir(os.path.join(folder, 'MLimages_{}'.format(round_num)))

        for EachRound in RoundNumberList:

            cells_counted_in_round = 0

            if EachRound == round_num:

                # Start numbering cells at each round
                self.cell_counted_inRound = 0

                for EachCoord in CoordinatesList:

                    # =============================================================================
                    #             For tag fluorescence:
                    # =============================================================================
                    print(EachCoord)
                    #-------------- readin image---------------
                    for Eachfilename in enumerate(fileNameList):
                        if EachCoord in Eachfilename[
                                1] and EachRound in Eachfilename[1]:
                            if '0Zmax' in Eachfilename[1]:
                                ImgNameInfor = Eachfilename[1][
                                    0:len(Eachfilename[1]) -
                                    14]  # get rid of '_PMT_0Zmax.tif' in the name.
                            elif '0Zfocus' in Eachfilename[1]:
                                ImgNameInfor = Eachfilename[1][
                                    0:len(Eachfilename[1]) -
                                    16]  # get rid of '_PMT_0Zfocus.tif' in the name.
                            _imagefilename = os.path.join(
                                folder, Eachfilename[1])
                    #------------------------------------------

                    # =========================================================================
                    #                     USING MASKRCNN...
                    # =========================================================================
                    # Imagepath      = self.Detector._fixPathName(_imagefilename)
                    Rawimage = imread(_imagefilename)

                    #                    if ClearImgBef == True:
                    #                        # Clear out junk parts to make it esaier for ML detection.
                    #                        RawimageCleared = self.preProcessMLimg(Rawimage, smallest_size=300, lowest_region_intensity=0.16)
                    #                    else:
                    #                        RawimageCleared = Rawimage.copy()

                    image = ProcessImage.convert_for_MaskRCNN(Rawimage)

                    # Run the detection on input image.
                    results = self.Detector.detect([image])

                    MLresults = results[0]

                    if save_mask == True:
                        fig, ax = plt.subplots()
                        # Set class_names = [None,None,None,None] to mute class name display.
                        visualize.display_instances(
                            image,
                            MLresults['rois'],
                            MLresults['masks'],
                            MLresults['class_ids'],
                            class_names=[None, None, None, None],
                            ax=ax,
                            centre_coors=MLresults['Centre_coor'],
                            Centre_coor_radius=2,
                            WhiteSpace=(0, 0)
                        )  #MLresults['class_ids'],MLresults['scores'],
                        # ax.imshow(fig)
                        fig.tight_layout()
                        # Save the detection image
                        fig_name = os.path.join(
                            folder, 'MLimages_{}\{}.tif'.format(
                                round_num, ImgNameInfor))
                        plt.savefig(fname=fig_name,
                                    dpi=200,
                                    pad_inches=0.0,
                                    bbox_inches='tight')

                    # segmentationImg = Image.fromarray(fig) #generate an image object
                    # segmentationImg.save(os.path.join(folder, 'MLimages_{}\{}.tif'.format(round_num, ImgNameInfor)))#save as tif

                    if self.cell_counted_inRound == 0:
                        cell_Data, self.cell_counted_inRound, total_cells_counted_in_coord = \
                            ProcessImage.retrieveDataFromML(Rawimage, MLresults, str(ImgNameInfor), self.cell_counted_inRound)
                    else:
                        Cell_Data_new, self.cell_counted_inRound, total_cells_counted_in_coord = \
                            ProcessImage.retrieveDataFromML(Rawimage, MLresults, str(ImgNameInfor), self.cell_counted_inRound)
                        if len(Cell_Data_new) > 0:
                            cell_Data = cell_Data.append(Cell_Data_new)

                    # Count in total how many flat and round cells are identified.
                    cells_counted_in_round += total_cells_counted_in_coord

                print("Number of round/flat cells in this round: {}".format(
                    cells_counted_in_round))

        # Save to excel
        cell_Data.to_excel(
            os.path.join(
                os.path.join(
                    folder, round_num + '_' +
                    datetime.now().strftime('%Y-%m-%d_%H-%M-%S') +
                    '_CellsProperties.xlsx')))

        return cell_Data
Ejemplo n.º 17
0
    def analyze_images_in_folder(
        self,
        folder,
        generate_zmax=False,
        show_result=True,
        save_mask=True,
        save_excel=True,
    ):
        """
        Given the folder, perform general analysis over the images in it.

        Parameters
        ----------
        folder : str
            Path to the folder.
        generate_zmax : bool, optional
            Whether to calcaulate the z-max projection first. The default is False.
        show_result : bool, optional
            If show the machine learning segmentation results. The default is True.
        save_mask : bool, optional
            DESCRIPTION. The default is True.
        save_excel : bool, optional
            DESCRIPTION. The default is True.

        Returns
        -------
        cell_Data : pd.dataframe
            DESCRIPTION.

        """
        flat_cell_counted_in_folder = 0
        total_cells_counted_in_folder = 0
        background_substraction = False
        root_folder = folder

        # If need to do zmax projection first
        if generate_zmax == True:
            ProcessImage.cam_screening_post_processing(root_folder)
            # Here a new folder for maxProjection is generated inside, change the path
            folder = os.path.join(root_folder, "maxProjection")

        # If background images are taken
        if os.path.exists(os.path.join(root_folder, "background")):
            # If the background image is taken to substract out
            background_substraction = True
            print("Run background substraction.")

            # Get all the background files names
            background_fileNameList = []
            for file in os.listdir(os.path.join(root_folder, "background")):
                if "calculated background" not in file:
                    if "tif" in file or "TIF" in file:
                        background_fileNameList.append(
                            os.path.join(root_folder, "background", file))

            # Average over multiple images
            background_image = ProcessImage.image_stack_calculation(
                background_fileNameList, operation="mean")

            # # Smooth the image
            # background_image = ProcessImage.average_filtering(
            #     background_image, filter_side_length = 25)

            # Save the individual file.
            with skimtiff.TiffWriter(
                    os.path.join(root_folder, "background",
                                 "calculated background.tif"),
                    imagej=True,
            ) as tif:
                tif.save(background_image.astype(np.uint16), compress=0)

        # Get a list of file names
        fileNameList = []
        for file in os.listdir(folder):
            if "tif" in file and "LED" not in file:
                fileNameList.append(file)

        print(fileNameList)

        # Analyse each image
        for image_file_name in fileNameList:
            print(image_file_name)
            Rawimage = imread(os.path.join(folder, image_file_name))

            if background_substraction == True:
                Rawimage = np.abs(Rawimage - background_image).astype(
                    np.uint16)

                camera_dark_level = 100

                # # Normalize to the illumination intensity
                # Rawimage = np.uint16(Rawimage \
                #         / ((background_image - camera_dark_level)\
                #            /(np.amin(background_image) - camera_dark_level)))

            # Analyze each image
            # Run the detection on input image.
            MLresults = self.DetectionOnImage(Rawimage,
                                              axis=None,
                                              show_result=show_result)

            if save_mask == True:

                if not os.path.exists(os.path.join(folder, "ML_masks")):
                    # If the folder is not there, create the folder
                    os.mkdir(os.path.join(folder, "ML_masks"))

                fig, ax = plt.subplots()
                # Set class_names = [None,None,None,None] to mute class name display.
                visualize.display_instances(
                    Rawimage,
                    MLresults["rois"],
                    MLresults["masks"],
                    MLresults["class_ids"],
                    class_names=[None, None, None, None],
                    ax=ax,
                    centre_coors=MLresults["Centre_coor"],
                    Centre_coor_radius=2,
                    WhiteSpace=(0, 0),
                )  # MLresults['class_ids'],MLresults['scores'],
                # ax.imshow(fig)
                fig.tight_layout()
                # Save the detection Rawimage
                fig_name = os.path.join(
                    folder,
                    "ML_masks",
                    "ML_mask_{}.png".format(
                        image_file_name[0:len(image_file_name) - 4]),
                )
                plt.savefig(fname=fig_name,
                            dpi=200,
                            pad_inches=0.0,
                            bbox_inches="tight")

            if flat_cell_counted_in_folder == 0:
                (
                    cell_Data,
                    flat_cell_counted_in_folder,
                    total_cells_counted_in_coord,
                ) = ProcessImage.retrieveDataFromML(
                    Rawimage, MLresults, image_file_name,
                    flat_cell_counted_in_folder)
            else:
                (
                    Cell_Data_new,
                    flat_cell_counted_in_folder,
                    total_cells_counted_in_coord,
                ) = ProcessImage.retrieveDataFromML(
                    Rawimage, MLresults, image_file_name,
                    flat_cell_counted_in_folder)
                if len(Cell_Data_new) > 0:
                    cell_Data = cell_Data.append(Cell_Data_new)
            total_cells_counted_in_folder += total_cells_counted_in_coord

        if save_excel == True:
            # Save to excel
            cell_Data.to_excel(
                os.path.join(
                    folder,
                    "CellsProperties_{}flat_outof_{}cells.xlsx".format(
                        flat_cell_counted_in_folder,
                        total_cells_counted_in_folder),
                ))

        return cell_Data
Ejemplo n.º 18
0
    def evaluate_focus(self, obj_position = None):
        """
        Evaluate the focus degree of certain objective position.

        Parameters
        ----------
        obj_position : float, optional
            The target objective position. The default is None.

        Returns
        -------
        degree_of_focus : float
            Degree of focus.

        """
        
        if obj_position != None:
            self.pi_device_instance.move(obj_position)
            
        # Get the image.
        if self.source_of_image == "PMT":
            self.galvo_image = self.galvo.run()
            plt.figure()
            plt.imshow(self.galvo_image)
            plt.show()
            
            if False:
                with skimtiff.TiffWriter(os.path.join(r'M:\tnw\ist\do\projects\Neurophotonics\Brinkslab\Data\Xin\2020-11-17 gaussian fit auto-focus cells\trial_11', str(obj_position).replace(".", "_")+ '.tif')) as tif:                
                    tif.save(self.galvo_image.astype('float32'), compress=0)
                            
            degree_of_focus = ProcessImage.local_entropy(self.galvo_image.astype('float32'))
            
        elif self.source_of_image == "Camera":
            # First configure the AOTF.
            self.AOTF_runner = DAQmission()
            # Find the AOTF channel key
            for key in self.imaging_conditions:
                if 'AO' in key:
                    # like '488AO'
                    AOTF_channel_key = key
            
            # Set the AOTF first.
            self.AOTF_runner.sendSingleDigital('blankingall', True)
            self.AOTF_runner.sendSingleAnalog(AOTF_channel_key, self.imaging_conditions[AOTF_channel_key])
            
            # Snap an image from camera
            self.camera_image = self.HamamatsuCam_ins.SnapImage(self.imaging_conditions['exposure_time'])
            time.sleep(0.5)
            
            # Set back AOTF
            self.AOTF_runner.sendSingleDigital('blankingall', False)
            self.AOTF_runner.sendSingleAnalog(AOTF_channel_key, 0)
            
            plt.figure()
            plt.imshow(self.camera_image)
            plt.show()
            
            if False:
                with skimtiff.TiffWriter(os.path.join(r'M:\tnw\ist\do\projects\Neurophotonics\Brinkslab\Data\Xin\2021-03-06 Camera AF\beads', str(obj_position).replace(".", "_")+ '.tif')) as tif:                
                    tif.save(self.camera_image.astype('float32'), compress=0)
                            
            degree_of_focus = ProcessImage.variance_of_laplacian(self.camera_image.astype('float32'))
                
        time.sleep(0.2)
        
        return degree_of_focus