Ejemplo n.º 1
0
 def __init__(self, **kwargs: Any) -> None:
     fg_classes = ["spinalcord", "lung_r", "lung_l", "heart", "esophagus"]
     fg_display_names = [
         "SpinalCord", "Lung_R", "Lung_L", "Heart", "Esophagus"
     ]
     super().__init__(
         architecture="UNet3D",
         feature_channels=[32],
         kernel_size=3,
         azure_dataset_id=AZURE_DATASET_ID,
         crop_size=(64, 224, 224),
         test_crop_size=(128, 512, 512),
         image_channels=["ct"],
         ground_truth_ids=fg_classes,
         ground_truth_ids_display_names=fg_display_names,
         colours=[(255, 255, 255)] * len(fg_classes),
         fill_holes=[False] * len(fg_classes),
         largest_connected_component_foreground_classes=[
             "lung_r", "lung_l", "heart"
         ],
         num_dataload_workers=8,
         norm_method=PhotometricNormalizationMethod.CtWindow,
         level=40,
         window=400,
         class_weights=equally_weighted_classes(fg_classes,
                                                background_weight=0.02),
         train_batch_size=8,
         inference_batch_size=1,
         inference_stride_size=(64, 256, 256),
         start_epoch=0,
         num_epochs=140,
         l_rate=1e-3,
         min_l_rate=1e-5,
         l_rate_polynomial_gamma=0.9,
         optimizer_type=OptimizerType.Adam,
         opt_eps=1e-4,
         adam_betas=(0.9, 0.999),
         momentum=0.9,
         weight_decay=1e-4,
         save_start_epoch=100,
         save_step_epochs=20,
         test_start_epoch=140,
         use_mixed_precision=True,
         use_model_parallel=True,
         monitoring_interval_seconds=0,
         test_diff_epochs=1,
         test_step_epochs=1,
         loss_type=SegmentationLoss.Mixture,
         mixture_loss_components=[
             MixtureLossComponent(0.5, SegmentationLoss.Focal, 0.2),
             MixtureLossComponent(0.5, SegmentationLoss.SoftDice, 0.1)
         ],
     )
     self.add_and_validate(kwargs)
Ejemplo n.º 2
0
def test_construct_loss_function() -> None:
    model_config = DummyModel()
    model_config.loss_type = SegmentationLoss.Mixture
    # Weights deliberately do not sum to 1.0.
    weights = [1.5, 0.5]
    model_config.mixture_loss_components = [
        MixtureLossComponent(weights[0], SegmentationLoss.CrossEntropy, 0.2),
        MixtureLossComponent(weights[1], SegmentationLoss.SoftDice, 0.1)]
    loss_fn = ModelTrainingStepsForSegmentation.construct_loss_function(model_config)
    assert isinstance(loss_fn, MixtureLoss)
    assert len(loss_fn.components) == len(weights)
    assert loss_fn.components[0][0] == weights[0] / sum(weights)
    assert loss_fn.components[1][0] == weights[1] / sum(weights)
 def __init__(self, num_structures: int = 0, **kwargs: Any) -> None:
     """
     :param num_structures: number of structures from STRUCTURE_LIST to predict (default: all structures)
     :param kwargs: other args from subclass
     """
     # Number of training epochs
     num_epochs = 120
     # Number of structures to predict; if positive but less than the length of STRUCTURE_LIST, the relevant prefix
     # of STRUCTURE_LIST will be predicted.
     if num_structures <= 0 or num_structures > len(STRUCTURE_LIST):
         num_structures = len(STRUCTURE_LIST)
     ground_truth_ids = STRUCTURE_LIST[:num_structures]
     colours = COLOURS[:num_structures]
     fill_holes = FILL_HOLES[:num_structures]
     ground_truth_ids_display_names = [f"zz_{x}" for x in ground_truth_ids]
     # The amount of GPU memory required increases with both the number of structures and the
     # number of feature channels. The following is a sensible default to avoid out-of-memory,
     # but you can override is by passing in another (singleton list) value for feature_channels
     # from a subclass.
     num_feature_channels = 32 if num_structures <= 20 else 26
     bg_weight = 0.02 if len(ground_truth_ids) > 1 else 0.25
     # In case of vertical overlap between brainstem and spinal_cord, we separate them
     # by converting brainstem voxels to cord, as the latter is clinically more sensitive.
     # We do the same to separate SPC and MPC; in this case, the direction of change is unimportant,
     # so we choose SPC-to-MPC arbitrarily.
     slice_exclusion_rules = []
     summed_probability_rules = []
     if "brainstem" in ground_truth_ids and "spinal_cord" in ground_truth_ids:
         slice_exclusion_rules.append(
             SliceExclusionRule("brainstem", "spinal_cord", False))
         if "external" in ground_truth_ids:
             summed_probability_rules.append(
                 SummedProbabilityRule("spinal_cord", "brainstem",
                                       "external"))
     if "spc_muscle" in ground_truth_ids and "mpc_muscle" in ground_truth_ids:
         slice_exclusion_rules.append(
             SliceExclusionRule("spc_muscle", "mpc_muscle", False))
         if "external" in ground_truth_ids:
             summed_probability_rules.append(
                 SummedProbabilityRule("mpc_muscle", "spc_muscle",
                                       "external"))
     if "optic_chiasm" in ground_truth_ids and "pituitary_gland" in ground_truth_ids:
         slice_exclusion_rules.append(
             SliceExclusionRule("optic_chiasm", "pituitary_gland", True))
         if "external" in ground_truth_ids:
             summed_probability_rules.append(
                 SummedProbabilityRule("optic_chiasm", "pituitary_gland",
                                       "external"))
     super().__init__(
         should_validate=False,  # we'll validate after kwargs are added
         num_gpus=4,
         num_epochs=num_epochs,
         save_start_epoch=num_epochs,
         save_step_epoch=num_epochs,
         architecture="UNet3D",
         kernel_size=3,
         train_batch_size=4,
         inference_batch_size=1,
         feature_channels=[num_feature_channels],
         crop_size=(96, 288, 288),
         test_crop_size=(144, 512, 512),
         inference_stride_size=(72, 256, 256),
         image_channels=["ct"],
         norm_method=PhotometricNormalizationMethod.CtWindow,
         level=50,
         window=600,
         start_epoch=0,
         l_rate=1e-3,
         min_l_rate=1e-5,
         l_rate_polynomial_gamma=0.9,
         optimizer_type=OptimizerType.Adam,
         opt_eps=1e-4,
         adam_betas=(0.9, 0.999),
         momentum=0.9,
         test_diff_epochs=1,
         test_step_epochs=1,
         use_mixed_precision=True,
         use_model_parallel=True,
         monitoring_interval_seconds=0,
         num_dataload_workers=4,
         loss_type=SegmentationLoss.Mixture,
         mixture_loss_components=[
             MixtureLossComponent(0.5, SegmentationLoss.Focal, 0.2),
             MixtureLossComponent(0.5, SegmentationLoss.SoftDice, 0.1)
         ],
         ground_truth_ids=ground_truth_ids,
         ground_truth_ids_display_names=ground_truth_ids_display_names,
         largest_connected_component_foreground_classes=ground_truth_ids,
         colours=colours,
         fill_holes=fill_holes,
         class_weights=equally_weighted_classes(
             ground_truth_ids, background_weight=bg_weight),
         slice_exclusion_rules=slice_exclusion_rules,
         summed_probability_rules=summed_probability_rules,
     )
     self.add_and_validate(kwargs)
 def __init__(self,
              ground_truth_ids: List[str],
              ground_truth_ids_display_names: Optional[List[str]] = None,
              colours: Optional[List[TupleInt3]] = None,
              fill_holes: Optional[List[bool]] = None,
              class_weights: Optional[List[float]] = None,
              slice_exclusion_rules: Optional[List[SliceExclusionRule]] = None,
              summed_probability_rules: Optional[List[SummedProbabilityRule]] = None,
              num_feature_channels: Optional[int] = None,
              **kwargs: Any) -> None:
     """
     Creates a new instance of the class.
     :param ground_truth_ids: List of ground truth ids.
     :param ground_truth_ids_display_names: Optional list of ground truth id display names. If
     present then must be of the same length as ground_truth_ids.
     :param colours: Optional list of colours. If
     present then must be of the same length as ground_truth_ids.
     :param fill_holes: Optional list of fill hole flags. If
     present then must be of the same length as ground_truth_ids.
     :param class_weights: Optional list of class weights. If
     present then must be of the same length as ground_truth_ids + 1.
     :param slice_exclusion_rules: Optional list of SliceExclusionRules.
     :param summed_probability_rules: Optional list of SummedProbabilityRule.
     :param num_feature_channels: Optional number of feature channels.
     :param kwargs: Additional arguments that will be passed through to the SegmentationModelBase constructor.
     """
     # Number of training epochs
     num_epochs = 120
     num_structures = len(ground_truth_ids)
     colours = colours or generate_random_colours_list(RANDOM_COLOUR_GENERATOR, num_structures)
     fill_holes = fill_holes or [True] * num_structures
     ground_truth_ids_display_names = ground_truth_ids_display_names or [f"zz_{x}" for x in ground_truth_ids]
     # The amount of GPU memory required increases with both the number of structures and the
     # number of feature channels. The following is a sensible default to avoid out-of-memory,
     # but you can override is by passing in another (singleton list) value for feature_channels
     # from a subclass.
     num_feature_channels = num_feature_channels or (32 if num_structures <= 20 else 26)
     bg_weight = 0.02 if len(ground_truth_ids) > 1 else 0.25
     class_weights = class_weights or equally_weighted_classes(ground_truth_ids, background_weight=bg_weight)
     # In case of vertical overlap between brainstem and spinal_cord, we separate them
     # by converting brainstem voxels to cord, as the latter is clinically more sensitive.
     # We do the same to separate SPC and MPC; in this case, the direction of change is unimportant,
     # so we choose SPC-to-MPC arbitrarily.
     slice_exclusion_rules = slice_exclusion_rules or []
     summed_probability_rules = summed_probability_rules or []
     super().__init__(
         should_validate=False,  # we'll validate after kwargs are added
         num_epochs=num_epochs,
         recovery_checkpoint_save_interval=10,
         architecture="UNet3D",
         kernel_size=3,
         train_batch_size=1,
         inference_batch_size=1,
         feature_channels=[num_feature_channels],
         crop_size=(96, 288, 288),
         test_crop_size=(144, 512, 512),
         inference_stride_size=(72, 256, 256),
         image_channels=["ct"],
         norm_method=PhotometricNormalizationMethod.CtWindow,
         level=50,
         window=600,
         start_epoch=0,
         l_rate=1e-3,
         min_l_rate=1e-5,
         l_rate_polynomial_gamma=0.9,
         optimizer_type=OptimizerType.Adam,
         opt_eps=1e-4,
         adam_betas=(0.9, 0.999),
         momentum=0.9,
         use_mixed_precision=True,
         use_model_parallel=True,
         monitoring_interval_seconds=0,
         num_dataload_workers=2,
         loss_type=SegmentationLoss.Mixture,
         mixture_loss_components=[MixtureLossComponent(0.5, SegmentationLoss.Focal, 0.2),
                                  MixtureLossComponent(0.5, SegmentationLoss.SoftDice, 0.1)],
         ground_truth_ids=ground_truth_ids,
         ground_truth_ids_display_names=ground_truth_ids_display_names,
         largest_connected_component_foreground_classes=ground_truth_ids,
         colours=colours,
         fill_holes=fill_holes,
         class_weights=class_weights,
         slice_exclusion_rules=slice_exclusion_rules,
         summed_probability_rules=summed_probability_rules,
     )
     self.add_and_validate(kwargs)