Ejemplo n.º 1
0
import os
os.environ['CUDA_VISIBLE_DEVICES'] = '' #disables GPU detection, as multithreaded BLAS on CPU is faster in most cases; remove this line to enable the use of GPUs
import sys; sys.path.append('..') #makes this script runnable from the /examples subdir without adding adding /Outer to the pythonpath

import InnerModel.train as train_inner


target_col = 'expt'
input_data_csv = '../data/SAMPL.csv'
data_name = 'FreeSolv'



HyperParams = {'mparam3': 33, 'mparam2': 20, 'mparam1': 24, 'batch_size': 5, 'lr': 0.0011192729, 'MAX_epochs': 145, 'weight_decay_factor': 7.0894428e-05}


Output_dir = '{}_model_output/'.format(data_name)

training_scores_dict, validation_scores_dict = train_inner.main(output_dir=Output_dir,
                model_name='my_{}_model'.format(data_name), logp_col='', add_logp=False, training_file=input_data_csv,
                 validation_file=None, smile_col='smiles', target_col=target_col,
                 crossval_total_num_splits=10, experiment_name='{}'.format(data_name),
                 regression=1, binary_classification=0, batch_size = HyperParams['batch_size'], clip_gradient=0,
                 model_params = [HyperParams['mparam1'], HyperParams['mparam2'], HyperParams['mparam3']], contract_rings=0, learning_rate = HyperParams['lr'],
                 max_epochs=HyperParams['MAX_epochs'], enable_plotting=0,weight_decay_factor = HyperParams['weight_decay_factor'])

text = '<Training set scores>:\n{}\n\n<Validation set scores>:\n{}'.format('\n'.join(map(str,training_scores_dict)), '\n'.join(map(str,validation_scores_dict)))
train_inner.utils.save_text('{}{}_crossvalidation.txt'.format(Output_dir, data_name), text)

Ejemplo n.º 2
0
    'lr': 0.00052664289,
    'contract_rings': 0
}

training_scores_dict, validation_scores_dict = train_inner.main(
    output_dir=Output_dir,
    model_name='my_tox21_model_1',
    logp_col='',
    add_logp=False,
    training_file=input_data_csv,
    validation_file=None,
    smile_col='smiles',
    target_col=target_col,
    crossval_total_num_splits=10,
    initial_crossvalidation_index=0,
    experiment_name='tox21',
    regression=0,
    binary_classification=1,
    batch_size=HyperParams['batch_size'],
    clip_gradient=0,
    model_params=[
        HyperParams['mparam1'], HyperParams['mparam2'], HyperParams['mparam3']
    ],
    contract_rings=0,
    learning_rate=HyperParams['lr'],
    max_epochs=100,
    enable_plotting=0)

text = '<Training set scores>:\n{}\n\n<Validation set scores>:\n{}'.format(
    '\n'.join(map(str, training_scores_dict)),
    '\n'.join(map(str, validation_scores_dict)))
Ejemplo n.º 3
0
import os
os.environ['CUDA_VISIBLE_DEVICES'] = '' #disables GPU detection, as multithreaded BLAS on CPU is faster in most cases; remove this line to enable the use of GPUs
import sys; sys.path.append('..') #makes this script runnable from the /examples subdir without adding adding /Outer to the pythonpath

import InnerModel.train as train_inner


target_col = 'p_np'
input_data_csv = '../data/BBBP.csv'
data_name = 'BBBP'




HyperParams = {'mparam3': 65, 'mparam2': 58, 'mparam1': 6, 'lr': 0.002, 'batch_size': 10, 'train_n_epochs':100}
Output_dir='{}_model_output/'.format(data_name)


training_scores_dict, validation_scores_dict = train_inner.main(output_dir=Output_dir,
                                                                model_name='my_{}_model'.format(data_name), training_file=input_data_csv,
                                                                validation_file=None, smile_col='smiles', target_col=target_col,
                                                                crossval_total_num_splits=10, experiment_name=data_name,
                                                                regression=False, binary_classification=True,
                                                                batch_size = HyperParams['batch_size'], clip_gradient=False,
                                                                model_params = [HyperParams['mparam1'], HyperParams['mparam2'], HyperParams['mparam3']],
                                                                contract_rings=False, learning_rate = HyperParams['lr'],
                                                                max_epochs=HyperParams['train_n_epochs'], enable_plotting=False)

text = '<Training set scores>:\n{}\n\n<Validation set scores>:\n{}'.format('\n'.join(map(str,training_scores_dict)), '\n'.join(map(str,validation_scores_dict)))
train_inner.utils.save_text('{}{}_crossvalidation.txt'.format(Output_dir, data_name), text)