Ejemplo n.º 1
0
def evaluate_lenet5(learning_rate=0.1,
                    n_epochs=200,
                    dataset='emotion',
                    nkerns=[20, 50],
                    batch_size=500):
    """ Demonstrates lenet on MNIST dataset

    :type learning_rate: float
    :param learning_rate: learning rate used (factor for the stochastic
                          gradient)

    :type n_epochs: int
    :param n_epochs: maximal number of epochs to run the optimizer

    :type dataset: string
    :param dataset: path to the dataset used for training /testing (MNIST here)

    :type nkerns: list of ints
    :param nkerns: number of kernels on each layer
    """

    rng = numpy.random.RandomState(23455)

    datasets = Ld.load_share(dataset)
    if dataset == 'mnist':
        ishape = (28, 28)  # this is the size of MNIST images
        num_label = 10
    elif dataset == 'emotion':
        ishape = (48, 48)  # this is the size of MNIST images
        num_label = 7

    train_set_x, train_set_y = datasets[0]
    valid_set_x, valid_set_y = datasets[1]
    test_set_x, test_set_y = datasets[2]

    # compute number of minibatches for training, validation and testing
    n_train_batches = train_set_x.get_value(borrow=True).shape[0]
    n_valid_batches = valid_set_x.get_value(borrow=True).shape[0]
    n_test_batches = test_set_x.get_value(borrow=True).shape[0]
    n_train_batches /= batch_size
    n_valid_batches /= batch_size
    n_test_batches /= batch_size

    # allocate symbolic variables for the data
    index = T.lscalar()  # index to a [mini]batch
    x = T.matrix('x')  # the data is presented as rasterized images
    y = T.ivector('y')  # the labels are presented as 1D vector of
    # [int] labels
    ######################
    # BUILD ACTUAL MODEL #
    ######################
    print '... building the model'

    # Reshape matrix of rasterized images of shape (batch_size,28*28)
    # to a 4D tensor, compatible with our LeNetConvPoolLayer
    layer0_input = x.reshape((batch_size, 1, ishape[0], ishape[1]))

    # Construct the first convolutional pooling layer:
    # filtering reduces the image size to (28-5+1,28-5+1)=(24,24)
    # maxpooling reduces this further to (24/2,24/2) = (12,12)
    # 4D output tensor is thus of shape (batch_size,nkerns[0],12,12)
    layer0 = LeNetConvPoolLayer(rng,
                                input=layer0_input,
                                image_shape=(batch_size, 1, ishape[0],
                                             ishape[1]),
                                filter_shape=(nkerns[0], 1, 5, 5),
                                poolsize=(2, 2))

    # Construct the second convolutional pooling layer
    # filtering reduces the image size to (12-5+1,12-5+1)=(8,8)
    # maxpooling reduces this further to (8/2,8/2) = (4,4)
    # 4D output tensor is thus of shape (nkerns[0],nkerns[1],4,4)
    if dataset == 'emotion':
        layer05 = LeNetConvPoolLayer(rng,
                                     input=layer0.output,
                                     image_shape=(batch_size, nkerns[0], 22,
                                                  22),
                                     filter_shape=(nkerns[0], nkerns[0], 3, 3),
                                     poolsize=(2, 2))
        layer1 = LeNetConvPoolLayer(rng,
                                    input=layer05.output,
                                    image_shape=(batch_size, nkerns[0], 10,
                                                 10),
                                    filter_shape=(nkerns[1], nkerns[0], 3, 3),
                                    poolsize=(2, 2))
    elif dataset == 'mnist':
        layer1 = LeNetConvPoolLayer(rng,
                                    input=layer0.output,
                                    image_shape=(batch_size, nkerns[0], 12,
                                                 12),
                                    filter_shape=(nkerns[1], nkerns[0], 5, 5),
                                    poolsize=(2, 2))

    # the TanhLayer being fully-connected, it operates on 2D matrices of
    # shape (batch_size,num_pixels) (i.e matrix of rasterized images).
    # This will generate a matrix of shape (20,32*4*4) = (20,512)
    layer2_input = layer1.output.flatten(2)

    # construct a fully-connected sigmoidal layer
    layer2 = HiddenLayer(rng,
                         input=layer2_input,
                         n_in=nkerns[1] * 4 * 4,
                         n_out=500,
                         activation=T.tanh)

    # classify the values of the fully-connected sigmoidal layer
    layer3 = LogisticRegression(input=layer2.output, n_in=500, n_out=num_label)

    # the cost we minimize during training is the NLL of the model
    cost = layer3.negative_log_likelihood(y)

    # create a function to compute the mistakes that are made by the model
    test_model = theano.function(
        [index],
        layer3.errors(y),
        givens={
            x: test_set_x[index * batch_size:(index + 1) * batch_size],
            y: test_set_y[index * batch_size:(index + 1) * batch_size]
        })

    validate_model = theano.function(
        [index],
        layer3.errors(y),
        givens={
            x: valid_set_x[index * batch_size:(index + 1) * batch_size],
            y: valid_set_y[index * batch_size:(index + 1) * batch_size]
        })

    # create a list of all model parameters to be fit by gradient descent
    params = layer3.params + layer2.params + layer1.params + layer0.params

    # create a list of gradients for all model parameters
    grads = T.grad(cost, params)

    # train_model is a function that updates the model parameters by
    # SGD Since this model has many parameters, it would be tedious to
    # manually create an update rule for each model parameter. We thus
    # create the updates list by automatically looping over all
    # (params[i],grads[i]) pairs.
    updates = []
    for param_i, grad_i in zip(params, grads):
        updates.append((param_i, param_i - learning_rate * grad_i))

    train_model = theano.function(
        [index],
        cost,
        updates=updates,
        givens={
            x: train_set_x[index * batch_size:(index + 1) * batch_size],
            y: train_set_y[index * batch_size:(index + 1) * batch_size]
        })

    ###############
    # TRAIN MODEL #
    ###############
    print '... training'
    # early-stopping parameters
    patience = 10000  # look as this many examples regardless
    patience_increase = 2  # wait this much longer when a new best is
    # found
    improvement_threshold = 0.995  # a relative improvement of this much is
    # considered significant
    validation_frequency = min(n_train_batches, patience / 2)
    # go through this many
    # minibatche before checking the network
    # on the validation set; in this case we
    # check every epoch

    best_params = None
    best_validation_loss = numpy.inf
    best_iter = 0
    test_score = 0.
    start_time = time.clock()

    epoch = 0
    done_looping = False

    while (epoch < n_epochs) and (not done_looping):
        epoch = epoch + 1
        for minibatch_index in xrange(n_train_batches):

            iter = (epoch - 1) * n_train_batches + minibatch_index

            if iter % 100 == 0:
                print 'training @ iter = ', iter
            cost_ij = train_model(minibatch_index)

            if (iter + 1) % validation_frequency == 0:

                # compute zero-one loss on validation set
                validation_losses = [
                    validate_model(i) for i in xrange(n_valid_batches)
                ]
                this_validation_loss = numpy.mean(validation_losses)
                print('epoch %i, minibatch %i/%i, validation error %f %%' % \
                      (epoch, minibatch_index + 1, n_train_batches, \
                       this_validation_loss * 100.))

                # if we got the best validation score until now
                if this_validation_loss < best_validation_loss:

                    #improve patience if loss improvement is good enough
                    if this_validation_loss < best_validation_loss *  \
                       improvement_threshold:
                        patience = max(patience, iter * patience_increase)

                    # save best validation score and iteration number
                    best_validation_loss = this_validation_loss
                    best_iter = iter

                    # test it on the test set
                    test_losses = [
                        test_model(i) for i in xrange(n_test_batches)
                    ]
                    test_score = numpy.mean(test_losses)
                    print(
                        ('     epoch %i, minibatch %i/%i, test error of best '
                         'model %f %%') % (epoch, minibatch_index + 1,
                                           n_train_batches, test_score * 100.))

            if patience <= iter:
                done_looping = True
                break

    end_time = time.clock()
    print('Optimization complete.')
    print('Best validation score of %f %% obtained at iteration %i,'\
          'with test performance %f %%' %
          (best_validation_loss * 100., best_iter + 1, test_score * 100.))
    print >> sys.stderr, ('The code for file ' + os.path.split(__file__)[1] +
                          ' ran for %.2fm' % ((end_time - start_time) / 60.))
Ejemplo n.º 2
0
class CDBN:
    def __init__(self,
                 input=None,
                 label=None,
                 n_ins=2,
                 hidden_layer_sizes=[3, 3],
                 n_outs=2,
                 rng=None):

        self.x = input
        self.y = label

        self.sigmoid_layers = []
        self.rbm_layers = []
        self.n_layers = len(hidden_layer_sizes)

        if rng is None:
            rng = numpy.random.RandomState(1234)

        assert self.n_layers > 0

        # construct multi-layer
        for i in xrange(self.n_layers):
            # layer_size
            if i == 0:
                input_size = n_ins
            else:
                input_size = hidden_layer_sizes[i - 1]

            # layer_input
            if i == 0:
                layer_input = self.x
            else:
                layer_input = self.sigmoid_layers[-1].sample_h_given_v()

            # construct sigmoid_layer
            sigmoid_layer = HiddenLayer(input=layer_input,
                                        n_in=input_size,
                                        n_out=hidden_layer_sizes[i],
                                        rng=rng,
                                        activation=sigmoid)
            self.sigmoid_layers.append(sigmoid_layer)

            # construct rbm_layer
            if i == 0:
                rbm_layer = CRBM(
                    input=layer_input,  # continuous-valued inputs
                    n_visible=input_size,
                    n_hidden=hidden_layer_sizes[i],
                    W=sigmoid_layer.W,  # W, b are shared
                    hbias=sigmoid_layer.b)
            else:
                rbm_layer = RBM(
                    input=layer_input,
                    n_visible=input_size,
                    n_hidden=hidden_layer_sizes[i],
                    W=sigmoid_layer.W,  # W, b are shared
                    hbias=sigmoid_layer.b)

            self.rbm_layers.append(rbm_layer)

        # layer for output using Logistic Regression
        self.log_layer = LogisticRegression(
            input=self.sigmoid_layers[-1].sample_h_given_v(),
            label=self.y,
            n_in=hidden_layer_sizes[-1],
            n_out=n_outs)

        # finetune cost: the negative log likelihood of the logistic regression layer
        self.finetune_cost = self.log_layer.negative_log_likelihood()
Ejemplo n.º 3
0
class SdA:
    def __init__(self,
                 input=None,
                 label=None,
                 n_ins=2,
                 hidden_layer_sizes=[3, 3],
                 n_outs=2,
                 rng=None):

        self.x = input
        self.y = label

        self.sigmoid_layers = []
        self.dA_layers = []
        self.n_layers = len(hidden_layer_sizes)  # = len(self.rbm_layers)

        if rng is None:
            rng = numpy.random.RandomState(1234)

        assert self.n_layers > 0

        # construct multi-layer
        for i in xrange(self.n_layers):
            # layer_size
            if i == 0:
                input_size = n_ins
            else:
                input_size = hidden_layer_sizes[i - 1]

            # layer_input
            if i == 0:
                layer_input = self.x
            else:
                layer_input = self.sigmoid_layers[-1].sample_h_given_v()

            # construct sigmoid_layer
            sigmoid_layer = HiddenLayer(input=layer_input,
                                        n_in=input_size,
                                        n_out=hidden_layer_sizes[i],
                                        rng=rng,
                                        activation=sigmoid)
            self.sigmoid_layers.append(sigmoid_layer)

            # construct dA_layers
            dA_layer = dA(input=layer_input,
                          n_visible=input_size,
                          n_hidden=hidden_layer_sizes[i],
                          W=sigmoid_layer.W,
                          hbias=sigmoid_layer.b)
            self.dA_layers.append(dA_layer)

        # layer for output using Logistic Regression
        self.log_layer = LogisticRegression(
            input=self.sigmoid_layers[-1].sample_h_given_v(),
            label=self.y,
            n_in=hidden_layer_sizes[-1],
            n_out=n_outs)

        # finetune cost: the negative log likelihood of the logistic regression layer
        self.finetune_cost = self.log_layer.negative_log_likelihood()

    def pretrain(self, lr=0.1, corruption_level=0.3, epochs=100):
        for i in xrange(self.n_layers):
            if i == 0:
                layer_input = self.x
            else:
                layer_input = self.sigmoid_layers[i - 1].sample_h_given_v(
                    layer_input)

            da = self.dA_layers[i]

            for epoch in xrange(epochs):
                da.train(lr=lr,
                         corruption_level=corruption_level,
                         input=layer_input)

    def finetune(self, lr=0.1, epochs=100):
        layer_input = self.sigmoid_layers[-1].sample_h_given_v()

        # train log_layer
        epoch = 0

        while epoch < epochs:
            self.log_layer.train(lr=lr, input=layer_input)
            lr *= 0.95
            epoch += 1

    def predict(self, x):
        layer_input = x

        for i in xrange(self.n_layers):
            sigmoid_layer = self.sigmoid_layers[i]
            layer_input = sigmoid_layer.output(input=layer_input)

        return self.log_layer.predict(layer_input)
    def __init__(self, n_conv_layers=2, filter_shapes=((20, 1, 5, 5), (50, 20, 5, 5)),
                 image_shape=(500, 1, 28, 28), poolsize=(2, 2),  n_hidden_neurons = 500,
                 learning_rate=0.1, dataset_name='mnist.pkl.gz'):
        """
        Инициализирует сеть, в соответствии с переданными параметрами.

        :type n_conv_layers: int > 0
        :param n_conv_layers: количество свёрточных слоёв

        :type filter_shapes: tuple, длины n_conv_layers, состоящий из описаний фильтров(tuple длины 4)
        :param filter_shapes: каждый filter_shape имеет следующий формат:
                              (количество фильтров, количество входных каналов, высота фильтра, ширина фильтра)
                              количество фильтров соотвествует количеству выходных каналов

        :type image_shape: tuple или list длины 4
        :param image_shape: (размер одного пакета, количество входных каналов(карт признаков),
                             высота изображения, ширина изображения)

        :param poolsize: tuple длины 2

        :type n_hidden_neurons: int > 0
        :param n_hidden_neurons: количество нейронов в полносвязном скрытом слое

        :type learning_rate: double
        :param learning_rate: параметр, отвественный за скорость обучения методом градиентного спуска
        """

        # Проверка корректности входных параметров
        assert len(image_shape) == 4
        assert len(filter_shapes) == n_conv_layers
        assert len(poolsize) == 2

        self.n_conv_layers = n_conv_layers
        self.batch_size = image_shape[0]

        self.rng = numpy.random.RandomState(23455)

        # резервируем символические переменные для данных

        ######################
        # BUILD ACTUAL MODEL #
        ######################
        print '... building the model'

        x = T.matrix('x')   # the data is presented as rasterized images
        y = T.ivector('y')  # the labels are presented as 1D vector of [int] labels

        layer_input = x.reshape(image_shape)

        # лист из параметров скрытых слоёв
        params = []

        # Инициализирую сверточные слоя, в соответствии с архитектурой, указанной в параметрах
        for i in xrange(n_conv_layers):
            batch_size, n_filter_maps, image_height, image_weight = image_shape
            n_filters, n_input_filter_maps, filer_heigth, filter_weight = filter_shapes[i]
            pool_height, pool_weight = poolsize

            # Построение свёртного слоя + пулинг
            conv_layer = LeNetConvPoolLayer(
                self.rng,
                input=layer_input,
                image_shape=image_shape,
                filter_shape=filter_shapes[i],
                poolsize=poolsize
            )

            layer_input = conv_layer.output
            # Сохраняю параметры сети
            params.append(conv_layer.params)

            # Фильтр сокращает размер изображение, новый размер: (28-5+1 , 28-5+1) = (24, 24)
            image_height = image_height - filer_heigth + 1
            image_weight = image_weight - filter_weight + 1

            # maxpooling также сокращает размер, новый размер: (24/2, 24/2) = (12, 12)
            image_height /= pool_height
            image_weight /= pool_weight

            # Таким образом новый размер тензора изображения: (batch_size, 20, 12, 12)
            image_shape = (batch_size, n_filters, image_height, image_weight)

        # Результат прохождения изображений через свёрточные слои записан в layer_input
        # Размер потока данный теперь соответсвует image_shape
        # Если в сети два слоя с дефолтными параметрами, то выходное изображением имеет формат:
        # filtering reduces the image size to (12-5+1, 12-5+1) = (8, 8)
        # maxpooling reduces this further to (8/2, 8/2) = (4, 4)
        # 4D output tensor is thus of shape (batch_size, 50, 4, 4)
        batch_size, n_filter_maps, image_height, image_weight = image_shape

        # Полносвязный скытый слой принимает на вход 2D матрицу, но у нас есть 4D тензор
        # Поэтому превращаем тензор в матрицу размера (batch_size, n_filters * image_height * image_weight)
        fully_connected_layer_input = layer_input.flatten(2)

        n_filter_maps = image_shape[1]
        # n_in: размерность входа
        # n_out: количество нейронов в скрытом слое
        # Построение полносвязного слоя
        # TODO: тут по-хорошему можно задавать активационную функцию в качестве параметра
        fully_connected_layer = HiddenLayer(
            self.rng,
            input=fully_connected_layer_input,
            n_in=n_filter_maps * image_height * image_weight,
            n_out=n_hidden_neurons,
            activation=T.tanh
        )

        # classify the values of the fully-connected sigmoidal layer
        logistic_regression_layer = LogisticRegression(input=fully_connected_layer.output,
                                                       n_in=n_hidden_neurons, n_out=10)
        index = T.lscalar()  # индекс пакета
        x_set = T.matrix('x_set')
        # Функция, распознающая изображения (используется уже после обучения)
        self.prediction_model = theano.function(
            [index, x_set],
            outputs=logistic_regression_layer.y_pred,
            givens={
                x: x_set[index * self.batch_size: (index + 1) * self.batch_size]
            }
        )
        # the cost we minimize during training is the NLL of the model
        cost = logistic_regression_layer.negative_log_likelihood(y)

        self.load(dataset_name=dataset_name)

        # Создаём функцию, подсчитывающую ошибку модели
        self.test_model = theano.function(
            [index],
            logistic_regression_layer.errors(y),
            givens={
                x: self.test_set_x[index * self.batch_size: (index + 1) * self.batch_size],
                y: self.test_set_y[index * self.batch_size: (index + 1) * self.batch_size]
            }
        )

        self.validate_model = theano.function(
            [index],
            logistic_regression_layer.errors(y),
            givens={
                x: self.valid_set_x[index * self.batch_size: (index + 1) * self.batch_size],
                y: self.valid_set_y[index * self.batch_size: (index + 1) * self.batch_size]
            }
        )

        self.inverted_params = logistic_regression_layer.params + fully_connected_layer.params
        for i in xrange(n_conv_layers - 1, -1, -1):
            self.inverted_params += params[i]

        # Создаём список градиентов для всех параметров модели
        grads = T.grad(cost, self.inverted_params)

        # train_model это функция, которая обновляет параметры модели с помощью SGD
        # Так как модель имеет много парамметров, было бы утомтельным вручную создавать правила обновления
        # для каждой модели, поэтому мы создали updates list для автоматического прохождения по парам
        # (params[i], grads[i])
        updates = [
            (param_i, param_i - learning_rate * grad_i)
            for param_i, grad_i in zip(self.inverted_params, grads)
        ]

        self.train_model = theano.function(
            [index],
            cost,
            updates=updates,
            givens={
                x: self.train_set_x[index * self.batch_size: (index + 1) * self.batch_size],
                y: self.train_set_y[index * self.batch_size: (index + 1) * self.batch_size]
            }
        )

        set_x = T.matrix("set_x")
        self.predict = theano.function(
            [set_x],
            logistic_regression_layer.y_pred,
            givens={
                x: set_x
            }
        )
Ejemplo n.º 5
0
class DBN:
    def __init__(self, input=None, label=None, n_ins=2, hidden_layer_sizes=[3, 3], n_outs=2, rng=None):
        
        self.x = input
        self.y = label

        self.sigmoid_layers = []
        self.rbm_layers = []
        self.n_layers = len(hidden_layer_sizes)  # = len(self.rbm_layers)

        if rng is None:
            rng = numpy.random.RandomState(1234)

        
        assert self.n_layers > 0


        # construct multi-layer
        for i in xrange(self.n_layers):
            # layer_size
            if i == 0:
                input_size = n_ins
            else:
                input_size = hidden_layer_sizes[i - 1]

            # layer_input
            if i == 0:
                layer_input = self.x
            else:
                layer_input = self.sigmoid_layers[-1].sample_h_given_v()
                
            # construct sigmoid_layer
            sigmoid_layer = HiddenLayer(input=layer_input,
                                        n_in=input_size,
                                        n_out=hidden_layer_sizes[i],
                                        rng=rng,
                                        activation=sigmoid)
            self.sigmoid_layers.append(sigmoid_layer)


            # construct rbm_layer
            rbm_layer = RBM(input=layer_input,
                            n_visible=input_size,
                            n_hidden=hidden_layer_sizes[i],
                            W=sigmoid_layer.W,     # W, b are shared
                            hbias=sigmoid_layer.b)
            self.rbm_layers.append(rbm_layer)


        # layer for output using Logistic Regression
        self.log_layer = LogisticRegression(input=self.sigmoid_layers[-1].sample_h_given_v(),
                                            label=self.y,
                                            n_in=hidden_layer_sizes[-1],
                                            n_out=n_outs)

        # finetune cost: the negative log likelihood of the logistic regression layer
        self.finetune_cost = self.log_layer.negative_log_likelihood()



    def pretrain(self, lr=0.1, k=1, epochs=100):
        # pre-train layer-wise
        for i in xrange(self.n_layers):
            if i == 0:
                layer_input = self.x
            else:
                layer_input = self.sigmoid_layers[i-1].sample_h_given_v(layer_input)
            rbm = self.rbm_layers[i]
            
            for epoch in xrange(epochs):
                rbm.contrastive_divergence(lr=lr, k=k, input=layer_input)


    def finetune(self, lr=0.1, epochs=100):
        layer_input = self.sigmoid_layers[-1].sample_h_given_v()

        # train log_layer
        epoch = 0
        done_looping = False
        while (epoch < epochs) and (not done_looping):
            self.log_layer.train(lr=lr, input=layer_input)
            
            lr *= 0.95
            epoch += 1


    def predict(self, x):
        layer_input = x
        
        for i in xrange(self.n_layers):
            sigmoid_layer = self.sigmoid_layers[i]
            layer_input = sigmoid_layer.output(input=layer_input)

        out = self.log_layer.predict(layer_input)
        return out
Ejemplo n.º 6
0
def evaluate_lenet5(learning_rate=0.1, n_epochs=200, dataset="emotion", nkerns=[20, 50], batch_size=500):
    """ Demonstrates lenet on MNIST dataset

    :type learning_rate: float
    :param learning_rate: learning rate used (factor for the stochastic
                          gradient)

    :type n_epochs: int
    :param n_epochs: maximal number of epochs to run the optimizer

    :type dataset: string
    :param dataset: path to the dataset used for training /testing (MNIST here)

    :type nkerns: list of ints
    :param nkerns: number of kernels on each layer
    """

    rng = numpy.random.RandomState(23455)

    datasets = Ld.load_share(dataset)
    if dataset == "mnist":
        ishape = (28, 28)  # this is the size of MNIST images
        num_label = 10
    elif dataset == "emotion":
        ishape = (48, 48)  # this is the size of MNIST images
        num_label = 7

    train_set_x, train_set_y = datasets[0]
    valid_set_x, valid_set_y = datasets[1]
    test_set_x, test_set_y = datasets[2]

    # compute number of minibatches for training, validation and testing
    n_train_batches = train_set_x.get_value(borrow=True).shape[0]
    n_valid_batches = valid_set_x.get_value(borrow=True).shape[0]
    n_test_batches = test_set_x.get_value(borrow=True).shape[0]
    n_train_batches /= batch_size
    n_valid_batches /= batch_size
    n_test_batches /= batch_size

    # allocate symbolic variables for the data
    index = T.lscalar()  # index to a [mini]batch
    x = T.matrix("x")  # the data is presented as rasterized images
    y = T.ivector("y")  # the labels are presented as 1D vector of
    # [int] labels
    ######################
    # BUILD ACTUAL MODEL #
    ######################
    print "... building the model"

    # Reshape matrix of rasterized images of shape (batch_size,28*28)
    # to a 4D tensor, compatible with our LeNetConvPoolLayer
    layer0_input = x.reshape((batch_size, 1, ishape[0], ishape[1]))

    # Construct the first convolutional pooling layer:
    # filtering reduces the image size to (28-5+1,28-5+1)=(24,24)
    # maxpooling reduces this further to (24/2,24/2) = (12,12)
    # 4D output tensor is thus of shape (batch_size,nkerns[0],12,12)
    layer0 = LeNetConvPoolLayer(
        rng,
        input=layer0_input,
        image_shape=(batch_size, 1, ishape[0], ishape[1]),
        filter_shape=(nkerns[0], 1, 5, 5),
        poolsize=(2, 2),
    )

    # Construct the second convolutional pooling layer
    # filtering reduces the image size to (12-5+1,12-5+1)=(8,8)
    # maxpooling reduces this further to (8/2,8/2) = (4,4)
    # 4D output tensor is thus of shape (nkerns[0],nkerns[1],4,4)
    if dataset == "emotion":
        layer05 = LeNetConvPoolLayer(
            rng,
            input=layer0.output,
            image_shape=(batch_size, nkerns[0], 22, 22),
            filter_shape=(nkerns[0], nkerns[0], 3, 3),
            poolsize=(2, 2),
        )
        layer1 = LeNetConvPoolLayer(
            rng,
            input=layer05.output,
            image_shape=(batch_size, nkerns[0], 10, 10),
            filter_shape=(nkerns[1], nkerns[0], 3, 3),
            poolsize=(2, 2),
        )
    elif dataset == "mnist":
        layer1 = LeNetConvPoolLayer(
            rng,
            input=layer0.output,
            image_shape=(batch_size, nkerns[0], 12, 12),
            filter_shape=(nkerns[1], nkerns[0], 5, 5),
            poolsize=(2, 2),
        )

    # the TanhLayer being fully-connected, it operates on 2D matrices of
    # shape (batch_size,num_pixels) (i.e matrix of rasterized images).
    # This will generate a matrix of shape (20,32*4*4) = (20,512)
    layer2_input = layer1.output.flatten(2)

    # construct a fully-connected sigmoidal layer
    layer2 = HiddenLayer(rng, input=layer2_input, n_in=nkerns[1] * 4 * 4, n_out=500, activation=T.tanh)

    # classify the values of the fully-connected sigmoidal layer
    layer3 = LogisticRegression(input=layer2.output, n_in=500, n_out=num_label)

    # the cost we minimize during training is the NLL of the model
    cost = layer3.negative_log_likelihood(y)

    # create a function to compute the mistakes that are made by the model
    test_model = theano.function(
        [index],
        layer3.errors(y),
        givens={
            x: test_set_x[index * batch_size : (index + 1) * batch_size],
            y: test_set_y[index * batch_size : (index + 1) * batch_size],
        },
    )

    validate_model = theano.function(
        [index],
        layer3.errors(y),
        givens={
            x: valid_set_x[index * batch_size : (index + 1) * batch_size],
            y: valid_set_y[index * batch_size : (index + 1) * batch_size],
        },
    )

    # create a list of all model parameters to be fit by gradient descent
    params = layer3.params + layer2.params + layer1.params + layer0.params

    # create a list of gradients for all model parameters
    grads = T.grad(cost, params)

    # train_model is a function that updates the model parameters by
    # SGD Since this model has many parameters, it would be tedious to
    # manually create an update rule for each model parameter. We thus
    # create the updates list by automatically looping over all
    # (params[i],grads[i]) pairs.
    updates = []
    for param_i, grad_i in zip(params, grads):
        updates.append((param_i, param_i - learning_rate * grad_i))

    train_model = theano.function(
        [index],
        cost,
        updates=updates,
        givens={
            x: train_set_x[index * batch_size : (index + 1) * batch_size],
            y: train_set_y[index * batch_size : (index + 1) * batch_size],
        },
    )

    ###############
    # TRAIN MODEL #
    ###############
    print "... training"
    # early-stopping parameters
    patience = 10000  # look as this many examples regardless
    patience_increase = 2  # wait this much longer when a new best is
    # found
    improvement_threshold = 0.995  # a relative improvement of this much is
    # considered significant
    validation_frequency = min(n_train_batches, patience / 2)
    # go through this many
    # minibatche before checking the network
    # on the validation set; in this case we
    # check every epoch

    best_params = None
    best_validation_loss = numpy.inf
    best_iter = 0
    test_score = 0.0
    start_time = time.clock()

    epoch = 0
    done_looping = False

    while (epoch < n_epochs) and (not done_looping):
        epoch = epoch + 1
        for minibatch_index in xrange(n_train_batches):

            iter = (epoch - 1) * n_train_batches + minibatch_index

            if iter % 100 == 0:
                print "training @ iter = ", iter
            cost_ij = train_model(minibatch_index)

            if (iter + 1) % validation_frequency == 0:

                # compute zero-one loss on validation set
                validation_losses = [validate_model(i) for i in xrange(n_valid_batches)]
                this_validation_loss = numpy.mean(validation_losses)
                print (
                    "epoch %i, minibatch %i/%i, validation error %f %%"
                    % (epoch, minibatch_index + 1, n_train_batches, this_validation_loss * 100.0)
                )

                # if we got the best validation score until now
                if this_validation_loss < best_validation_loss:

                    # improve patience if loss improvement is good enough
                    if this_validation_loss < best_validation_loss * improvement_threshold:
                        patience = max(patience, iter * patience_increase)

                    # save best validation score and iteration number
                    best_validation_loss = this_validation_loss
                    best_iter = iter

                    # test it on the test set
                    test_losses = [test_model(i) for i in xrange(n_test_batches)]
                    test_score = numpy.mean(test_losses)
                    print (
                        ("     epoch %i, minibatch %i/%i, test error of best " "model %f %%")
                        % (epoch, minibatch_index + 1, n_train_batches, test_score * 100.0)
                    )

            if patience <= iter:
                done_looping = True
                break

    end_time = time.clock()
    print ("Optimization complete.")
    print (
        "Best validation score of %f %% obtained at iteration %i,"
        "with test performance %f %%" % (best_validation_loss * 100.0, best_iter + 1, test_score * 100.0)
    )
    print >> sys.stderr, (
        "The code for file " + os.path.split(__file__)[1] + " ran for %.2fm" % ((end_time - start_time) / 60.0)
    )