Ejemplo n.º 1
0
def find_connected_components(G: Graph):
    old_representation = G.representation_type
    G.change_graph_representation_to("adjacency_list")

    comp = components(graph)
    number_of_connected_components = max(comp)
    connected_components_list = []
    for i in range(number_of_connected_components):
        connected_components_list.append([])
        for j in range(len(G.graph_representation)):
            if (i + 1 == comp[j]):
                connected_components_list[i].append(j + 1)

    for i in range(len(connected_components_list)):
        temp_str = f"{i + 1}: "
        for c in connected_components_list[i]:
            temp_str = temp_str + f"{c} "
        print(temp_str)

    plot_graph(graph, comp)

    G.change_graph_representation_to(old_representation)
Ejemplo n.º 2
0
        distance_matrix.append(d_s)

    return distance_matrix

def print_distance_matrix(G: Graph):
    G.print_graph_representation()

    m = calculate_distance_matrix(G)

    for i in range(len(m)):
        print(m[i])


    


if __name__ == "__main__":
    #examples
    graph = _generate_connected_graph(10)

    gr_cpy = deepcopy(graph.graph_representation)

    add_connection_weights(graph, 1, 10)


    print_distance_matrix(graph)


    graph_to_draw = Graph("adjacency_matrix", gr_cpy)
    plot_graph(graph_to_draw)
Ejemplo n.º 3
0
def main():
    k = randrange(0, 6)
    graph = generate_k_regular_graph(k)
    print(f"generated {k}_regular graph")
    plot_graph(graph)
Ejemplo n.º 4
0
def generate_graph_from_graphic_string(A):
    if not is_graphic_string(A):
        raise Exception("To nie jest ciag graficzny")

    list.sort(A, reverse=True)
    n = len(A)
    matrix = [[0 for i in range(n)] for j in range(n)]
    mod_A = [[i, A[i]] for i in range(n)]

    while sum([n[1] for n in mod_A]):
        list.sort(mod_A, key=lambda x: x[1], reverse=True)
        for i in range(1, mod_A[0][1] + 1):
            mod_A[i][1] = mod_A[i][1] - 1
            mod_A[0][1] = mod_A[0][1] - 1
            matrix[mod_A[i][0]][mod_A[0][0]] = 1
            matrix[mod_A[0][0]][mod_A[i][0]] = 1

    graph = Graph.create_graph_representation("adjacency_matrix", matrix)
    return graph


if __name__ == "__main__":

    A = [4, 2, 2, 3, 2, 1, 4, 2, 2, 2, 2]
    B = [4, 4, 3, 1, 2]

    graph = generate_graph_from_graphic_string(A)
    plot_graph(graph)
    randomize_edges(graph, 5)
    plot_graph(graph)
Ejemplo n.º 5
0
def generate_connected_graph(max_vertex_count, min_weight, max_weight):
	graph = _generate_connected_graph(max_vertex_count)
	plot_graph(graph)
	add_connection_weights(graph, min_weight, max_weight)
	graph.print_graph_representation()