Ejemplo n.º 1
0
def test_recall_subtree_found_tree(recall_tree):
    plant_state = mcts.State()
    plant_state.ally_starting = True
    plant_state.ally_team = [1]
    plant_state.enemy_team = [2]
    node = mcts.recall_subtree(plant_state, recall_tree(plant_state), {1})
    assert 5 == node.value
Ejemplo n.º 2
0
def test_recall_subtree_not_found(recall_tree, some_state3):
    plant_state = mcts.State()
    plant_state.ally_starting = True
    plant_state.ally_team = [1]
    plant_state.enemy_team = [2]
    node = mcts.recall_subtree(some_state3, recall_tree(plant_state), {1})
    assert 0 == node.value
Ejemplo n.º 3
0
def evaluate_MCTS_against_real_matches(data):
    ally_wins = 0
    enemy_wins = 0
    total_win_pct = 0
    enemy_team = data[0][0]
    ally_starting = data[1]
    banned_champs = data[0][1]
    exploration_term = data[2]
    state = MCTS.State()
    state.ally_starting = ally_starting
    tree = None
    while len(state.enemy_team) < 5 or len(state.ally_team) < 5:
        if not ally_starting:
            pick_for_enemy_team(enemy_team, state, ally_starting)
        tree = MCTS.recall_subtree(state, tree, set(banned_champs))
        allowed_champions = list.copy(tree.possible_actions)
        suggestions, tree = MCTS.run_mcts(10,
                                          tree,
                                          True,
                                          allowed_champions,
                                          exploration_term=exploration_term)
        pick_for_ally_team(suggestions, enemy_team, state)
        if ally_starting:
            pick_for_enemy_team(enemy_team, state, ally_starting)
    input_vector = list.copy(state.ally_team)
    input_vector.extend(list.copy(state.enemy_team))
    result = NN.predictTeamComp(input_vector)
    total_win_pct += result

    if result > 0.5:
        ally_wins += 1
    else:
        enemy_wins += 1
    return ally_wins, enemy_wins, result
Ejemplo n.º 4
0
def test_get_suggestions2(tree):
    simple_state = mcts.State()
    simple_state.ally_team = []
    simple_state.enemy_team = [1]
    simple_state.ally_starting = False
    test_tree = tree(simple_state, 5)
    suggestion = mcts.get_suggestions(test_tree, True, 1)
    assert suggestion[0].score == 5
Ejemplo n.º 5
0
def node():
    simple_state = mcts.State()
    simple_state.ally_team = []
    simple_state.enemy_team = [1]
    simple_state.ally_starting = False

    a_node = mcts.Node([2, 3], simple_state)
    a_node.tree_path = {1, 4}
    return a_node
Ejemplo n.º 6
0
def evaluate_MCTS_against_winpct(data):
    ally_wins = 0
    enemy_wins = 0
    total_win_pct = 0
    ally_starting = data[0]
    exploration_term = data[1]
    state = MCTS.State()
    state.ally_starting = ally_starting

    tree = None

    banned_champs = set(random.sample(range(0, 141), 10))
    allowed_champions = MCTS.get_allowed_champions(banned_champs)
    while len(state.enemy_team) < 5 or len(state.ally_team) < 5:
        if ally_starting is not True:
            pick_champ_enemy_team_winpct(allowed_champions, state)
        tree = MCTS.recall_subtree(state, tree, set(banned_champs))
        allowed_champions = list.copy(tree.possible_actions)
        suggestions, tree = MCTS.run_mcts(10,
                                          tree,
                                          True,
                                          allowed_champions,
                                          exploration_term=exploration_term)

        if suggestions[0].champ2 is None:
            state.ally_team.append(suggestions[0].champ)
            allowed_champions.remove(suggestions[0].champ)
        else:
            state.ally_team.append(suggestions[0].champ)
            allowed_champions.remove(suggestions[0].champ)
            state.ally_team.append(suggestions[0].champ2)
            allowed_champions.remove(suggestions[0].champ2)
        if ally_starting is True:
            pick_champ_enemy_team_winpct(allowed_champions, state)
    input_vector = list.copy(state.ally_team)
    input_vector.extend(list.copy(state.enemy_team))
    result = NN.predictTeamComp(input_vector)
    total_win_pct += result
    if result > 0.5:
        ally_wins += 1
    elif result < 0.5:
        enemy_wins += 1

    return ally_wins, enemy_wins, result
Ejemplo n.º 7
0
    def _tree(target_state):
        simple_state = mcts.State()
        simple_state.ally_team = []
        simple_state.enemy_team = [1]
        simple_state.ally_starting = False

        root = mcts.Node([], simple_state)
        child1 = mcts.Node([], simple_state, root)
        child11 = mcts.Node([], simple_state, child1)
        child12 = mcts.Node([], simple_state, child1)
        child2 = mcts.Node([], simple_state, root)
        child21 = mcts.Node([], simple_state, child2)

        child22 = mcts.Node([], target_state, child2)

        root.children.append(child1)
        root.children.append(child2)

        child1.children.append(child11)
        child1.children.append(child12)

        child2.children.append(child21)
        child2.children.append(child22)

        child1.value = 0
        child1.visited = 2

        child2.value = 0
        child2.visited = 2
        child2.champ = 1

        child11.value = 1
        child11.visited = 1

        child12.value = 2
        child12.visited = 1

        child21.value = 3
        child21.visited = 1

        child22.value = 5
        child22.visited = 1
        child22.champ = 2

        root.depth = 0
        return root
Ejemplo n.º 8
0
    def _tree(simple_state, higher_than_three):
        root = mcts.Node([], simple_state)
        child1 = mcts.Node([], simple_state, root)
        child11 = mcts.Node([], simple_state, child1)
        child12 = mcts.Node([], simple_state, child1)
        child2 = mcts.Node([], simple_state, root)
        child21 = mcts.Node([], simple_state, child2)
        child22 = mcts.Node([], simple_state, child2)

        root.children.append(child1)
        root.children.append(child2)

        child1.children.append(child11)
        child1.children.append(child12)

        child2.children.append(child21)
        child2.children.append(child22)

        child1.value = 0
        child1.visited = 2

        child2.value = 0
        child2.visited = 2

        child11.value = 1
        child11.visited = 1

        child12.value = 2
        child12.visited = 1

        child21.value = 3
        child21.visited = 1

        child22.value = higher_than_three
        child22.visited = 1
        return root
Ejemplo n.º 9
0
def test_suggestions_to_json2(list_of_fixtures):
    json_obj = mcts.suggestions_to_json(list_of_fixtures)
    json_data = json.loads(json_obj)
    assert json_data[1] == [4, 6, 5]
Ejemplo n.º 10
0
def test_is_dual_return3(some_state3):
    assert mcts.is_dual_return(some_state3)
Ejemplo n.º 11
0
def test_simulate2(some_state):
    possible = [0, 2, 3, 4, 5, 6, 7, 8, 9]
    not_possible = range(10, 142)
    node = mcts.Node(possible, some_state)
    output = mcts.simulate(node)
    assert not any(elem in output for elem in not_possible)
Ejemplo n.º 12
0
def test_run_mcts_suggest(some_state):
    node = mcts.Node(range(10, 80), some_state)
    suggestions, reduced_root = mcts.run_mcts(1, node, True, range(10, 80))
    assert 10 == len(suggestions)
Ejemplo n.º 13
0
def some_state():
    test_state = mcts.State()
    test_state.ally_team = []
    test_state.enemy_team = [1]
    test_state.ally_starting = False
    return test_state
Ejemplo n.º 14
0
def test_find_state_at_turn2(node_with_champ, node):
    node.children.append(node_with_champ(1))
    node.children.append(node_with_champ(2))
    node.children.append(node_with_champ(3))
    node.children.append(node_with_champ(4))
    assert mcts.find_state_at_turn(node, 2).champ == 2
Ejemplo n.º 15
0
def test_game_state_from_json_bans(json_state):
    state, bans = mcts.game_state_from_json(json_state)
    assert bans == {6, 7, 8, 9, 0}
Ejemplo n.º 16
0
def test_backprop_root_visited(tree: mcts.Node):
    state = mcts.State()
    root = tree(state, 5)
    mcts.backprop(5, root.children[0].children[0])
    assert root.visited == 1
Ejemplo n.º 17
0
 def _node_with_champ(champ):
     node = mcts.Node([], mcts.State())
     node.champ = champ
     return node
Ejemplo n.º 18
0
def some_state3():
    test_state = mcts.State()
    test_state.ally_team = [4, 5, 6]
    test_state.enemy_team = [1, 2, 3, 7]
    test_state.ally_starting = True
    return test_state
Ejemplo n.º 19
0
def test_backprop_node1_value(tree: mcts.Node):
    state = mcts.State()
    root = tree(state, 5)
    mcts.backprop(5, root.children[0].children[0])
    assert root.children[0].value == 5
Ejemplo n.º 20
0
def test_simulate3(some_state):
    possible = [0, 2, 3, 4, 5, 6, 7, 8, 9]
    node = mcts.Node(possible, some_state)
    output = mcts.simulate(node)[5:]
    assert output.__contains__(1)
Ejemplo n.º 21
0
def test_expand_children_champ(node):
    fresh_node = mcts.expand(node, 130, {1, 2})

    assert fresh_node.champ == 130
Ejemplo n.º 22
0
def test_find_new_state(node):
    new_state = mcts.find_new_state(130, node)
    assert new_state.ally_team == [130]
Ejemplo n.º 23
0
def test_expand_parent(node):
    fresh_node = mcts.expand(node, 130, {1, 2})

    assert fresh_node.parent == node
Ejemplo n.º 24
0
def test_game_state_from_json_enemy_team(json_state):
    state, bans = mcts.game_state_from_json(json_state)
    assert state.enemy_team == [4, 5]
Ejemplo n.º 25
0
def test_run_mcts_root(some_state2):
    node = mcts.Node(range(20, 90), some_state2)
    suggestions, reduced_root = mcts.run_mcts(1, node, True, range(20, 90))
    assert isinstance(reduced_root, mcts.Node)
Ejemplo n.º 26
0
def test_game_state_from_json_ally_starting(json_state):
    state, bans = mcts.game_state_from_json(json_state)
    assert state.ally_starting
Ejemplo n.º 27
0
def test_is_dual_return2(some_state2):
    assert not mcts.is_dual_return(some_state2)
Ejemplo n.º 28
0
def list_of_fixtures():
    list = []
    list.append(mcts.Suggestion(1, 2, 3))
    list.append(mcts.Suggestion(4, 5, 6))
    return list
Ejemplo n.º 29
0
def test_game_state_from_json_ally_team(json_state):
    state, bans = mcts.game_state_from_json(json_state)
    assert state.ally_team == [1, 2, 3]
Ejemplo n.º 30
0
def test_simulate(some_state):
    possible = [0, 2, 3, 4, 5, 6, 7, 8, 9]
    node = mcts.Node(possible, some_state)
    output = mcts.simulate(node)
    assert all(elem in output for elem in possible)