def evaluate(self, test=True):
        """ Evaluate network on the validation set. """
        if test is True:
            key = 'TEST'
            data_directory = flags['data_directory'] + 'Test/'
        else:  # valid
            key = 'VALID'
            data_directory = flags['data_directory'] + 'Valid/'

        print('Detecting images in %s set' % key)
        data_info = (self.num_images[key], flags['num_classes'],
                     flags['classes'])

        tf_inputs = (self.x['EVAL'], self.im_dims['EVAL'])
        tf_outputs = (self.roi_proposal_net['EVAL'].get_rois(),
                      self.fast_rcnn_net['EVAL'].get_cls_prob(),
                      self.fast_rcnn_net['EVAL'].get_bbox_refinement())

        class_metrics = test_net(self.sess,
                                 data_directory,
                                 data_info,
                                 tf_inputs,
                                 tf_outputs,
                                 vis=self.flags['vis'])
        self.record_eval_metrics(class_metrics, key)
Ejemplo n.º 2
0
    def test(self):
        """ Evaluate network on the test set. """
        data_info = (self.num_images['TEST'], flags['num_classes'], flags['classes'])

        tf_inputs = (self.x['TEST'], self.im_dims['TEST'])
        tf_outputs = (self.roi_proposal_net['TEST'].get_rois(),
                      self.fast_rcnn_net['TEST'].get_cls_prob(),
                      self.fast_rcnn_net['TEST'].get_bbox_refinement())

        class_metrics = test_net(self.sess, flags['data_directory'], data_info, tf_inputs, tf_outputs)
        print(class_metrics)
    def evaluate(self, test=True):
        """ Evaluate network on the validation set. """
        key = 'TEST' if test is True else 'VALID'

        print('Detecting images in %s set' % key)

        tf_inputs = (self.x['EVAL'], self.im_dims['EVAL'])
        tf_outputs = (self.roi_proposal_net['EVAL'].get_rois(),
                      self.fast_rcnn_net['EVAL'].get_cls_prob(),
                      self.fast_rcnn_net['EVAL'].get_bbox_refinement())

        class_metrics = test_net(flags['data_directory'], self.names[key], self.sess, tf_inputs, tf_outputs, key=key, thresh=0.5, vis=self.flags['vis'])
        self.record_eval_metrics(class_metrics, key)
Ejemplo n.º 4
0
    def evaluate(self, test=True):
        """ Evaluate network on the validation set. """
        key = 'TEST' if test is True else 'VALID'

        print('Detecting images in %s set' % key)

        tf_inputs = (self.x['EVAL'], self.im_dims['EVAL'])
        tf_outputs = (self.roi_proposal_net['EVAL'].get_rois(),
                      self.fast_rcnn_net['EVAL'].get_cls_prob(),
                      self.fast_rcnn_net['EVAL'].get_bbox_refinement())

        class_metrics = test_net(flags['data_directory'], self.names[key], self.sess, tf_inputs, tf_outputs, key=key, thresh=0.5, vis=self.flags['vis'])
        self.record_eval_metrics(class_metrics, key)
Ejemplo n.º 5
0
    def evaluate(self, sess, img, raw_output_up, preds_summary, test=True):
        """ Evaluate network on the validation set. """
        key = 'TEST' if test is True else 'VALID'

        tf_inputs = (img)
        tf_outputs = (self.roi_proposal_net['EVAL'].get_rois(),
                      self.fast_rcnn_net['EVAL'].get_bbox_refinement(),
                      raw_output_up, preds_summary)

        class_metrics = test_net(self.flags['data_directory'],
                                 self.names,
                                 sess,
                                 tf_inputs,
                                 tf_outputs,
                                 key=key,
                                 thresh=0.5,
                                 vis=True)