class Extract: def __init__(self): print 'Starting extraction' self.instagram = Instagram() self.load = Load() def extract_twitter(self, accounts): print 'Starting Twitter extraction' for account in accounts: twitter = Twitter(account=account) for tweet in twitter.home_timeline(): self.load.save_tweet(text = tweet.text) def extract_instagram(self,accounts): print 'Starting Instagram extraction' for account in accounts: user = self.instagram.get_user(name = account) media = self.instagram.get_media(user_id = user.id)
class Run: """ Handles the running of the simulation through its yearly cycles """ log = Logger("Run", "Low") def __init__(self): """ Makes a new instance of the run class """ self.new = Load("Feudalism Simulation", True) self.log.tracktext("Now Loading") self.board = self.new.initialize() self.log.tracktext("Loading done") cont = 1 while cont == 1: cont = self.cycle() self.log.track_popup_only("Simulation complete") def cycle(self): """ Goes through the turn for each lord for every year :return: a zero when the number of runs is complete """ i = 0 while i < self.board[2]: self.log.trackconsoleonly("Yearly cycle", i) lordturn = 0 wincondition = self.how_many_are_left() if wincondition != 1: while lordturn < len(self.board[1]): self.board[1][lordturn].dead = self.board[1][lordturn].checkifdead() if not self.board[1][lordturn].dead: self.board[1][lordturn].land.calculatewealth() self.board[1][lordturn].land.placeserf() self.board[1][lordturn].land.findborders(self.board[0], self.board[3], self.board[4]) self.board[1][lordturn].decision() lordturn += 1 else: self.log.tracktext(str(self.board[1][lordturn].name) + " is defeated") lordturn += 1 i += 1 if wincondition == 1: self.log.track_popup_only("Simulation ended in year " + str(i)) i = self.board[2] return 0 def how_many_are_left(self): i = 0 c = len(self.board[1]) while i < len(self.board[1]): if self.board[1][i].dead: c -= 1 i += 1 return c
def add_load_to_source(self, loadParams = None, sourceID = None): if loadParams is None: loadParams = {} load = Load(**loadParams) if sourceID is None: sourceID = Source.num_sources - 1 if load.loadID not in self.load_dict.keys(): self._add_load(load) self.source_dict[sourceID].add_load(load.loadID)
def __init__(self): """ Makes a new instance of the run class """ self.new = Load("Feudalism Simulation", True) self.log.tracktext("Now Loading") self.board = self.new.initialize() self.log.tracktext("Loading done") cont = 1 while cont == 1: cont = self.cycle() self.log.track_popup_only("Simulation complete")
def __init__(self): # Load/Read kymograph track data from files dinfo = Load() # Harvest total times self.GetStrainTotalTimes(dinfo.data['strain']) # Initialize kymograph objects self.InitializeKymographs(dinfo.data['strain']) # Process kymograph self.ProcessKymographs() # Filter bad tracks self.bad_count = self.FilterTracks() print('There were {} bad tracks'.format(self.bad_count)) # total switching count self.DisplayTracksStatistics() self.Graph() pdb.set_trace()
def __init__(self): Load.__init__(self, "bath") self.ambient = None self.surface = None self.density = None return
def init_Start(): Load.load_Title() responce = Load.__init__() gc.collect() return responce def init_Load_Pro(): gc.collect() return Load.load_Project() #try: code, msg = ___init___.init_Start() #print (code) #print (msg) path = Load.load_Path() + "Sudarshana" if code == "1" and not os.getcwd() == path: Load.load_Pro_Pros() print(msg) Load.load_FileDir() ROOT, D_NAME, F_NAME = ___init___.init_Load_Pro() count = 0 if D_NAME != []: for directory in D_NAME: count += 1 print(str(count) + ".) " + directory) if F_NAME != []: for file in F_NAME: count += 1 print(str(count) + ".) " + file)
def __init__(self): Load.__init__(self, "heaviside") self.position = None self.velocity = None self.amplitude = None return
from Load import Load from DemandRange import DemandRange l = Load() dr = DemandRange() l.set_demand_ranges(130) dr.set_lower_bound(50) dr.set_upper_bound(60)
def load(self, event=None): _ = Load(self.subj_frame, self.SubjectList)
def add_load(self, loadParams=None): if loadParams is None: loadParams = {} load = Load(**loadParams) self._add_load(load)
def load(): global payload loadCml = Load("commandline") loadXss = Load("xss") payload['cml'] = loadCml.get() payload['xss'] = loadXss.get()
from Load import Load if __name__ == '__main__': load = Load() load.insert_restaurant_to_graph() load.insert_geojson_to_mongodb()
def simulation(self, start_year=0, end_year=4, PV_size=10, storage_size=10, **options): ''' Function: Simulates a minigrid system Inputs: start_year Start year of this simulation period end_year End year of this simulation period PV_size Amount of PV in kWp storage_size Amount of storage in kWh Outputs: tuple([system_performance_outputs,system_details]): system_performance_outputs Hourly performance of the simulated system load_energy Amount of energy (kWh) required to satisfy the loads total_energy_used Amount of energy (kWh) used by the system unmet_energy Amount of energy (kWh) unmet by the system blackout_times Times with power is available (0) or unavailable (1) renewables_energy_used_directly Amount of energy (kWh) from renewables used directly to satisfy load (kWh) storage_power_supplied Amount of energy (kWh) supplied by battery storage grid_energy Amount of energy (kWh) supplied by the grid diesel_energy Amount of energy (kWh) supplied from diesel generator diesel_times Times when diesel generator is on (1) or off (0) diesel_fuel_usage Amount of diesel (l) used by the generator storage_profile Amount of energy (kWh) into (+ve) and out of (-ve) the battery renewables_energy Amount of energy (kWh) provided by renewables to the system hourly_storage Amount of energy (kWh) in the battery energy_surplus Amount of energy (kWh) dumped owing to overgeneration battery_health Relative capactiy of the battery compared to new (0.0-1.0) households Number of households in the community kerosene_usage Number of kerosene lamps in use (if no power available) kerosene_mitigation Number of kerosene lamps not used (when power is available) system details Information about the installed system Start year Start year of the simulation End year End year of the simulation Initial PV size Capacity of PV installed (kWp) Initial storage size Capacity of battery storage installed (kWh) Final PV size Equivalent capacity of PV (kWp) after simulation Final storage size Equivalent capacity of battery storage (kWh) after simulation Diesel capacity Capacity of diesel generation installed (kW) ''' # Start timer to see how long simulation will take timer_start = datetime.datetime.now() # Initialise values for simulation PV_size = float(PV_size) storage_size = float(storage_size) # Get input profiles input_profiles = self.get_storage_profile(start_year, end_year, PV_size, **options) load_energy = pd.DataFrame(input_profiles['Load energy (kWh)']) renewables_energy = pd.DataFrame( input_profiles['Renewables energy supplied (kWh)']) renewables_energy_used_directly = pd.DataFrame( input_profiles['Renewables energy used (kWh)']) grid_energy = pd.DataFrame(input_profiles['Grid energy (kWh)']).abs() storage_profile = pd.DataFrame(input_profiles['Storage profile (kWh)']) kerosene_profile = pd.DataFrame(input_profiles['Kerosene lamps']) households = pd.DataFrame( Load().population_hourly()[start_year * 8760:end_year * 8760].values) # Initialise battery storage parameters max_energy_throughput = storage_size * self.energy_system_inputs[1][ 'Battery cycle lifetime'] initial_storage = storage_size * self.energy_system_inputs[1][ 'Battery maximum charge'] max_storage = storage_size * self.energy_system_inputs[1][ 'Battery maximum charge'] min_storage = storage_size * self.energy_system_inputs[1][ 'Battery minimum charge'] battery_leakage = self.energy_system_inputs[1]['Battery leakage'] battery_eff_in = self.energy_system_inputs[1]['Battery conversion in'] battery_eff_out = self.energy_system_inputs[1][ 'Battery conversion out'] battery_C_rate = self.energy_system_inputs[1]['Battery C rate'] battery_lifetime_loss = self.energy_system_inputs[1][ 'Battery lifetime loss'] cumulative_storage_power = 0.0 hourly_storage = [] new_hourly_storage = [] battery_health = [] # Initialise simulation parameters diesel_backup_status = self.scenario_inputs[1]['Diesel backup'] diesel_backup_threshold = float( self.scenario_inputs[1]['Diesel backup threshold']) # Initialise energy accounting parameters energy_surplus = [] energy_deficit = [] storage_power_supplied = [] # Begin simulation, iterating over timesteps for t in range(0, int(storage_profile.size)): battery_energy_flow = storage_profile.iloc[t][0] if t == 0: new_hourly_storage = initial_storage + battery_energy_flow else: if battery_energy_flow >= 0.0: # Battery charging new_hourly_storage = hourly_storage[t - 1] * ( 1.0 - battery_leakage) + battery_eff_in * min( battery_energy_flow, battery_C_rate * (max_storage - min_storage)) else: # Battery discharging new_hourly_storage = hourly_storage[t - 1] * ( 1.0 - battery_leakage) + (1.0 / battery_eff_out) * max( battery_energy_flow, (-1.0) * battery_C_rate * (max_storage - min_storage)) # Dumped energy and unmet demand energy_surplus.append(max(new_hourly_storage - max_storage, 0.0)) #Battery too full energy_deficit.append(max(min_storage - new_hourly_storage, 0.0)) #Battery too empty # Battery capacities and blackouts (if battery is too full or empty) if new_hourly_storage >= max_storage: new_hourly_storage = max_storage elif new_hourly_storage <= min_storage: new_hourly_storage = min_storage # Update hourly_storage hourly_storage.append(new_hourly_storage) # Update battery health if t == 0: storage_power_supplied.append(0.0 - battery_energy_flow) else: storage_power_supplied.append( max( hourly_storage[t - 1] * (1.0 - battery_leakage) - hourly_storage[t], 0.0)) cumulative_storage_power = cumulative_storage_power + storage_power_supplied[ t] storage_degradation = ( 1.0 - battery_lifetime_loss * (cumulative_storage_power / max_energy_throughput)) max_storage = ( storage_degradation * storage_size * self.energy_system_inputs[1]['Battery maximum charge']) min_storage = ( storage_degradation * storage_size * self.energy_system_inputs[1]['Battery minimum charge']) battery_health.append(storage_degradation) # Consolidate outputs from iteration stage storage_power_supplied = pd.DataFrame(storage_power_supplied) # Find unmet energy unmet_energy = pd.DataFrame( (load_energy.values - renewables_energy_used_directly.values - grid_energy.values - storage_power_supplied.values)) blackout_times = ((unmet_energy > 0) * 1).astype(float) # Use backup diesel generator if diesel_backup_status == "Y": diesel_energy, diesel_times = Diesel().get_diesel_energy_and_times( unmet_energy, blackout_times, diesel_backup_threshold) diesel_capacity = math.ceil(np.max(diesel_energy)) diesel_fuel_usage = pd.DataFrame(Diesel().get_diesel_fuel_usage( diesel_capacity, diesel_energy, diesel_times).values) unmet_energy = pd.DataFrame(unmet_energy.values - diesel_energy.values) diesel_energy = diesel_energy.abs() else: diesel_energy = pd.DataFrame([0.0] * int(storage_profile.size)) diesel_times = pd.DataFrame([0.0] * int(storage_profile.size)) diesel_fuel_usage = pd.DataFrame([0.0] * int(storage_profile.size)) diesel_capacity = 0.0 # Find new blackout times, according to when there is unmet energy blackout_times = ((unmet_energy > 0) * 1).astype(float) # Ensure all unmet energy is calculated correctly, removing any negative values unmet_energy = ((unmet_energy > 0) * unmet_energy).abs() # Find how many kerosene lamps are in use kerosene_usage = pd.DataFrame(blackout_times.values * kerosene_profile.values) kerosene_mitigation = pd.DataFrame( (1 - blackout_times).values * kerosene_profile.values) # System performance outputs blackout_times.columns = ['Blackouts'] hourly_storage = pd.DataFrame(hourly_storage) hourly_storage.columns = ['Hourly storage (kWh)'] energy_surplus = pd.DataFrame(energy_surplus) energy_surplus.columns = ['Dumped energy (kWh)'] unmet_energy.columns = ['Unmet energy (kWh)'] storage_power_supplied.columns = ['Storage energy supplied (kWh)'] diesel_energy.columns = ['Diesel energy (kWh)'] battery_health = pd.DataFrame(battery_health) battery_health.columns = ['Battery health'] diesel_times.columns = ['Diesel times'] diesel_fuel_usage.columns = ['Diesel fuel usage (l)'] households.columns = ['Households'] kerosene_usage.columns = ['Kerosene lamps'] kerosene_mitigation.columns = ['Kerosene mitigation'] # Find total energy used by the system total_energy_used = pd.DataFrame( renewables_energy_used_directly.values + storage_power_supplied.values + grid_energy.values + diesel_energy.values) total_energy_used.columns = ['Total energy used (kWh)'] # System details system_details = pd.DataFrame( { 'Start year': float(start_year), 'End year': float(end_year), 'Initial PV size': PV_size, 'Initial storage size': storage_size, 'Final PV size': PV_size * Solar().solar_degradation()[0][8760 * (end_year - start_year)], 'Final storage size': storage_size * np.min(battery_health['Battery health']), 'Diesel capacity': diesel_capacity }, index=['System details']) # End simulation timer timer_end = datetime.datetime.now() time_delta = timer_end - timer_start print("\nTime taken for simulation: " + "{0:.2f}".format((time_delta.microseconds * 0.000001) / float(end_year - start_year)) + " seconds per year") # Return all outputs system_performance_outputs = pd.concat([ load_energy, total_energy_used, unmet_energy, blackout_times, renewables_energy_used_directly, storage_power_supplied, grid_energy, diesel_energy, diesel_times, diesel_fuel_usage, storage_profile, renewables_energy, hourly_storage, energy_surplus, battery_health, households, kerosene_usage, kerosene_mitigation ], axis=1) return tuple([system_performance_outputs, system_details])
#!/usr/bin/env python # _*_ coding:utf-8 _*_ # Copyright © 2020 ROOM_3033 # All rights reserved. # filename:$Homework_333$ # description:从名单中生成一份考勤列表,出勤次数为0-10的随机数。 # created by 魏懿航 at 04/09/2020 # QQ:770593981 pass # ===============RUN_START=============== from Load import Load_stu_list as Load from Header import Header from Output import Output # 加载名单文件到一个字典嵌套中 stu_list = Load('名单.txt') # 生成考勤列表文件,并写入表头 Header() # 生成随机数并输出 Output(stu_list) # ======================RUN_END=========================
def __init__(self): print 'Starting extraction' self.instagram = Instagram() self.load = Load()
def init_Start(): Load.load_Title() responce = Load.__init__() gc.collect() return responce
def init_Load_Pro(): gc.collect() return Load.load_Project()
#!/usr/bin/env python '''@package docstring Loads some numerical functions defined in a C++ file ''' from os import getenv from Load import Load from ROOT import gROOT Load('Functions') gROOT.LoadMacro( getenv('CMSSW_BASE') + '/src/PandaCore/Tools/interface/Functions.h')
def main(): pygame.init() width = 600 height = 900 display = pygame.display.set_mode((width, height)) pygame.display.set_caption("PyDrawer") save = Save() delete = Delete() load = Load() color = None draw = True drawRects = [] drawing = False cs = [(0, 0, 0), (255, 0, 0), (0, 255, 0), (0, 0, 255), (255, 255, 0), (0, 255, 255), (255, 0, 255), (51, 51, 51)] cw = 45 d = 30 colors = [] for c in cs: col = Color(c) colors.append(col) while draw: display.fill((255, 255, 255)) for event in pygame.event.get(): if event.type == pygame.QUIT: draw = False if event.type == pygame.MOUSEBUTTONDOWN: x, y = pygame.mouse.get_pos() if x > cw and x < cw + 4 * cw: if y > 15 * cw and y < 17 * cw: for c in colors: c.isSelected(x, y) if y > 15 * cw: save.isClicked(x, y, drawRects) drawRects = load.isClicked(x, y, drawRects) drawRects = delete.isClicked(x, y, drawRects) if y < 14 * cw: drawing = True for c in colors: if c.selected: color = c.color tx = x // d ty = y // d check = 0 for r in drawRects: if r[0] == tx and r[1] == ty and r[2] == color: check += 1 if check == 0: drawRects.append([tx, ty, color]) else: drawing = False if event.type == pygame.MOUSEMOTION and drawing and color: x, y = pygame.mouse.get_pos() if y < 14 * cw: x = x // d y = y // d for r in range(0, len(drawRects), 1): try: if drawRects[r][0] == x and drawRects[r][1] == y: drawRects.pop(r) except: pass drawRects.append([x, y, color]) print(len(drawRects)) if event.type == pygame.MOUSEBUTTONUP: drawing = False i = 0 for y in range(0, 2): for x in range(0, 4): try: colors[i].draw(display, (x + 1) * cw, (y + 15) * cw, cw) colors[i].update() except: pass i += 1 save.draw(display, 7 * cw, 15 * cw) load.draw(display, 9 * cw, 15 * cw) delete.draw(display, 11 * cw, 15 * cw) for r in drawRects: pygame.draw.rect(display, r[2], (r[0] * d, r[1] * d, d, d)) pygame.display.update() pygame.quit() quit()