def __init__(self, n, m): super(BsplineParameters, self).__init__() self.n = n self.m = m self.add('t1', Float(0., iotype='in')) self.add('t2', Float(43200., iotype='in')) self.B = MBI(np.zeros(n), [np.linspace(self.t1,self.t2,n)], [self.m], [4]).getJacobian(0,0) self.Bdot = MBI(np.zeros(n), [np.linspace(self.t1,self.t2,n)], [self.m], [4]).getJacobian(1,0) self.BT = self.B.transpose() self.BdotT = self.Bdot.transpose() self.add('CP_P_comm', Array(np.zeros((self.m,)), size=(self.m,), dtype=float, iotype='in')) self.add('CP_gamma', Array(np.zeros((self.m,)), size=(self.m,), dtype=float, iotype='in')) self.add('CP_Isetpt', Array(np.zeros((12,self.m)), size=(12,self.m), dtype=float, iotype='in')) self.add('P_comm', Array(np.ones((n,)), size=(n,), dtype=float, iotype='out')) self.add('Gamma', Array(0.1*np.ones((n,)), size=(n,), dtype=float, iotype='out')) self.add('Isetpt',Array(0.2*np.ones((12,n)), size=(12,n), dtype=float, iotype='out'))
def __init__(self, n, m): super(BsplineParameters, self).__init__() self.n = n self.m = m self.add('t1', Float(0., units='s', desc='Start time', iotype='in')) self.add('t2', Float(43200., units='s', desc='End time', iotype='in')) self.B = MBI(np.zeros(n), [np.linspace(self.t1, self.t2, n)], [self.m], [4]).getJacobian(0, 0) self.Bdot = MBI(np.zeros(n), [np.linspace(self.t1, self.t2, n)], [self.m], [4]).getJacobian(1, 0) self.BT = self.B.transpose() self.BdotT = self.Bdot.transpose() self.add( 'CP_P_comm', Array(np.zeros((self.m, )), size=(self.m, ), dtype=float, units='W', desc='Communication power at the control points', iotype='in')) self.add( 'CP_gamma', Array(np.zeros((self.m, )), size=(self.m, ), dtype=float, units='rad', desc='Satellite roll angle at control points', iotype='in')) self.add( 'CP_Isetpt', Array(np.zeros((12, self.m)), size=(12, self.m), dtype=float, units='A', desc='Currents of the solar panels at the control points', iotype='in')) self.add( 'P_comm', Array(np.ones((n, )), size=(n, ), dtype=float, units='W', desc='Communication power over time', iotype='out')) self.add( 'Gamma', Array(0.1 * np.ones((n, )), size=(n, ), dtype=float, units='rad', desc='Satellite roll angle over time', iotype='out')) self.add( 'Isetpt', Array(0.2 * np.ones((12, n)), size=(12, n), dtype=float, units="A", desc="Currents of the solar panels over time", iotype='out'))
class BsplineParameters(Component): '''Creates a Bspline interpolant for several CADRE variables so that their time histories can be shaped with m control points instead of n time points.''' def __init__(self, n, m): super(BsplineParameters, self).__init__() self.n = n self.m = m self.add('t1', Float(0., units='s', desc='Start time', iotype='in')) self.add('t2', Float(43200., units='s', desc='End time', iotype='in')) self.B = MBI(np.zeros(n), [np.linspace(self.t1, self.t2, n)], [self.m], [4]).getJacobian(0, 0) self.Bdot = MBI(np.zeros(n), [np.linspace(self.t1, self.t2, n)], [self.m], [4]).getJacobian(1, 0) self.BT = self.B.transpose() self.BdotT = self.Bdot.transpose() self.add( 'CP_P_comm', Array(np.zeros((self.m, )), size=(self.m, ), dtype=float, units='W', desc='Communication power at the control points', iotype='in')) self.add( 'CP_gamma', Array(np.zeros((self.m, )), size=(self.m, ), dtype=float, units='rad', desc='Satellite roll angle at control points', iotype='in')) self.add( 'CP_Isetpt', Array(np.zeros((12, self.m)), size=(12, self.m), dtype=float, units='A', desc='Currents of the solar panels at the control points', iotype='in')) self.add( 'P_comm', Array(np.ones((n, )), size=(n, ), dtype=float, units='W', desc='Communication power over time', iotype='out')) self.add( 'Gamma', Array(0.1 * np.ones((n, )), size=(n, ), dtype=float, units='rad', desc='Satellite roll angle over time', iotype='out')) self.add( 'Isetpt', Array(0.2 * np.ones((12, n)), size=(12, n), dtype=float, units="A", desc="Currents of the solar panels over time", iotype='out')) def list_deriv_vars(self): input_keys = ('CP_P_comm', 'CP_gamma', 'CP_Isetpt') output_keys = ('P_comm', 'Gamma', 'Isetpt') return input_keys, output_keys def provideJ(self): """ Calculate and save derivatives (i.e., Jacobian). """ # Derivatives are simple return def execute(self): """ Calculate output. """ self.P_comm = self.B.dot(self.CP_P_comm) self.Gamma = self.B.dot(self.CP_gamma) for k in range(12): self.Isetpt[k, :] = self.B.dot(self.CP_Isetpt[k, :]) def apply_deriv(self, arg, result): """ Matrix-vector product with the Jacobian """ if 'CP_P_comm' in arg: result['P_comm'] += self.B.dot(arg['CP_P_comm']) if 'CP_gamma' in arg: result['Gamma'] += self.B.dot(arg['CP_gamma']) if 'CP_Isetpt' in arg: for k in range(12): result['Isetpt'][k, :] += self.B.dot(arg['CP_Isetpt'][k, :]) def apply_derivT(self, arg, result): """ Matrix-vector product with the transpose of the Jacobian """ if 'P_comm' in arg and 'CP_P_comm' in result: result['CP_P_comm'] += self.BT.dot(arg['P_comm']) if 'Gamma' in arg and 'CP_gamma' in result: result['CP_gamma'] += self.BT.dot(arg['Gamma']) if 'Isetpt' in arg and 'CP_Isetpt' in result: for k in range(12): result['CP_Isetpt'][k, :] += self.BT.dot(arg['Isetpt'][k, :])
def __init__(self, n, m): super(BsplineParameters, self).__init__() self.n = n self.m = m self.add('t1', Float(0., units='s', desc='Start time', iotype='in')) self.add('t2', Float(43200., units='s', desc='End time', iotype='in')) self.B = MBI(np.zeros(n), [np.linspace(self.t1,self.t2,n)], [self.m], [4]).getJacobian(0,0) self.Bdot = MBI(np.zeros(n), [np.linspace(self.t1,self.t2,n)], [self.m], [4]).getJacobian(1,0) self.BT = self.B.transpose() self.BdotT = self.Bdot.transpose() self.add('CP_P_comm', Array(np.zeros((self.m,)), size=(self.m,), dtype=float, units='W', desc='Communication power at the control points', iotype='in')) self.add('CP_gamma', Array(np.zeros((self.m,)), size=(self.m,), dtype=float, units='rad', desc='Satellite roll angle at control points', iotype='in')) self.add('CP_Isetpt', Array(np.zeros((12,self.m)), size=(12,self.m), dtype=float, units='A', desc='Currents of the solar panels at the control points', iotype='in')) self.add('P_comm', Array(np.ones((n,)), size=(n,), dtype=float, units='W', desc='Communication power over time', iotype='out')) self.add('Gamma', Array(0.1*np.ones((n,)), size=(n,), dtype=float, units='rad', desc='Satellite roll angle over time', iotype='out')) self.add('Isetpt',Array(0.2*np.ones((12,n)), size=(12,n), dtype=float, units="A", desc="Currents of the solar panels over time", iotype='out'))
class BsplineParameters(Component): '''Creates a Bspline interpolant for several CADRE variables so that their time histories can be shaped with m control points instead of n time points.''' def __init__(self, n, m): super(BsplineParameters, self).__init__() self.n = n self.m = m self.add('t1', Float(0., units='s', desc='Start time', iotype='in')) self.add('t2', Float(43200., units='s', desc='End time', iotype='in')) self.B = MBI(np.zeros(n), [np.linspace(self.t1,self.t2,n)], [self.m], [4]).getJacobian(0,0) self.Bdot = MBI(np.zeros(n), [np.linspace(self.t1,self.t2,n)], [self.m], [4]).getJacobian(1,0) self.BT = self.B.transpose() self.BdotT = self.Bdot.transpose() self.add('CP_P_comm', Array(np.zeros((self.m,)), size=(self.m,), dtype=float, units='W', desc='Communication power at the control points', iotype='in')) self.add('CP_gamma', Array(np.zeros((self.m,)), size=(self.m,), dtype=float, units='rad', desc='Satellite roll angle at control points', iotype='in')) self.add('CP_Isetpt', Array(np.zeros((12,self.m)), size=(12,self.m), dtype=float, units='A', desc='Currents of the solar panels at the control points', iotype='in')) self.add('P_comm', Array(np.ones((n,)), size=(n,), dtype=float, units='W', desc='Communication power over time', iotype='out')) self.add('Gamma', Array(0.1*np.ones((n,)), size=(n,), dtype=float, units='rad', desc='Satellite roll angle over time', iotype='out')) self.add('Isetpt',Array(0.2*np.ones((12,n)), size=(12,n), dtype=float, units="A", desc="Currents of the solar panels over time", iotype='out')) def list_deriv_vars(self): input_keys = ('CP_P_comm', 'CP_gamma', 'CP_Isetpt') output_keys = ('P_comm', 'Gamma', 'Isetpt') return input_keys, output_keys def provideJ(self): """ Calculate and save derivatives (i.e., Jacobian). """ # Derivatives are simple return def execute(self): """ Calculate output. """ self.P_comm = self.B.dot(self.CP_P_comm) self.Gamma = self.B.dot(self.CP_gamma) for k in range(12): self.Isetpt[k, :] = self.B.dot(self.CP_Isetpt[k, :]) def apply_deriv(self, arg, result): """ Matrix-vector product with the Jacobian """ if 'CP_P_comm' in arg: result['P_comm'] += self.B.dot(arg['CP_P_comm']) if 'CP_gamma' in arg: result['Gamma'] += self.B.dot(arg['CP_gamma']) if 'CP_Isetpt' in arg: for k in range(12): result['Isetpt'][k, :] += self.B.dot(arg['CP_Isetpt'][k, :]) def apply_derivT(self, arg, result): """ Matrix-vector product with the transpose of the Jacobian """ if 'P_comm' in arg and 'CP_P_comm' in result: result['CP_P_comm'] += self.BT.dot(arg['P_comm']) if 'Gamma' in arg and 'CP_gamma' in result: result['CP_gamma'] += self.BT.dot(arg['Gamma']) if 'Isetpt' in arg and 'CP_Isetpt' in result: for k in range(12): result['CP_Isetpt'][k, :] += self.BT.dot(arg['Isetpt'][k, :])
class BsplineParameters(Component): def __init__(self, n, m): super(BsplineParameters, self).__init__() self.n = n self.m = m self.add('t1', Float(0., iotype='in')) self.add('t2', Float(43200., iotype='in')) self.B = MBI(np.zeros(n), [np.linspace(self.t1,self.t2,n)], [self.m], [4]).getJacobian(0,0) self.Bdot = MBI(np.zeros(n), [np.linspace(self.t1,self.t2,n)], [self.m], [4]).getJacobian(1,0) self.BT = self.B.transpose() self.BdotT = self.Bdot.transpose() self.add('CP_P_comm', Array(np.zeros((self.m,)), size=(self.m,), dtype=float, iotype='in')) self.add('CP_gamma', Array(np.zeros((self.m,)), size=(self.m,), dtype=float, iotype='in')) self.add('CP_Isetpt', Array(np.zeros((12,self.m)), size=(12,self.m), dtype=float, iotype='in')) self.add('P_comm', Array(np.ones((n,)), size=(n,), dtype=float, iotype='out')) self.add('Gamma', Array(0.1*np.ones((n,)), size=(n,), dtype=float, iotype='out')) self.add('Isetpt',Array(0.2*np.ones((12,n)), size=(12,n), dtype=float, iotype='out')) def linearize(self): """ Calculate and save derivatives. (i.e., Jacobian) """ # Derivatives are simple return def execute(self): """ Calculate output. """ self.P_comm = self.B.dot(self.CP_P_comm) self.Gamma = self.B.dot(self.CP_gamma) for k in range(12): self.Isetpt[k, :] = self.B.dot(self.CP_Isetpt[k, :]) def apply_deriv(self, arg, result): """ Matrix-vector product with the Jacobian. """ if 'CP_P_comm' in arg: result['P_comm'] += self.B.dot(arg['CP_P_comm']) if 'CP_gamma' in arg: result['Gamma'] += self.B.dot(arg['CP_gamma']) if 'CP_Isetpt' in arg: for k in range(12): result['Isetpt'][k, :] += self.B.dot(arg['CP_Isetpt'][k, :]) def apply_derivT(self, arg, result): """ Matrix-vector product with the transpose of the Jacobian. """ if 'P_comm' in arg and 'CP_P_comm' in result: result['CP_P_comm'] += self.BT.dot(arg['P_comm']) if 'Gamma' in arg and 'CP_gamma' in result: result['CP_gamma'] += self.BT.dot(arg['Gamma']) if 'Isetpt' in arg and 'CP_Isetpt' in result: for k in range(12): result['CP_Isetpt'][k, :] += self.BT.dot(arg['Isetpt'][k, :])