Ejemplo n.º 1
0
def trainSVM_models_1vs1(model_ubm, tr_data, modeldir_patient_svm, ParametersSVM):
    """
    This function will produce the 1vs1 multiclass SVM models
    It will first create the supervectors from the data and then feed them to make_svm_model for selecting c parameter
    and producing a SVM model with best parameter

    :param model_ubm: UBM model to adapt the sequences.
    :param tr_data: training data
    :param modeldir_patient_svm: model directory to save the trained SVM model
    :param ParametersSVM: parameters to be used for selecting relevance factor, and supervector creation.
    :return: nothing
    """

    for i in range(1,5,1):
        for j in range(i+1,5,1):
            data1 = getattr(tr_data, str('data_g' + str(i)))
            data2 = getattr(tr_data, str('data_g' + str(j)))
            r_final = 5

            # Select what ratio of each class should be present for training dataset.
            # Make supervectors
            if ParametersSVM.equal_number_of_sequences == 1:
                if max(data1[0]) < max(data2[0]):
                    num_of_seq = int(max(data1[0]))
                else:
                    num_of_seq = int(max(data2[0]))
                super_vector1 = make_super_vector( data1[0], data1[1], r_final, num_of_seq, model_ubm, ParametersSVM)
                super_vector2 = make_super_vector( data2[0], data2[1], r_final, num_of_seq, model_ubm, ParametersSVM)
            else:
                num_of_seq = int(max(data1[0]))
                super_vector1 = make_super_vector( data1[0], data1[1], r_final, num_of_seq, model_ubm, ParametersSVM)
                num_of_seq = int(max(data2[0]))
                super_vector2 = make_super_vector( data2[0], data2[1], r_final, num_of_seq, model_ubm, ParametersSVM)


            fulltrset_sv = np.concatenate([super_vector1, super_vector2], axis=1)
            labels = np.concatenate([np.ones(np.size(super_vector1, 1)), np.zeros(np.size(super_vector2, 1))])
            del super_vector1, super_vector2

            remove_NaNs(fulltrset_sv, labels)

            print('Building SVM models for grade', i, 'vs', j)
            save_file_name_svm = path.join(modeldir_patient_svm, ('SVM_model_' + str(i) + '_' + str(j)))
            model_svm = make_svm_model(fulltrset_sv, labels)
            model_svm.rel_factor=r_final

            fid = open(save_file_name_svm,'wb')
            pickle.dump(model_svm, fid)
            fid.close()
Ejemplo n.º 2
0
def classify_1vs1(data, model_ubm, modeldir_patient_svm, ParametersSVM):
    prob_epoch = np.zeros((6, int(max(data[0]))))
    dec_class = np.zeros((6, int(max(data[0]))))
    a = 0
    for i in range(1, 5, 1):
        for j in range(i + 1, 5, 1):

            load_file_name_svm = os.path.join(
                modeldir_patient_svm, ('SVM_model_' + str(i) + '_' + str(j)))
            fid = open(load_file_name_svm, 'rb')
            model_svm = pickle.load(fid)
            fid.close()

            super_vectors = make_super_vector(data[0],
                                              data[1],
                                              model_svm.rel_factor,
                                              int(max(data[0])),
                                              model_ubm,
                                              ParametersSVM,
                                              test_flag=1)
            Dzero = (np.where(super_vectors[1] == 0))
            dec_class[a, :] = model_svm.predict(super_vectors[0].T)
            prob_epoch[a, :] = model_svm.predict_proba(super_vectors[0].T)[:,
                                                                           1]

            prob_epoch[a, Dzero] = np.nan
            dec_class[a, Dzero] = 0
            a = a + 1

    if ParametersSVM.prob_based_dec == 1:
        final_class_epoch = max(prob_epoch)
    else:
        final_class_epoch = get_class(dec_class)

    return final_class_epoch, dec_class, prob_epoch
Ejemplo n.º 3
0
def classify_1vs1(data, model_ubm, modeldir_patient_svm, ParametersSVM):
    prob_epoch = np.zeros((6,int(max(data[0]))))
    dec_class = np.zeros((6,int(max(data[0]))))
    a=0
    for i in range(1,5,1):
        for j in range(i+1,5,1):

            load_file_name_svm = os.path.join(modeldir_patient_svm, ('SVM_model_' + str(i) + '_' + str(j)))
            fid = open(load_file_name_svm,'rb')
            model_svm = pickle.load(fid)
            fid.close()

            super_vectors = make_super_vector(data[0], data[1], model_svm.rel_factor, int(max(data[0])), model_ubm, ParametersSVM, test_flag=1)
            Dzero=(np.where(super_vectors[1]==0))
            dec_class[a,:] = model_svm.predict(super_vectors[0].T)
            prob_epoch[a,:] = model_svm.predict_proba(super_vectors[0].T)[:,1]

            prob_epoch[a, Dzero] = np.nan
            dec_class[a, Dzero] = 0
            a=a+1



    if ParametersSVM.prob_based_dec==1:
        final_class_epoch = max(prob_epoch)
    else:
        final_class_epoch = get_class(dec_class)

    return final_class_epoch, dec_class, prob_epoch
Ejemplo n.º 4
0
def trainSVM_models_crammer_singer(model_ubm, tr_data, modeldir_patient_svm,
                                   ParametersSVM):
    """
    This function will train a multiclass SVM based on crammers_singer implementation.
    It will give all the data from all the grades and then finally train a SVM model.

    :param model_ubm: UBM model to adapt the sequences.
    :param tr_data: training data
    :param modeldir_patient_svm: model directory to save the trained SVM model
    :param ParametersSVM: parameters to be used for selecting relevance factor, and supervector creation.
    :return: nothing
    """

    targets = np.arange(1, ParametersSVM.num_of_classes + 1, 1)
    # Concatenate the data of all classes
    for lv in range(0, ParametersSVM.num_of_classes, 1):
        data_temp = getattr(tr_data, str('data_g' + str(targets[lv])))
        if lv == 0:
            data = np.asarray(data_temp)
        else:
            data[0] = np.concatenate([data[0], data_temp[0] + np.max(data[0])],
                                     axis=0)
            data[1] = np.concatenate([data[1], data_temp[1]], axis=1)

    num_of_seq = int(max(data[0]))
    r_final = 5
    fulltrset_sv = make_super_vector(data[0], data[1], r_final, num_of_seq,
                                     model_ubm, ParametersSVM)
    labels = np.concatenate([
        np.ones((int(max(tr_data.data_g1[0])))), 2 * np.ones(
            (int(max(tr_data.data_g2[0])))), 3 * np.ones(
                (int(max(tr_data.data_g3[0])))), 4 * np.ones(
                    (int(max(tr_data.data_g4[0]))))
    ])

    # Do k-fold internal cross validation to select best C parameter
    parameters = [{'C': [1, 10, 100, 1000]}]
    kf = StratifiedKFold(labels, n_folds=3)

    gscv = GridSearchCV(LinearSVC(multi_class='crammer_singer'),
                        parameters,
                        cv=kf)
    model_svm = gscv.fit(fulltrset_sv.T, labels)
    print('best score =', gscv.best_score_, 'with C ', gscv.best_params_)
    save_file_name_svm = path.join(modeldir_patient_svm, ('SVM_model_CS'))
    model_svm.rel_factor = r_final

    fid = open(save_file_name_svm, 'wb')
    pickle.dump(model_svm, fid)
    fid.close()
Ejemplo n.º 5
0
def classify_builtin_1vs1(data, model_ubm, modeldir_patient_svm, ParametersSVM):
    result=result_class(4,int(max(data[0])))
    load_file_name_svm = os.path.join(modeldir_patient_svm, ('SVM_model_CS'))
    fid = open(load_file_name_svm,'rb')
    model_svm = pickle.load(fid)
    fid.close()

    super_vectors = make_super_vector(data[0], data[1], model_svm.rel_factor, int(max(data[0])), model_ubm, ParametersSVM, test_flag=1)
    result.final_dec_epoch = model_svm.predict(super_vectors[0].T)
    result.dis_epoch = model_svm.decision_function(super_vectors[0].T)
    Dzero=(np.where(super_vectors[1]==0))[0]

    result.final_dec_epoch[Dzero]=0
    prob_epoch=0

    return result
Ejemplo n.º 6
0
def classify_crammer_singer(data, model_ubm, modeldir_patient_svm, ParametersSVM):

    load_file_name_svm = os.path.join(modeldir_patient_svm, ('SVM_model_CS'))
    fid = open(load_file_name_svm,'rb')
    model_svm = pickle.load(fid)
    fid.close()

    super_vectors = make_super_vector(data[0], data[1], model_svm.rel_factor, int(max(data[0])), model_ubm, ParametersSVM, test_flag=1)
    final_class_epoch = model_svm.predict(super_vectors[0].T)
    dec_dist = model_svm.decision_function(super_vectors[0].T)
    Dzero=(np.where(super_vectors[1]==0))

    final_class_epoch[Dzero]=0
    prob_epoch=0

    return final_class_epoch, dec_dist, prob_epoch
Ejemplo n.º 7
0
def classify_1vsRest(data, model_ubm, modeldir_patient_svm, ParametersSVM):

    result = result_class(4, int(max(data[0])))

    a = 0
    for i in range(1, 5, 1):
        load_file_name_svm = os.path.join(modeldir_patient_svm,
                                          ('SVM_model_' + str(i) + '_rest'))
        fid = open(load_file_name_svm, 'rb')
        model_svm = pickle.load(fid)
        fid.close()

        super_vectors = make_super_vector(data[0],
                                          data[1],
                                          model_svm.rel_factor,
                                          int(max(data[0])),
                                          model_ubm,
                                          ParametersSVM,
                                          test_flag=1)
        Dzero = np.where(super_vectors[1] == 0)[0]

        result.dec_epoch[a, :] = model_svm.predict(super_vectors[0].T)
        result.dis_epoch[a, :] = model_svm.decision_function(
            super_vectors[0].T)
        result.prob_epoch[a, :] = model_svm.predict_proba(
            super_vectors[0].T)[:, 1]

        result.dec_epoch[a, np.where(result.dec_epoch == 0)] = 5
        result.dec_epoch[a, np.where(result.dec_epoch == 1)] = i

        result.prob_epoch[a, Dzero] = np.nan
        result.dec_epoch[a, Dzero] = 0
        result.dis_epoch[a, Dzero] = np.nan

        a = a + 1

    if ParametersSVM.final_dec is 'prob':
        result.final_dec_epoch = np.argmax(result.prob_epoch, axis=0) + 1
        result.final_dec_epoch[Dzero] = 0
    elif ParametersSVM.final_dec is 'distance':
        result.final_dec_epoch = np.argmin(result.dis_epoch, axis=0) + 1
        result.final_dec_epoch[Dzero] = 0

    return result
Ejemplo n.º 8
0
def trainSVM_models_builtin_1vs1(model_ubm, tr_data, modeldir_patient_svm, ParametersSVM):
    """
    This function will train a multiclass SVM based on crammers_singer implementation.
    It will give all the data from all the grades and then finally train a SVM model.

    :param model_ubm: UBM model to adapt the sequences.
    :param tr_data: training data
    :param modeldir_patient_svm: model directory to save the trained SVM model
    :param ParametersSVM: parameters to be used for selecting relevance factor, and supervector creation.
    :return: nothing
    """

    targets = np.arange(1,ParametersSVM.num_of_classes+1,1)
    # Concatenate the data of all classes
    for lv in range(0,ParametersSVM.num_of_classes,1):
        data_temp=getattr(tr_data, str('data_g' + str(targets[lv])))
        if lv == 0:
            data=np.asarray(data_temp)
        else:
            data[0] = np.concatenate([data[0], data_temp[0]+np.max(data[0])], axis=0)
            data[1] = np.concatenate([data[1], data_temp[1]], axis=1)

    num_of_seq = int(max(data[0]))
    r_final=5
    fulltrset_sv =  make_super_vector(data[0], data[1], r_final, num_of_seq, model_ubm, ParametersSVM)
    labels = np.concatenate([np.ones((int(max(tr_data.data_g1[0])))), 2*np.ones((int(max(tr_data.data_g2[0])))),
                             3*np.ones((int(max(tr_data.data_g3[0])))), 4*np.ones((int(max(tr_data.data_g4[0]))))])


    # Do k-fold internal cross validation to select best C parameter
    parameters = [{'C': [1, 10, 100, 1000]}]
    kf = StratifiedKFold(labels, n_folds=3)

    gscv = GridSearchCV(SVC(probability=True), parameters, cv=kf)
    model_svm = gscv.fit(fulltrset_sv.T, labels)
    print('best score =', gscv.best_score_ , 'with C ', gscv.best_params_)
    save_file_name_svm = path.join(modeldir_patient_svm, ('SVM_model_CS'))
    model_svm.rel_factor=r_final

    fid = open(save_file_name_svm,'wb')
    pickle.dump(model_svm, fid)
    fid.close()
Ejemplo n.º 9
0
def classify_builtin_1vs1(data, model_ubm, modeldir_patient_svm,
                          ParametersSVM):
    result = result_class(4, int(max(data[0])))
    load_file_name_svm = os.path.join(modeldir_patient_svm, ('SVM_model_CS'))
    fid = open(load_file_name_svm, 'rb')
    model_svm = pickle.load(fid)
    fid.close()

    super_vectors = make_super_vector(data[0],
                                      data[1],
                                      model_svm.rel_factor,
                                      int(max(data[0])),
                                      model_ubm,
                                      ParametersSVM,
                                      test_flag=1)
    result.final_dec_epoch = model_svm.predict(super_vectors[0].T)
    result.dis_epoch = model_svm.decision_function(super_vectors[0].T)
    Dzero = (np.where(super_vectors[1] == 0))[0]

    result.final_dec_epoch[Dzero] = 0
    prob_epoch = 0

    return result
Ejemplo n.º 10
0
def classify_crammer_singer(data, model_ubm, modeldir_patient_svm,
                            ParametersSVM):

    load_file_name_svm = os.path.join(modeldir_patient_svm, ('SVM_model_CS'))
    fid = open(load_file_name_svm, 'rb')
    model_svm = pickle.load(fid)
    fid.close()

    super_vectors = make_super_vector(data[0],
                                      data[1],
                                      model_svm.rel_factor,
                                      int(max(data[0])),
                                      model_ubm,
                                      ParametersSVM,
                                      test_flag=1)
    final_class_epoch = model_svm.predict(super_vectors[0].T)
    dec_dist = model_svm.decision_function(super_vectors[0].T)
    Dzero = (np.where(super_vectors[1] == 0))

    final_class_epoch[Dzero] = 0
    prob_epoch = 0

    return final_class_epoch, dec_dist, prob_epoch
Ejemplo n.º 11
0
def classify_1vsRest(data, model_ubm, modeldir_patient_svm, ParametersSVM):

    result=result_class(4,int(max(data[0])))

    a=0
    for i in range(1,5,1):
        load_file_name_svm = os.path.join(modeldir_patient_svm, ('SVM_model_' + str(i) + '_rest'))
        fid = open(load_file_name_svm,'rb')
        model_svm = pickle.load(fid)
        fid.close()

        super_vectors = make_super_vector(data[0], data[1], model_svm.rel_factor, int(max(data[0])), model_ubm, ParametersSVM, test_flag=1)
        Dzero = np.where(super_vectors[1]==0)[0]

        result.dec_epoch[a,:] = model_svm.predict(super_vectors[0].T)
        result.dis_epoch[a,:] = model_svm.decision_function(super_vectors[0].T)
        result.prob_epoch[a,:] = model_svm.predict_proba(super_vectors[0].T)[:,1]

        result.dec_epoch[a,np.where(result.dec_epoch==0)]=5
        result.dec_epoch[a,np.where(result.dec_epoch==1)]=i

        result.prob_epoch[a, Dzero] = np.nan
        result.dec_epoch[a, Dzero] = 0
        result.dis_epoch[a, Dzero] = np.nan

        a=a+1


    if ParametersSVM.final_dec is 'prob':
        result.final_dec_epoch = np.argmax(result.prob_epoch, axis=0)+1
        result.final_dec_epoch[Dzero]=0
    elif ParametersSVM.final_dec is 'distance':
        result.final_dec_epoch = np.argmin(result.dis_epoch, axis=0)+1
        result.final_dec_epoch[Dzero]=0

    return result
Ejemplo n.º 12
0
def trainSVM_models_1vsRest(model_ubm, tr_data, modeldir_patient_svm,
                            ParametersSVM):
    """
    This function will produce the 1vsRest SVM models. It will first create the supervectors from the data and
     then feed them to make_svm_model for selecting c parameter and producing a SVM model with best parameter

    :param model_ubm: UBM model to adapt the sequences.
    :param tr_data: training data
    :param modeldir_patient_svm: model directory to save the trained SVM model
    :param ParametersSVM: parameters to be used for selecting relevance factor, and supervector creation.
    :return: nothing
    """
    targets = np.arange(1, ParametersSVM.num_of_classes + 1, 1)

    for i in range(1, 5, 1):

        data1 = getattr(tr_data, str('data_g' + str(i)))

        # Concatenate the data of all classes other then the class(i)
        classes_rest = np.where(targets != i)[0]
        for lv in range(0, np.size(classes_rest), 1):
            data2_temp = getattr(
                tr_data, str('data_g' + str(targets[classes_rest[lv]])))
            if lv == 0:
                data2 = np.asarray(data2_temp)
            else:
                data2[0] = np.concatenate(
                    [data2[0], data2_temp[0] + np.max(data2[0])], axis=0)
                data2[1] = np.concatenate([data2[1], data2_temp[1]], axis=1)

        del data2_temp

        r_final = 5

        # Select what ratio of each class should be present for training dataset.
        # Make supervectors
        if ParametersSVM.equal_number_of_sequences == 1:
            if max(data1[0]) < max(data2[0]):
                num_of_seq = int(max(data1[0]))
            else:
                num_of_seq = int(max(data2[0]))
            data_shuffle = 1
            super_vector1 = make_super_vector(
                data1[0],
                data1[1],
                r_final,
                num_of_seq,
                model_ubm,
                ParametersSVM,
                data_shuffle,
                test_flag=0,
            )
            super_vector2 = make_super_vector(data2[0], data2[1], r_final,
                                              num_of_seq, model_ubm,
                                              ParametersSVM)
        else:
            num_of_seq = int(max(data1[0]))
            super_vector1 = make_super_vector(data1[0], data1[1], r_final,
                                              num_of_seq, model_ubm,
                                              ParametersSVM)
            num_of_seq = int(max(data2[0]))
            super_vector2 = make_super_vector(data2[0], data2[1], r_final,
                                              num_of_seq, model_ubm,
                                              ParametersSVM)

        fulltrset_sv = np.concatenate([super_vector1, super_vector2], axis=1)
        labels = np.concatenate([
            np.ones(np.size(super_vector1, 1)),
            np.zeros(np.size(super_vector2, 1))
        ])
        del super_vector1, super_vector2

        remove_NaNs(fulltrset_sv, labels)

        print('Building SVM models for grade', i, 'vs_rest')
        save_file_name_svm = path.join(modeldir_patient_svm,
                                       ('SVM_model_' + str(i) + '_rest'))
        model_svm = make_svm_model_1vsRest(fulltrset_sv, labels)
        model_svm.rel_factor = r_final

        fid = open(save_file_name_svm, 'wb')
        pickle.dump(model_svm, fid)
        fid.close()
Ejemplo n.º 13
0
def trainSVM_models_1vs1(model_ubm, tr_data, modeldir_patient_svm,
                         ParametersSVM):
    """
    This function will produce the 1vs1 multiclass SVM models
    It will first create the supervectors from the data and then feed them to make_svm_model for selecting c parameter
    and producing a SVM model with best parameter

    :param model_ubm: UBM model to adapt the sequences.
    :param tr_data: training data
    :param modeldir_patient_svm: model directory to save the trained SVM model
    :param ParametersSVM: parameters to be used for selecting relevance factor, and supervector creation.
    :return: nothing
    """

    for i in range(1, 5, 1):
        for j in range(i + 1, 5, 1):
            data1 = getattr(tr_data, str('data_g' + str(i)))
            data2 = getattr(tr_data, str('data_g' + str(j)))
            r_final = 5

            # Select what ratio of each class should be present for training dataset.
            # Make supervectors
            if ParametersSVM.equal_number_of_sequences == 1:
                if max(data1[0]) < max(data2[0]):
                    num_of_seq = int(max(data1[0]))
                else:
                    num_of_seq = int(max(data2[0]))
                super_vector1 = make_super_vector(data1[0], data1[1], r_final,
                                                  num_of_seq, model_ubm,
                                                  ParametersSVM)
                super_vector2 = make_super_vector(data2[0], data2[1], r_final,
                                                  num_of_seq, model_ubm,
                                                  ParametersSVM)
            else:
                num_of_seq = int(max(data1[0]))
                super_vector1 = make_super_vector(data1[0], data1[1], r_final,
                                                  num_of_seq, model_ubm,
                                                  ParametersSVM)
                num_of_seq = int(max(data2[0]))
                super_vector2 = make_super_vector(data2[0], data2[1], r_final,
                                                  num_of_seq, model_ubm,
                                                  ParametersSVM)

            fulltrset_sv = np.concatenate([super_vector1, super_vector2],
                                          axis=1)
            labels = np.concatenate([
                np.ones(np.size(super_vector1, 1)),
                np.zeros(np.size(super_vector2, 1))
            ])
            del super_vector1, super_vector2

            remove_NaNs(fulltrset_sv, labels)

            print('Building SVM models for grade', i, 'vs', j)
            save_file_name_svm = path.join(
                modeldir_patient_svm, ('SVM_model_' + str(i) + '_' + str(j)))
            model_svm = make_svm_model(fulltrset_sv, labels)
            model_svm.rel_factor = r_final

            fid = open(save_file_name_svm, 'wb')
            pickle.dump(model_svm, fid)
            fid.close()
Ejemplo n.º 14
0
def trainSVM_models_1vsRest(model_ubm, tr_data, modeldir_patient_svm, ParametersSVM):
    """
    This function will produce the 1vsRest SVM models. It will first create the supervectors from the data and
     then feed them to make_svm_model for selecting c parameter and producing a SVM model with best parameter

    :param model_ubm: UBM model to adapt the sequences.
    :param tr_data: training data
    :param modeldir_patient_svm: model directory to save the trained SVM model
    :param ParametersSVM: parameters to be used for selecting relevance factor, and supervector creation.
    :return: nothing
    """
    targets = np.arange(1,ParametersSVM.num_of_classes+1,1)

    for i in range(1,5,1):

            data1 = getattr(tr_data, str('data_g' + str(i)))

            # Concatenate the data of all classes other then the class(i)
            classes_rest = np.where(targets != i)[0]
            for lv in range(0,np.size(classes_rest),1):
                data2_temp=getattr(tr_data, str('data_g' + str(targets[classes_rest[lv]])))
                if lv == 0:
                    data2=np.asarray(data2_temp)
                else:
                    data2[0] = np.concatenate([data2[0], data2_temp[0]+np.max(data2[0])], axis=0)
                    data2[1] = np.concatenate([data2[1], data2_temp[1]], axis=1)

            del data2_temp

            r_final = 5

            # Select what ratio of each class should be present for training dataset.
            # Make supervectors
            if ParametersSVM.equal_number_of_sequences == 1:
                if max(data1[0]) < max(data2[0]):
                    num_of_seq = int(max(data1[0]))
                else:
                    num_of_seq = int(max(data2[0]))
                data_shuffle=1
                super_vector1 = make_super_vector(data1[0], data1[1], r_final, num_of_seq, model_ubm, ParametersSVM, data_shuffle, test_flag=0,)
                super_vector2 = make_super_vector(data2[0], data2[1], r_final, num_of_seq, model_ubm, ParametersSVM)
            else:
                num_of_seq = int(max(data1[0]))
                super_vector1 = make_super_vector(data1[0], data1[1], r_final, num_of_seq, model_ubm, ParametersSVM)
                num_of_seq = int(max(data2[0]))
                super_vector2 = make_super_vector(data2[0], data2[1], r_final, num_of_seq, model_ubm, ParametersSVM)


            fulltrset_sv = np.concatenate([super_vector1, super_vector2], axis=1)
            labels = np.concatenate([np.ones(np.size(super_vector1, 1)), np.zeros(np.size(super_vector2, 1))])
            del super_vector1, super_vector2

            remove_NaNs(fulltrset_sv, labels)

            print('Building SVM models for grade', i, 'vs_rest')
            save_file_name_svm = path.join(modeldir_patient_svm, ('SVM_model_' + str(i) + '_rest'))
            model_svm = make_svm_model_1vsRest(fulltrset_sv, labels)
            model_svm.rel_factor = r_final

            fid = open(save_file_name_svm,'wb')
            pickle.dump(model_svm, fid)
            fid.close()