Ejemplo n.º 1
0
    def test_avgpooling_gpu(self):
        if not torch.cuda.is_available():
            return

        in_channels, D = 2, 2
        coords, feats, labels = data_loader(in_channels)
        feats = feats.double()
        feats.requires_grad_()
        input = SparseTensor(feats, coords=coords)
        pool = MinkowskiAvgPooling(kernel_size=3, stride=2, dimension=D)
        output = pool(input)
        print(output)

        device = torch.device('cuda')
        with torch.cuda.device(0):
            input = input.to(device)
            pool = pool.to(device)
            output = pool(input)
            print(output)

        # Check backward
        fn = MinkowskiAvgPoolingFunction()
        self.assertTrue(
            gradcheck(
                fn,
                (input.F, input.tensor_stride, pool.stride, pool.kernel_size,
                 pool.dilation, pool.region_type_, pool.region_offset_, True,
                 input.coords_key, None, input.coords_man)))
Ejemplo n.º 2
0
    def test_unpooling_gpu(self):
        if not torch.cuda.is_available():
            return

        in_channels, out_channels, D = 2, 3, 2
        coords, feats, labels = data_loader(in_channels)
        feats = feats.double()
        input = SparseTensor(feats, coords=coords)
        conv = MinkowskiConvolution(in_channels,
                                    out_channels,
                                    kernel_size=3,
                                    stride=2,
                                    dimension=D)
        conv = conv.double()
        unpool = MinkowskiPoolingTranspose(kernel_size=3,
                                           stride=2,
                                           dimension=D)
        input = conv(input)
        output = unpool(input)
        print(output)

        # Check backward
        fn = MinkowskiPoolingTransposeFunction()

        self.assertTrue(
            gradcheck(fn, (input.F, input.tensor_stride, unpool.stride,
                           unpool.kernel_size, unpool.dilation,
                           unpool.region_type_, unpool.region_offset_, False,
                           input.coords_key, None, input.coords_man)))

        device = torch.device('cuda')
        with torch.cuda.device(0):
            input = input.to(device)
            output = unpool(input)
            print(output)

        # Check backward
        fn = MinkowskiAvgPoolingFunction()
        self.assertTrue(
            gradcheck(fn, (input.F, input.tensor_stride, unpool.stride,
                           unpool.kernel_size, unpool.dilation,
                           unpool.region_type_, unpool.region_offset_, True,
                           input.coords_key, None, input.coords_man)))