Ejemplo n.º 1
0
        net.to(device)
        print(net)

        softmax = nn.Softmax()
        criterion = nn.CrossEntropyLoss()
        optimizer = optim.SGD(net.parameters(), lr=LR, momentum=0.1)

        loss_list = []
        train_acc_list = []
        test_acc_list = []

        pred_temp = []
        true_temp = []

        for epoch in range(EPOCH):
            net.train()
            running_loss = 0
            total = train_size
            correct = 0

            for step, images_labels in enumerate(train_loader):
                inputs, labels = images_labels
                inputs, labels = inputs.type(
                    torch.FloatTensor).to(device), labels.type(
                        torch.LongTensor).to(device)

                outputs = net(inputs)

                loss = criterion(outputs, labels)

                optimizer.zero_grad()
Ejemplo n.º 2
0
    npimg = img.numpy()
    plt.imshow(np.transpose(npimg, (1, 2, 0)))
    plt.show()


dataiter = iter(train_loader)
images, labels = dataiter.next()

imshow(torchvision.utils.make_grid(images))
print(' '.join('%5s' % classes[labels[j]] for j in range(4)))

#=============Defining Training Parameters and type of Device
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

model = Net(out_fea=len(classes))
model = model.train()
model = model.to(device)
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), lr=0.001, momentum=0.9)

step = 0
loss_train = []
loss_val = []

min_loss = 100
patience = 5
training_loss_store = []
validation_loss_store = []

writer = SummaryWriter('writer')