Ejemplo n.º 1
0
    def pre_process(self):
        name = self.name
        file_list = self.file_list
        try:
            # Split text into a list of words
            list_ = []
            x = 0
            while x < len(file_list):
                num_tweets = Functions.num_of_tweets(file_list[x])
                time_stamp = Functions.time_stamp(file_list[x])
                target_doc = open(file_list[x], 'r')
                print("FILE: ",target_doc.name)
                res = []
                for lines in target_doc:
                    word_list = []
                    line = lines.lower()
                    word = Functions.preprocess(line)
                    for i in word:
                        if i not in punctuation:
                            word_list.append(i)
                            # For testing purposes
                            list_.append(i)
                    #print("done")
                    emo = EAC(name, word_list, file_list[x], time_stamp, num_tweets,res)
                    emo.emotion_analysis()
                x += 1
            return list_
        except BaseException as e:

                print("Pre_process error: ", e)
Ejemplo n.º 2
0
    def pre_process(self, file_list):

        try:
            # Split text into a list of words
            list_ = []
            x=0
            while x < len(file_list):
                num_tweets = Functions.num_of_tweets(file_list[x])
                target_doc = open(file_list[x], 'r')
                time_stamp = Functions.time_stamp(file_list[x])
                target_doc = open(file_list[x], 'r')
                for lines in target_doc:
                        word_list =[]
                        line = lines.lower()
                        word = Functions.preprocess(line)
                        for i in word:
                            if i not in punctuation:
                                word_list.append(i)
                                # For testing purposes
                                list_.append(i)
                        Company.emotion_analysis(self,word_list,file_list[x],time_stamp,num_tweets)

                x += 1
            print(list_)
            return list_
        except BaseException as e:

                print("Pre_process error: ", e)
Ejemplo n.º 3
0
    def create_csv(self):
        name = self.name

        try:

            file_list = Functions.open_folder(name, 'C:/Users/MOYIN/Desktop/Flask/WebSc/result/' + name + '/')

            test_file = open('C:/Users/MOYIN/Desktop/Flask/WebSc/result/' + name + '/Csv_data/'+name + ".csv", "w",
                             newline='')
            f = csv.writer(test_file)

            emotion_list = ["time", "price", "amusement", "interest", "pride", "joy", "pleasure", "relief", "compassion",
                            "admiration", "contentment", "love", "disappointment", "regret", "sadness", "shame", "guilt",
                            "hate","contempt", "disgust", "fear", "anger"]
            count = 0
            if count == 0:
                # Headers
                f.writerow(emotion_list)
                count += 1

            for file in file_list:
                emotion_result = []
                load = open(file, "r")
                loaded = json.load(load)
                emotion_result.append(loaded)

                for x in emotion_result:
                    row = []
                    for item in x:
                        # add price and time first
                        if "time" in item:
                            row.append(x["time"])
                            # print(x["time"])
                            d = datetime.strptime(x["time"], '%d-%m-%y')
                            month_ = d.strftime('%m').lstrip("0")
                            year_ = d.strftime('%Y')
                            day_ = d.strftime('%d')
                            comp = self.name.lstrip("$")
                            price = Functions.get_price(comp, int(year_), int(month_), int(day_))
                            row.append(price)
                    for item in x:
                        # add emotions
                        if "emotions" in item:
                            # for all emotion strengths
                            for emo in x["emotions"]:
                                for i in emotion_list:
                                    if i is not "time" and i is not "price":
                                        if i in emo:
                                            row.append(emo[i])
                                        else:
                                            row.append(0)
                    print(row)
                    f.writerow(row)
            print("CSV file generated : ")
            #Company.correlation_csv(self,name)
            return test_file.name

        except BaseException as e:
            print("Create csv error: ", e)
Ejemplo n.º 4
0
 def __init__(self, raw_library_name, sha_1):
     self.raw_library_name = raw_library_name
     self.sha_1 = sha_1
     self.pure_name = f.clean_name(raw_library_name, v.list_of_suffixes)[0]
     self.version = f.clean_name(raw_library_name, v.list_of_suffixes)[1]
     self.clean_package_name = self.pure_name + '.' + self.version
     self.is_package = True if self.raw_library_name.endswith(
         v.package_suffix) else False
Ejemplo n.º 5
0
Archivo: UI.py Proyecto: VicSera/UBB
def menu_sum(expenses):
    """
    Launch the menu that corresponds to the 'sum' command
    :param expenses: The list of expenses to sum
    """

    categories = Functions.get_all_categories(expenses)
    category = Parser.choose(categories, "Please choose a category:")

    Functions.sum_category(expenses, [category])
Ejemplo n.º 6
0
Archivo: UI.py Proyecto: VicSera/UBB
def menu_list(expenses):
    """
    Launch the menu that corresponds to the 'list' command
    :param expenses: The list of expenses to print out
    """
    printer = Functions.list_elements

    categories = ['All categories'] + Functions.get_all_categories(expenses)
    category = Parser.choose(categories, "Please choose a category:")

    if category is 'All categories':
        printer(expenses, [])
        return

    constraining_options = ['No constraints', 'Place a constraint']
    constraint_choice = Parser.choose(constraining_options,
                                      "Please choose a constraint:")

    if constraint_choice is 'No constraints':
        printer(expenses, [category])
        return

    operators = ['<', '>', '=']
    operator = Parser.choose(operators, "Please choose an operator: ")
    comparison_element = Parser.get_input_of_type(
        int, "Please choose a number to compare to: ")
    printer(expenses, [category, operator, comparison_element])
Ejemplo n.º 7
0
    def create_graph(self):
        name = self.name
        groups = self.groups
        try:

            groups = open(groups, "r")
            load_groups = json.load(groups)
            G = nx.Graph()

            file_list = Functions.open_folder(name,'C:/Users/MOYIN/Desktop/Flask/WebSc/result/' + name + '/')
            print(file_list)

            for file in file_list:
                load = open(file, "r")
                result_json = json.load(load)

                G.add_node("Emotion", x=500, y=400, fixed=True)
                for wd in result_json['emotions']:
                    for word in wd:
                        G.add_node(word, group=load_groups[word])
                        G.add_edge("Emotion", word, value=wd[word])
                d = json_graph.node_link_data(G)

                # file = open("result\\" + self + "\\Force_layout\\" + os.path.basename(file), 'w')
                filex = open("C:/Users/MOYIN/Desktop/Flask/static/Companies/" + name + "/"+os.path.basename(file), 'w')
                json.dump(d, filex)
                print("Graph files created: ", filex.name)
                return True

        except BaseException as e:
            print("Graph creation error : ", e)
Ejemplo n.º 8
0
    def correlation_csv(self):

        try:
            name = self.name

            emotion_list = ["amusement", "interest", "pride", "joy", "pleasure", "relief", "compassion",
                            "admiration", "contentment", "love", "disappointment", "regret", "sadness",
                            "shame", "guilt", "hate", "contempt", "disgust", "fear", "anger"]

            test_file = open("C:/Users/MOYIN/Desktop/Flask/static/Companies/"+name+"/"+name + "_CT.csv", "w+", newline='')
            test_file.truncate()
            f = csv.writer(test_file)

            count = 0
            if count == 0:
                # Headers
                headers = ["emotion", "correlation"]
                f.writerow(headers)
                count += 1

                for i in emotion_list:
                    row=[]
                    row.append(i)
                    correlate = Functions.correlation(i, name)
                    row.append(correlate)
                    print(row)
                    f.writerow(row)
                print("correlation table created")
                print("----------------------------------------------------------------")
                test_file.close()
                return test_file.name

        except BaseException as e:
            print("Correlation error : ", e)
Ejemplo n.º 9
0
    def create_graph(name):
        groups = open("Emotion_Groups.json", "r")
        connected = open("connected.json", "r")
        load_groups = json.load(groups)
        load_connect = json.load(connected)

        G = nx.Graph()

        file_list = Functions.open_folder('result\\' + name + '\\')
        for file in file_list:
            load = open(file, "r")
            result_json = json.load(load)
            print(os.path.basename(file))

            G.add_node("Emotion", x=500, y=400, fixed=True)
            for wd in result_json['emotions']:
                for word in wd:
                    # G.add_node(word, group=load_groups[word], x=200, y=300, fixed=True)
                    G.add_node(word, group=load_groups[word])
                    G.add_edge("Emotion", word, value=wd[word])

            d = json_graph.node_link_data(G)
            file = open("result\\" + name + "\\Force_layout\\" + os.path.basename(file), 'w')
            json.dump(d, file)
            print(d)
Ejemplo n.º 10
0
Archivo: UI.py Proyecto: VicSera/UBB
def menu_max(expenses):
    """
    Launch the menu that corresponds to the 'maxday' command
    :param expenses: The list of expenses to look through
    """

    options = [
        "Get the day with the most expenses",
        "Get the maximum expense in a day"
    ]

    user_choice = Parser.choose(options, "Please choose what max you want:")

    if user_choice is options[0]:
        Functions.max_day(expenses, [])
    elif user_choice is options[1]:
        day = Parser.get_input_of_type(int, "Please pick a day:")
        Functions.max_per_day(expenses, [day])
Ejemplo n.º 11
0
 def get_needed_downloads(self):
     package_versions = self.get_versions()
     version_shaved = f.shave_suffix(self.version, '.0')
     if self.version in package_versions:
         needed = [self.version]
     # elif version_shaved in package_versions:
     #     needed = [version_shaved]
     else:
         needed = [vers for vers in package_versions]
     return needed
Ejemplo n.º 12
0
    def data_collection(self):

        try:

            name = self.name
            path = "C:/Users/MOYIN/Desktop/Flask/WebSc/Tracker/" + name
            # get all files in folder
            file_list = Functions.open_folder(name, path)
            # check if files exists
            if file_list:
                Company.pre_process(self,file_list)
            else:
                Functions.get_data(name,path)
                Company.data_collection(self)
            return file_list

        except BaseException as e:

            print("data collection error: ", e)
Ejemplo n.º 13
0
    def create_csv(name):

        file_list = Functions.open_folder('result\\' + name + '\\')

        test_file = open('result\\' + name + '\\Csv_data\\'+name + ".csv", "w", newline='')
        f = csv.writer(test_file)

        emotion_list = ["time", "price", "amusement", "interest", "pride", "joy", "pleasure", "relief", "compassion",
                        "admiration", "contentment", "love", "disappointment", "regret", "sadness", "shame", "guilt", "hate",
                        "contempt", "disgust", "fear", "anger"]
        count = 0
        if count == 0:
            # Headers
            f.writerow(emotion_list)
            count += 1

        emotion_result = []
        for file in file_list:
            load = open(file, "r")
            loaded = json.load(load)
            emotion_result.append(loaded)

        for x in emotion_result:
            row = []
            for item in x:
                # add price and time first
                if "time" in item:
                    row.append(x["time"])
                    # print(x["time"])
                    d = datetime.strptime(x["time"], '%d-%m-%y')
                    month_ = d.strftime('%m').lstrip("0")
                    year_ = d.strftime('%Y')
                    day_ = d.strftime('%d')
                    comp = name.lstrip("$")
                    price = CsvGenerate.get_price(comp, int(year_), int(month_), int(day_))
                    row.append(price)
            for item in x:
                # add emotions
                if "emotions" in item:
                    # for all emotion strengths
                    for emo in x["emotions"]:
                        # print(emo)
                        for i in emotion_list:
                            if i is not "time" and i is not "price":
                                if i in emo:
                                    row.append(emo[i])
                                else:
                                    row.append(0)
            # print(row)
            f.writerow(row)

        test_file.close()
        print("done")
Ejemplo n.º 14
0
Archivo: UI.py Proyecto: VicSera/UBB
def menu_sort(expenses):
    """
    Launch the menu that corresponds to the 'sort' command
    :param expenses: The list of expenses to sort
    """

    options = ['Day', 'Category']
    criterion = Parser.choose(options, "Sort by:")

    if criterion is 'Day':
        valid_days = Functions.get_all_days(
            expenses)  # get all the unique entries for days
        day = Parser.get_input_of_type(int, "Please choose a day:")

        if day not in valid_days:
            print("There are no entries for day {}".format(str(day)))
            return

        Functions.sort_by(expenses, [day])
    elif criterion is 'Category':
        valid_categories = Functions.get_all_categories(
            expenses)  # get all the unique entries for categories
        category = Parser.choose(valid_categories, "Please pick a category:")

        Functions.sort_by(expenses, [category])
Ejemplo n.º 15
0
Archivo: UI.py Proyecto: VicSera/UBB
def menu_filter(expenses):
    """
    Launch the menu that corresponds to the 'filter' command
    :param expenses: The list of expenses to filter
    """

    categories = Functions.get_all_categories(expenses)
    category = Parser.choose(categories, "Please choose a category:")

    restrictions = ['No restrictions', 'Add restriction']
    restriction = Parser.choose(restrictions,
                                "Please choose any further restriction:")

    if restriction is 'No restrictions':
        Functions.filter(expenses, [category])
    elif restriction is 'Add restriction':
        operators = ['<', '>', '=']
        operator = Parser.choose(operators, "Please pick an operator:")
        value = Parser.get_input_of_type(int,
                                         "Please pick a value to compare to:")

        Functions.filter(expenses, [category, operator, value])
Ejemplo n.º 16
0
def alpha_words(name):
    # open dictionary
    source = 'Emotion\\'
    json_pattern = os.path.join(source, '*.json')
    file_list = glob.glob(json_pattern)

    # for each dictionary
    for file_emo in file_list:
        load_file = json.load(open(file_emo, 'r'))
        # print(load_file)
        # read in any json file that comes in/ using glob for filename pattern matching
        source = 'Tracker\\'+name
        json_pattern = os.path.join(source, '*.json')
        file_list = glob.glob(json_pattern)
        for file in file_list:
            # open each file in file list
            target_doc = open(file, 'r')
            Functions.num_of_tweets(file)

            res = []
            # for each line in document
            for lines in target_doc:
                word_list = []
                line = lines.lower()
                word = Functions.preprocess(line)
                for i in word:
                    # append to word list to be sorted
                    word_list.append(i)

                # sort each line in alphabetic order
                word_list.sort()
                #print(word_list)

                # check if the dictionary word is in the list
                dict_words = load_file["words"][0]
                if len(dict_words) == 0:
                    id_ = load_file["id"]
                    wrd = 0
                    di_ct = {id_: wrd}
                    res.append(di_ct)
                else:
                    for X in dict_words:
                        # print(X)
                        if Functions.binary_search(word_list, X) is True:
                            id_ = load_file["id"]
                            wrd = dict_words[X]
                            di_ct = {id_: wrd}
                            # print(di_ct)
                            res.append(di_ct)
                        else:
                            id_ = load_file["id"]
                            wrd = 0
                            di_ct = {id_: wrd}
                            res.append(di_ct)
        Functions.counting(res, file,"19-02-2016",200,name)
Ejemplo n.º 17
0
Archivo: UI.py Proyecto: VicSera/UBB
def command_interface():
    """
    The main user interface.
    """
    os.system('clear')
    expenses = Expense.initialize_list()  # Initial list with sample values
    expenses_history = [copy.deepcopy(expenses)]

    options = {
        'add': Functions.add,
        'insert': Functions.insert,
        'remove': Functions.remove,
        'list': Functions.list_elements,
        'sum': Functions.sum_category,
        'max': Functions.max_per_day,
        'maxday': Functions.max_day,
        'sort': Functions.sort_by,
        'filter': Functions.filter,
        'undo': None,
        'exit': menu_exit
    }

    while True:
        print("\n         MAIN MENU          \n\n"
              "   Please input a command   \n\n")
        user_input = input("--> ")
        os.system('clear')
        operands = user_input.split()
        if operands[0] not in options.keys():
            print("Invalid command '" + str(operands[0]) + "'")
        elif operands[0] == 'undo':
            expenses = Functions.undo(
                expenses_history
            )  # treat undo separately because of the history change
        else:
            options[operands[0]](expenses, operands[1:])

            if expenses != expenses_history[
                    -1]:  # only append if there was a change
                expenses_history.append(
                    copy.deepcopy(expenses)
                )  # append a copy of current expenses to the history
Ejemplo n.º 18
0
def emotion_measure(name):
    # read in any json file that comes in/ using glob for filename pattern matching
    source = 'Tracker\\'+name
    json_dir = source
    json_pattern = os.path.join(json_dir, '*.json')
    file_list = glob.glob(json_pattern)

    for file in file_list:

        print(file)
        target_doc = open(file, 'r')
        res = []
        time_stamp = Functions.time_stamp(file)
        num_tweets = Functions.num_of_tweets(file)
        Functions.num_of_tweets(file)
        for lines in target_doc:
            # print(lines)
            line = lines.lower()
            word = twitterstreamV2.preprocess(line)

            source = 'Emotion\\'
            json_dir = source
            json_pattern = os.path.join(json_dir, '*.json')
            file_list = glob.glob(json_pattern)

            for file_emo in file_list:
                emo_doc = open(file_emo, 'r')
                load_file = json.load(emo_doc)

                for wd in word:
                    # checks if the word exists in the dictionary and prints it out
                    dict_words = load_file["words"][0]
                    if wd in dict_words:
                        id_ = load_file["id"]
                        wrd = dict_words[wd]
                        di_ct = {id_: wrd}
                        res.append(di_ct)
                        #print(wd)
                        #print(di_ct)
                    else:
                        id_ = load_file["id"]
                        wrd = 0
                        di_ct = {id_: wrd}
                        res.append(di_ct)

        target_doc.close()
        #print(res)
        Functions.counting(res, file, time_stamp, num_tweets, name)
Ejemplo n.º 19
0
Archivo: UI.py Proyecto: VicSera/UBB
def menu_interface():
    """
    The main menu-based user interface
    """
    os.system('clear')

    expenses = Expense.initialize_list()
    expenses_history = [copy.deepcopy(expenses)]

    menu_options = [
        "Add an element to the list", "Insert an element to the list",
        "List elements", "Sort elements", "Filter out certain elements",
        "Get maximum", "Sum elements", "Undo", "Exit"
    ]

    functions = {
        menu_options[0]: menu_add,
        menu_options[1]: menu_insert,
        menu_options[2]: menu_list,
        menu_options[3]: menu_sort,
        menu_options[4]: menu_filter,
        menu_options[5]: menu_max,
        menu_options[6]: menu_sum,
        menu_options[7]: None,
        menu_options[8]: menu_exit
    }

    while True:
        function_to_call = functions[Parser.choose(
            menu_options, "Please choose one of the following options:")]
        os.system('clear')

        if function_to_call is None:
            expenses = Functions.undo(expenses_history)
            continue

        function_to_call(expenses)

        if expenses != expenses_history[-1]:
            expenses_history.append(copy.deepcopy(expenses))
Ejemplo n.º 20
0
def on_demand_process():
    input_data = input("\n\n" + "="*20 + "\nThe On Demand Mode:\nType the name of the project, the version (if you have one) and if it's a Nuget Package or a dll/exe\nIf the package \
in the version exists it will be downloaded, if no version is given all versions will be downloaded\nExamples: \
project-1.1.8.nupkg  -  project.2.2.0.dll  -  project-1.3.2.exe  -  project\nInput:\n")

    start = time.time()
    inst = c.Library(input_data,"No Hash")
    needed_versions = inst.get_needed_downloads()
    if not needed_versions:
        print("This Package has no versions in Nuget")
    else:
        print(inst.clean_package_name, needed_versions)
        for version in needed_versions:
            f.download_package(inst.pure_name,version)
            downloaded_package_name = inst.pure_name + '.' + version
            if inst.is_package: # calculate the .nupkg files hash
                print(downloaded_package_name, f.hash_calculator(v.default_path_to + downloaded_package_name + v.package_suffix)) 
            else: # extract and calculate + the .nupkg hash
                f.extract_package(downloaded_package_name + v.package_suffix)
                print (downloaded_package_name, f.hash_calculate_directory(downloaded_package_name), "Package Hash-" + f.hash_calculator(v.default_path_to + downloaded_package_name + v.package_suffix))

    end = time.time()
    print('\nExecution time:  ' + str(end - start))
    on_demand_process()
Ejemplo n.º 21
0
    def emotion_analysis(self):

        try:
            name = self.name
            word_list = self.word_list
            num_tweets = self.num_tweets
            res = self.res
            file = self.file
            time_stamp = self.time_stamp

            # open dictionary and order words alphabetically
            dict_file = self.dictionary
            dictionary = open(dict_file, "r")
            di_ct = json.load(dictionary)
            ordered = Functions.word_order(di_ct)

            # obtain bigrams for detecting negation
            grams = list(bigrams(word_list))
            negative_flag = False ; intensifier_flag = False
            intensi = [] ;  negate = []

            # check for negating of intensifier words
            for i in grams:
                # print(i)
                for n in negation_list:
                    if n in i:
                        negate.append(i)
                        negative_flag = True
                for n in intensifier_list:
                    if n in i:
                        intensi.append(i)
                        intensifier_flag =True
                    #print(intensi)

            for x in word_list:
                if Functions.binary_search(self, ordered, x) is True:
                    if negative_flag is True:
                        for i in negate:
                            if x in i:
                                pass
                        pass
                    else:
                        wrd =0
                        if di_ct[x]:
                            i_d = di_ct[x][1]
                            if intensifier_flag is True:
                                for i in intensi:
                                    if x in i:
                                        score = (intensifier_list[i[0]])
                                        wrd = di_ct[x][0] + score
                                        intensifier_flag = False
                                    else:
                                        wrd = di_ct[x][0]
                            else:
                                wrd = di_ct[x][0]
                            new_d = {i_d: abs(wrd)}
                            res.append(new_d)
                '''
                # accommodate for stemmed words, future development -------------------
                elif Functions.binary_search(self,ordered,stemmer.stem(x))is True:
                    x_stem = stemmer.stem(x)
                    # handles negation and intensifier occurrence
                    if negative_flag is True:
                        # negation_counter += 1
                        pass
                    else:
                        if di_ct[x_stem]:
                            # print(x)
                            i_d = di_ct[x_stem][1]
                            if intensifier_flag is True:
                                wrd = di_ct[x_stem][0] + 1
                                intensifier_flag = False
                            else:
                                wrd = di_ct[x_stem][0]
                            new_d = {i_d: abs(wrd)}
                            res.append(new_d)
                            # print(new_d)
                '''
            Functions.reduce(self, res, file, time_stamp, num_tweets,name)
            return res

        except BaseException as e:

            print ("emotion analysis error: ", e)
Ejemplo n.º 22
0
    def emotion_analysis(self,word_list,file,time_stamp,num_tweets):

        try:
            name = self.name
            # open dictionary and order words alphabetically
            dict_file = self.dictionary
            dictionary = open(dict_file, "r")
            di_ct = json.load(dictionary)
            ordered = Functions.word_order(di_ct)

            # obtain bigrams for detecting negation
            grams = list(bigrams(word_list))
            negative_flag = False
            intensifier_flag = False
            Word_found = False
            print(grams)
            intensi = []
            negate = []
            for i in grams:
                for n in negation_list:
                    if n in i:
                        negate.append(i)
                for n in intensifier_list:
                    if n in i:
                        intensi.append(i)
            print("this is x :", intensi)
            print(negate)
            print("________________________")
            # print(word_list)
            for x in word_list:
                # Check for any negative words or intensifiers
                # print(x, stemmer.stem(x))
                for i in grams:
                    if x in i:
                        # check for negation
                        for n in negation_list:
                            if n not in i:
                                pass
                            else:
                                negative_flag = True
                        # check for intensifier
                        for n in intensifier_list:
                            if n not in i:
                                pass
                            else:
                                intensifier_flag = True
                # check if word or stem of word is in dictionary
                if Functions.binary_search(self, ordered, x) is True:
                    if negative_flag is True:
                        count = 1
                        negation_counter.append(count)
                        pass
                    else:
                        if di_ct[x]:
                            i_d = di_ct[x][1]
                            if intensifier_flag is True:
                                wrd = di_ct[x][0] + 1
                                intensifier_flag = False
                            else:
                                wrd = di_ct[x][0]
                            new_d = {i_d: abs(wrd)}
                            res.append(new_d)
                            # print(new_d)

                elif Functions.binary_search(self,ordered,stemmer.stem(x))is True:
                    x_stem = stemmer.stem(x)
                    # handles negation and intensifier occurrence
                    if negative_flag is True:
                        # negation_counter += 1
                        pass
                    else:
                        if di_ct[x_stem]:
                            # print(x)
                            i_d = di_ct[x_stem][1]
                            if intensifier_flag is True:
                                wrd = di_ct[x_stem][0] + 1
                                intensifier_flag = False
                            else:
                                wrd = di_ct[x_stem][0]
                            new_d = {i_d: abs(wrd)}
                            res.append(new_d)
                            # print(new_d)
            # print("number of tweets :" , num_tweets)
            # Company.create_graph(self,name)
            # Company.create_csv(self, name)
            # dictionary.close()
            Functions.counting(self, res, file, time_stamp, num_tweets,name)
            return res

        except BaseException as e:

            print ("emotion analysis error: ", e)
Ejemplo n.º 23
0
import json
from Modules import Functions
from nltk.stem.snowball import SnowballStemmer

'''
word = Word("good").get_synsets(pos=NOUN)
chosen = word[1].lemma_names()
print(chosen)
'''

stemmer = SnowballStemmer("english")

dict_file = "C:/Users/MOYIN/Desktop/Flask/WebSc/Emotion_Dictionary_ORG.json"
dictionary = open(dict_file, "r")
di_ct = json.load(dictionary)
ordered = Functions.word_order(di_ct)
words = ordered

'''
for i in di_ct:
    print(di_ct[i])
'''

# source: https://gist.github.com/cdtavijit/431135aa6da53d47bc72


def synonym_finder(specific_word, synonymList):
    word = Word(specific_word)
    for i,j in enumerate(word.synsets):
        # print "Synonyms:", ", ".join(j.lemma_names())
        for x in range (len(j.lemma_names())):
Ejemplo n.º 24
0
 inst = c.Library(file_hash_tuple[0], str(
     file_hash_tuple[1]))  # create a "Library" class instance
 message = "Suspected"
 needed_versions = inst.get_needed_downloads()
 print(inst.pure_name + ': ', needed_versions)
 if not needed_versions:  # if the package has no versions in Nuget
     message = "Package not found in Nuget"
     for package in hash_results:  ###############################
         if inst.sha_1.lower() in hash_results[package]:  ########
             message = "Match found in: " + package  #############
     results.append(message)
     print(message)
     continue  # to the next iteration (file,hash) tuple
 for version in needed_versions:
     found_match_flag = False
     f.download_package(inst.pure_name, version)
     downloaded_package_name = inst.pure_name + '.' + version
     print("\n" + downloaded_package_name + '------ Downloaded. Hashes:')
     if not downloaded_package_name in hash_results:
         if inst.is_package:  # calculate the .nupkg files hash
             hash_results[downloaded_package_name] = [
                 f.hash_calculator(v.default_path_to +
                                   downloaded_package_name +
                                   v.package_suffix)
             ]
         else:  # extract and calculate
             f.extract_package(downloaded_package_name + v.package_suffix)
             hash_results[
                 downloaded_package_name] = f.hash_calculate_directory(
                     downloaded_package_name) + [
                         f.hash_calculator(v.default_path_to +
Ejemplo n.º 25
0
# ----------------------------------------------------------------------
import difflib
from Modules import Functions as f
from Modules import Parameters as p

ZIPMatch = 0
CityMatch = 0
StreetMatch = 0
NoMatch = 0
ApproxMatch = 0
bestscore = 0
MatchData = [[]]
#----------Loop through all companies--------
for company in p.companylist:
    # -----------Get SAP data----------
    SAPData = f.retrieveSAPdata(company)
    SAPData.pop(0)
    f.printmatrix(SAPData, 2)
    if p.ExportSAPToFile == 1:
        f.exportSAPtocsv(SAPData, company)

    # -----------Get MKT data----------
    MktData = f.retrievecompanydata(company)
    MktData.pop(0)
    f.printmatrix(MktData, 2)

    # -----------Get Match data----------
    #-----------------Go through each record of the Mkt array and find the closest match in the SAP data-------
    #Loop through mkt data
    ZIPMatch = 0
    CityMatch = 0