Ejemplo n.º 1
0
def default_parameters():
    # receptive field parameters
    p = ParameterSpace({})
    p.Ac = 1.
    p.As = 1. / 3.
    p.K1 = 1.05
    p.K2 = 0.7
    p.c1 = 0.14
    p.c2 = 0.12
    p.n1 = 7.
    p.n2 = 8.
    p.t1 = -6.  # ms
    p.t2 = -6.  # ms
    p.td = 6.0  # time differece between ON-OFF
    p.sigma_c = 0.3  #0.4 # Allen 2006 # sigma of center gauss degree
    p.sigma_s = 1.5  #p.sigma_c*1.5+0.4 # Allen 2006 # sigma of surround gauss degree

    # Kernel dims
    # temporal
    p.size = 10.  # degree
    p.degree_per_pixel = 0.1133
    # spatial
    p.dt = 1.0  # ms
    p.duration = 200.  # ms
    return p
def default_parameters():
    # receptive field parameters
    p = ParameterSpace({})
    p.Ac = 1.
    p.As = 1./3.
    p.K1 = 1.05
    p.K2 = 0.7
    p.c1 = 0.14
    p.c2 = 0.12
    p.n1 = 7.
    p.n2 = 8.
    p.t1 = -6. # ms
    p.t2 = -6. # ms
    p.td = 6.0 # time differece between ON-OFF
    p.sigma_c = 0.3#0.4 # Allen 2006 # sigma of center gauss degree
    p.sigma_s = 1.5#p.sigma_c*1.5+0.4 # Allen 2006 # sigma of surround gauss degree

# Kernel dims
    # temporal
    p.size = 10. # degree
    p.degree_per_pixel = 0.1133
    # spatial
    p.dt = 1.0 # ms
    p.duration = 200. # ms
    return p
Ejemplo n.º 3
0
"""
import numpy, pylab

import NeuroTools.stgen as stgen
sg = stgen.StGen()

from NeuroTools.parameters import ParameterSpace
from NeuroTools.parameters import ParameterRange
from NeuroTools.sandbox import make_name

# creating a ParameterSpace
p = ParameterSpace({})

# adding fixed parameters
p.nu = 20.  # rate [Hz]
p.duration = 1000.

# adding ParameterRanges
p.c = ParameterRange([0.0, 0.01, 0.1, 0.5])
p.jitter = ParameterRange([
    0.0,
    1.0,
    5.0,
])

# calculation of the ParameterSpace dimension and the labels of the parameters
# containing a range
dims, labels = p.parameter_space_dimension_labels()
print "dimensions: ", dims
print ' labels: ', labels
"""
import numpy, pylab

import NeuroTools.stgen as stgen
sg = stgen.StGen()

from NeuroTools.parameters import ParameterSpace
from NeuroTools.parameters import ParameterRange
from NeuroTools.sandbox import make_name

# creating a ParameterSpace
p = ParameterSpace({})

# adding fixed parameters
p.nu = 20. # rate [Hz]
p.duration = 1000.

# adding ParameterRanges
p.c = ParameterRange([0.0,0.01,0.1,0.5])
p.jitter = ParameterRange([0.0,1.0,5.0,])

# calculation of the ParameterSpace dimension and the labels of the parameters
# containing a range
dims, labels = p.parameter_space_dimension_labels()
print "dimensions: ", dims
print ' labels: ', labels

def calc_cc(p):
    """
    Generate correlated spike trains from the ParameterSet.