Ejemplo n.º 1
0
def test_more_than_two_assemblies():

    """" This tests to see if data extracted from the input file with more than two assemblies can be used to create a
    StepCharacteristicSolver object without error. """

    current_directory = os.path.dirname(os.path.realpath(__file__))
    file_path = os.path.join(current_directory, 'testing_files/assembly_info_3plus_test.csv')

    sig_t, sig_sin, sig_sout, sig_f, nu, chi, groups, cells, cell_size, assembly_map, material, assembly_size, \
    assembly_cells = read_csv.read_csv(file_path)

    slab = StepCharacteristicSolver(sig_t, sig_sin, sig_sout, sig_f, nu, chi, groups, cells, cell_size, material)
    slab.solve()
Ejemplo n.º 2
0
def test_step_characteristic_solve():

    current_directory = os.path.dirname(os.path.realpath(__file__))
    file_path = os.path.join(current_directory, 'testing_files/assembly_info_test.csv')

    sig_t, sig_sin, sig_sout, sig_f, nu, chi, groups, cells, cell_size, assembly_map, material, assembly_size, \
    assembly_cells = read_csv.read_csv(file_path)

    slab = StepCharacteristicSolver(sig_t, sig_sin, sig_sout, sig_f, nu, chi, groups, cells, cell_size, material)
    slab.solve()

    rows = []  # initialize a temporary storage variable
    elements = []  # initialize a temporary storage variable

    file_path = os.path.join(current_directory, 'testing_files/validation_flux.csv')

    # Read in flux validation data.
    with open(file_path, 'r') as file:
        reader = csv.reader(file, delimiter=',')
        for row in reader:
            rows.append(row[:1])
            for col in row:
                elements.append(col)

    number_rows = len(rows)
    number_elements = len(elements)

    # Reshape matrix to correct format.
    flux_ref = numpy.reshape(elements, [number_rows, number_elements / number_rows]).astype(numpy.float)

    file_path = os.path.join(current_directory, 'testing_files/validation_k.csv')

    # Read in eigenvalue validation data.
    with open(file_path, 'r') as file:
        reader = csv.reader(file, delimiter=',')
        for row in reader:
            k_ref = row

    k_ref = float(k_ref[0])  # convert to float

    flux_difference = abs(flux_ref - slab.flux_new)  # calculate difference in flux
    k_difference = abs(k_ref - slab.k_new) # calculate difference in eigenvalue

    # If the fluxes are within 1e-5 and the eigenvalues are within 1e-4, we'll say it works.

    assert numpy.max(flux_difference) < 1e-5
    assert k_difference < 1e-4
Ejemplo n.º 3
0
    def __init__(self, assembly_data_file):

        # Determine current directory path for input file and read in data, then use that data to create a
        # StepCharacteristicSolver instance, where the heterogeneous solution is found.
        file_path = assembly_data_file
        self.sig_t, self.sig_sin, self.sig_sout, self.sig_f, self.nu, self.chi, self.groups, self.cells, self.cell_size\
            , self.assembly_map, self.material, self.assembly_size, self.assembly_cells = read_csv.read_csv(file_path)
        self.slab = StepCharacteristicSolver(self.sig_t, self.sig_sin,
                                             self.sig_sout, self.sig_f,
                                             self.nu, self.chi, self.groups,
                                             self.cells, self.cell_size,
                                             self.material)
        self.slab.solve()

        # Initialize variables
        self.average_edge_flux = np.zeros((2, 1))
        self.discontinuity_factor_left = np.zeros((2, 1))
        self.discontinuity_factor_right = np.zeros((2, 1))
        self.sig_t_h = np.zeros((2, 1))
        self.sig_sin_h = np.zeros((2, 1))
        self.sig_sout_h = np.zeros((2, 1))
        self.sig_f_h = np.zeros((2, 1))
        self.eddington_factor_h = np.zeros((2, 1))
        self.sig_r_h = np.zeros((2, 1))

        # Calculate the homogeneous data.
        self.perform_homogenization()
Ejemplo n.º 4
0
    def __init__(self, single_assembly_input_files):

        # Determine local directory to find input file.
        self.single_assembly_input_files = single_assembly_input_files
        file_path = single_assembly_input_files[0]
        self.sig_t, self.sig_sin, self.sig_sout, self.sig_f, self.nu, self.chi, self.groups, self.cells, self.cell_size \
            , self.assembly_map, self.material, self.assembly_size, self.assembly_cells = read_csv.read_csv(file_path)

        # 'a' stands for assembly. The variables below will hold the homogenized nuclear data for each unique assembly.
        self.eddington_factor_a = np.zeros(
            (self.groups, len(single_assembly_input_files) - 1))
        self.sig_r_a = np.zeros(
            (self.groups, len(single_assembly_input_files) - 1))
        self.sig_t_a = np.zeros(
            (self.groups, len(single_assembly_input_files) - 1))
        self.sig_sin_a = np.zeros(
            (self.groups, len(single_assembly_input_files) - 1))
        self.sig_sout_a = np.zeros(
            (self.groups, len(single_assembly_input_files) - 1))
        self.sig_f_a = np.zeros(
            (self.groups, len(single_assembly_input_files) - 1))
        self.f_a = np.zeros(
            (self.groups, 2 * (len(single_assembly_input_files) - 1)))

        # 'g' stand for global. The variables below will hold the homogenized nuclear data for each node.
        self.eddington_factor_g = np.zeros(
            (self.groups, len(self.assembly_map)))
        self.sig_r_g = np.zeros((self.groups, len(self.assembly_map)))
        self.sig_t_g = np.zeros((self.groups, len(self.assembly_map)))
        self.sig_sin_g = np.zeros((self.groups, len(self.assembly_map)))
        self.sig_sout_g = np.zeros((self.groups, len(self.assembly_map)))
        self.sig_f_g = np.zeros((self.groups, len(self.assembly_map)))
        self.f_g = np.zeros((self.groups, 2 * len(self.assembly_map)))

        # Run methods to perform global homogenization.
        self.build_assembly_data()
        self.build_global_data()
Ejemplo n.º 5
0
import NoQuD.step_characteristic_solve.StepCharacteristicSolver as SC
import NoQuD.read_input_data.read_csv_input_file as R
import NoQuD.HomogeneousSolve.NodalSolve as HS
import numpy as np
import matplotlib.pyplot as plt

sig_t, sig_sin, sig_sout, sig_f, nu, chi, groups, cells, cell_size, assembly_map, material, assembly_size, \
assembly_cells = R.read_csv('assembly_info_test.csv')
slab = SC.StepCharacteristicSolver(sig_t, sig_sin, sig_sout, sig_f, nu, chi,
                                   groups, cells, cell_size, material)
slab.solve()

test = HS.NodalSolve([
    'assembly_info_test.csv', 'assembly_info_single_test.csv',
    'assembly_info_single_test_b.csv'
])
test.solve()
x = np.arange(0.0, 40., 40. / 256.0)
plt.plot(x, test.flux[0, 0, :], linestyle='--')
plt.plot(x, slab.flux_new[0][:])
plt.plot(x, test.flux[0, 1, :], linestyle='--')
plt.plot(x, slab.flux_new[1][:])
plt.xlabel('Position [cm]')
plt.ylabel('Flux [s^-1 cm^-2]')
plt.title('Neutron Flux')
plt.figlegend(
    ['QD: fast', 'Transport: fast', 'QD: thermal', 'Transport: thermal'],
    loc='center')
plt.ticklabel_format(style='sci', axis='y', scilimits=(0, 0))
plt.xlim(0, 40)
plt.savefig('flux.eps', format='eps', dpi=1200)