def get_boundingbox(shape, tol=1e-6, use_mesh=True):
    """ return the bounding box of the TopoDS_Shape `shape`
    Parameters
    ----------
    shape : TopoDS_Shape or a subclass such as TopoDS_Face
        the shape to compute the bounding box from
    tol: float
        tolerance of the computed boundingbox
    use_mesh : bool
        a flag that tells whether or not the shape has first to be meshed before the bbox
        computation. This produces more accurate results
    """
    bbox = Bnd_Box()
    bbox.SetGap(tol)
    if use_mesh:
        mesh = BRepMesh_IncrementalMesh()
        mesh.SetParallel(True)
        mesh.SetShape(shape)
        mesh.Perform()
        if not mesh.IsDone():
            raise AssertionError("Mesh not done.")
    brepbndlib_Add(shape, bbox, use_mesh)

    xmin, ymin, zmin, xmax, ymax, zmax = bbox.Get()
    return xmin, ymin, zmin, xmax, ymax, zmax, xmax - xmin, ymax - ymin, zmax - zmin
Ejemplo n.º 2
0
def write_stl_file(a_shape,
                   filename,
                   mode="ascii",
                   linear_deflection=0.9,
                   angular_deflection=0.5):
    """ export the shape to a STL file
    Be careful, the shape first need to be explicitely meshed using BRepMesh_IncrementalMesh
    a_shape: the topods_shape to export
    filename: the filename
    mode: optional, "ascii" by default. Can either be "binary"
    linear_deflection: optional, default to 0.001. Lower, more occurate mesh
    angular_deflection: optional, default to 0.5. Lower, more accurate_mesh
    """
    assert not a_shape.IsNull()
    assert mode in ["ascii", "binary"]
    if os.path.isfile(filename):
        print("Warning: %s file already exists and will be replaced" %
              filename)
    # first mesh the shape
    mesh = BRepMesh_IncrementalMesh(a_shape, linear_deflection, False,
                                    angular_deflection, True)
    #mesh.SetDeflection(0.05)
    mesh.Perform()
    assert mesh.IsDone()

    stl_exporter = StlAPI_Writer()
    if mode == "ascii":
        stl_exporter.SetASCIIMode(True)
    else:  # binary, just set the ASCII flag to False
        stl_exporter.SetASCIIMode(False)
    stl_exporter.Write(a_shape, filename)

    assert os.path.isfile(filename)
Ejemplo n.º 3
0
def get_boundingbox(shape: TopoDS_Shape,
                    tol=1e-6,
                    use_mesh=True) -> Tuple[tuple, tuple]:
    """

    :param shape: TopoDS_Shape or a subclass such as TopoDS_Face the shape to compute the bounding box from
    :param tol: tolerance of the computed boundingbox
    :param use_mesh: a flag that tells whether or not the shape has first to be meshed before the bbox computation.
                     This produces more accurate results
    :return: return the bounding box of the TopoDS_Shape `shape`
    """

    bbox = Bnd_Box()
    bbox.SetGap(tol)
    if use_mesh:
        mesh = BRepMesh_IncrementalMesh()
        mesh.SetParallelDefault(True)
        mesh.SetShape(shape)
        mesh.Perform()
        if not mesh.IsDone():
            raise AssertionError("Mesh not done.")
    brepbndlib_Add(shape, bbox, use_mesh)

    xmin, ymin, zmin, xmax, ymax, zmax = bbox.Get()
    return (xmin, ymin, zmin), (xmax, ymax, zmax)
Ejemplo n.º 4
0
def _to_stl(shp, path, delta):
    path = os.path.expanduser(path)

    mesh = BRepMesh_IncrementalMesh(shp.Shape(), delta)

    if mesh.IsDone() is False:
        return False

    stl_writer = StlAPI_Writer()
    stl_writer.Write(shp.Shape(), path)
    return True
Ejemplo n.º 5
0
def get_boundingbox(shape: TopoDS_Shape, tol=1e-6, use_mesh=True):
    bbox = Bnd_Box()
    bbox.SetGap(tol)
    if use_mesh:
        mesh = BRepMesh_IncrementalMesh()
        mesh.SetParallelDefault(True)
        mesh.SetShape(shape)
        mesh.Perform()
        if not mesh.IsDone():
            raise AssertionError("Mesh not done.")
    brepbndlib_Add(shape, bbox, use_mesh)

    xmin, ymin, zmin, xmax, ymax, zmax = bbox.Get()
    return xmin, ymin, zmin, xmax, ymax, zmax, xmax - xmin, ymax - ymin, zmax - zmin
Ejemplo n.º 6
0
def z_max_finder(stl_shp,tol=1e-6,use_mesh=True):
    """first change the model to mesh form in order to get an
    accurate MAX and Min bounfing box from topology"""
    bbox = Bnd_Box()
    bbox.SetGap(tol)
    if use_mesh:
        mesh = BRepMesh_IncrementalMesh()
        mesh.SetParallelDefault(True)
        mesh.SetShape(stl_shp)
        mesh.Perform()
        if not mesh.IsDone():
            raise AssertionError("Mesh not done.")
    brepbndlib_Add(stl_shp, bbox, use_mesh)
    xmin, ymin, zmin, xmax, ymax, zmax = bbox.Get()
    return zmax
Ejemplo n.º 7
0
def get_boundingbox(shape, tol=1e-6, use_mesh=True):
    bbox = Bnd_Box()
    bbox.SetGap(tol)
    if use_mesh:
        mesh = BRepMesh_IncrementalMesh()
        mesh.SetParallel(True)
        mesh.SetShape(shape)
        mesh.Perform()
        assert mesh.IsDone()
    brepbndlib_Add(shape, bbox, use_mesh)

    xmin, ymin, zmin, xmax, ymax, zmax = bbox.Get()
    return [
        xmin, ymin, zmin, xmax, ymax, zmax, xmax - xmin, ymax - ymin,
        zmax - zmin
    ]
Ejemplo n.º 8
0
def triangulation_from_shape(shape):
    linear_deflection = 0.01
    angular_deflection = 0.5
    mesh = BRepMesh_IncrementalMesh(shape, linear_deflection, False, angular_deflection, True)
    mesh.Perform()
    assert mesh.IsDone()
    
    pts = []
    uvs = []
    triangles = []
    triangle_faces = []
    faces = list_face(shape)
    offset = 0
    for f in faces:
        aLoc = TopLoc_Location()
        aTriangulation = BRep_Tool().Triangulation(f, aLoc)
        aTrsf = aLoc.Transformation()
        aOrient = f.Orientation()

        aNodes = aTriangulation.Nodes()
        aUVNodes = aTriangulation.UVNodes()
        aTriangles = aTriangulation.Triangles()
        
        for i in range(1, aTriangulation.NbNodes() + 1):
            pt = aNodes.Value(i)
            pt.Transform(aTrsf)
            pts.append([pt.X(),pt.Y(),pt.Z()])
            uv = aUVNodes.Value(i)
            uvs.append([uv.X(),uv.Y()])
        
        for i in range(1, aTriangulation.NbTriangles() + 1):
            n1, n2, n3 = aTriangles.Value(i).Get()
            n1 -= 1
            n2 -= 1
            n3 -= 1
            if aOrient == TopAbs_REVERSED:
                tmp = n1
                n1 = n2
                n2 = tmp
            n1 += offset
            n2 += offset
            n3 += offset
            triangles.append([n1, n2, n3])
            triangle_faces.append(f)
        offset += aTriangulation.NbNodes()

    return pts, uvs, triangles, triangle_faces
Ejemplo n.º 9
0
def write_stl(shape, filename, definition=0.1):
    from OCC.Core.StlAPI import StlAPI_Writer
    import os

    directory = os.path.split(__name__)[0]
    stl_output_dir = os.path.abspath(directory)
    assert os.path.isdir(stl_output_dir)

    stl_file = os.path.join(stl_output_dir, filename)

    stl_writer = StlAPI_Writer()
    stl_writer.SetASCIIMode(False)

    from OCC.Core.BRepMesh import BRepMesh_IncrementalMesh
    mesh = BRepMesh_IncrementalMesh(shape, definition)
    mesh.Perform()
    assert mesh.IsDone()

    stl_writer.Write(shape, stl_file)
    assert os.path.isfile(stl_file)
    return stl_file
Ejemplo n.º 10
0
def stp2stl(filename, fileIODir, linDeflection=0.1, angDeflection=0.1, solidOnly=True):
    # make sure the path exists otherwise OCE get confused
    assert os.path.isdir(fileIODir)

    nameBase = filename.split('.')[0]

    stpName = os.path.abspath(os.path.join(fileIODir, nameBase + '.stp'))
    modelShp = read_step_file(stpName)
    if solidOnly:
        solids = list(Topo(modelShp).solids())
        modelShp = solids[0]
    mesh = BRepMesh_IncrementalMesh(modelShp, linDeflection)
    mesh.Perform()
    assert mesh.IsDone()

    # set the directory where to output the
    stlName = os.path.abspath(os.path.join(fileIODir, nameBase + '.stl'))

    stl_exporter = StlAPI_Writer()
    stl_exporter.SetASCIIMode(True)  # change to False if you need binary export
    stl_exporter.Write(modelShp, stlName)
    # make sure the program was created
    assert os.path.isfile(stlName)
Ejemplo n.º 11
0
def write_stl_file(a_shape,
                   filename,
                   mode="ascii",
                   linear_deflection=0.9,
                   angular_deflection=0.5):
    """export the shape to a STL file
    Be careful, the shape first need to be explicitly meshed using BRepMesh_IncrementalMesh
    a_shape: the topods_shape to export
    filename: the filename
    mode: optional, "ascii" by default. Can either be "binary"
    linear_deflection: optional, default to 0.001. Lower, more occurate mesh
    angular_deflection: optional, default to 0.5. Lower, more accurate_mesh
    """
    if a_shape.IsNull():
        raise AssertionError("Shape is null.")
    if mode not in ["ascii", "binary"]:
        raise AssertionError("mode should be either ascii or binary")
    if os.path.isfile(filename):
        print(f"Warning: {filename} already exists and will be replaced")
    # first mesh the shape
    mesh = BRepMesh_IncrementalMesh(a_shape, linear_deflection, False,
                                    angular_deflection, True)
    # mesh.SetDeflection(0.05)
    mesh.Perform()
    if not mesh.IsDone():
        raise AssertionError("Mesh is not done.")

    stl_exporter = StlAPI_Writer()
    if mode == "ascii":
        stl_exporter.SetASCIIMode(True)
    else:  # binary, just set the ASCII flag to False
        stl_exporter.SetASCIIMode(False)
    stl_exporter.Write(a_shape, filename)

    if not os.path.isfile(filename):
        raise IOError("File not written to disk.")
Ejemplo n.º 12
0
def mesh_model(model, res_path, convert=True, all_edges=True):
    fil = model.split("/")[-1][:-5]
    folder = "/".join(model.split("/")[:-1])
    with fileinput.FileInput(model, inplace=True) as fi:
        for line in fi:
            print(line.replace(
                "UNCERTAINTY_MEASURE_WITH_UNIT( LENGTH_MEASURE( 1.00000000000000E-06 )",
                "UNCERTAINTY_MEASURE_WITH_UNIT( LENGTH_MEASURE( 1.00000000000000E-17 )"
            ),
                  end='')

    occ_steps = read_step_file(model)
    bt = BRep_Tool()

    for occ_cnt in range(len(occ_steps)):
        if convert:
            try:
                nurbs_converter = BRepBuilderAPI_NurbsConvert(
                    occ_steps[occ_cnt])
                nurbs_converter.Perform(occ_steps[occ_cnt])
                nurbs = nurbs_converter.Shape()
            except:
                print("Conversion failed")
                continue
        else:
            nurbs = occ_steps[occ_cnt]

        mesh = BRepMesh_IncrementalMesh(occ_steps[occ_cnt], 0.9, False, 0.5,
                                        True)
        mesh.Perform()
        if not mesh.IsDone():
            print("Mesh is not done.")
            continue

        occ_topo = TopologyExplorer(nurbs)
        occ_top = Topo(nurbs)
        occ_topo1 = TopologyExplorer(occ_steps[occ_cnt])
        occ_top1 = Topo(occ_steps[occ_cnt])

        d1_feats = []
        d2_feats = []
        t_curves = []
        tr_curves = []
        stats = {}
        stats["model"] = model
        total_edges = 0
        total_surfs = 0
        stats["curves"] = []
        stats["surfs"] = []
        c_cnt = 0
        t_cnt = 0

        # Iterate over edges
        for edge in occ_topo.edges():
            curve = BRepAdaptor_Curve(edge)
            stats["curves"].append(edge_map[curve.GetType()])
            d1_feat = convert_curve(curve)

            if edge_map[curve.GetType()] == "Other":
                continue

            for f in occ_top.faces_from_edge(edge):
                if f == None:
                    print("Broken face")
                    continue
                su = BRepAdaptor_Surface(f)
                c = BRepAdaptor_Curve2d(edge, f)
                t_curve = {
                    "surface": f,
                    "3dcurve": edge,
                    "3dcurve_id": c_cnt,
                    "2dcurve_id": t_cnt
                }
                t_curves.append(t_curve)
                tr_curves.append(convert_2dcurve(c))
                t_cnt += 1

            d1_feats.append(d1_feat)
            c_cnt += 1
            total_edges += 1

        patches = []
        faces1 = list(occ_topo1.faces())
        # Iterate over faces
        for fci, face in enumerate(occ_topo.faces()):
            surf = BRepAdaptor_Surface(face)
            stats["surfs"].append(surf_map[surf.GetType()])
            d2_feat = convert_surface(surf)

            if surf_map[surf.GetType()] == "Other":
                continue

            for tc in t_curves:
                if tc["surface"] == face:
                    patch = {
                        "3dcurves": [],
                        "2dcurves": [],
                        "orientations": [],
                        "surf_orientation": face.Orientation(),
                        "wire_ids": [],
                        "wire_orientations": []
                    }

                    for wc, fw in enumerate(occ_top.wires_from_face(face)):
                        patch["wire_orientations"].append(fw.Orientation())
                        if all_edges:
                            edges = [
                                i for i in WireExplorer(fw).ordered_edges()
                            ]
                        else:
                            edges = list(occ_top.edges_from_wire(fw))
                        for fe in edges:
                            for ttc in t_curves:
                                if ttc["3dcurve"].IsSame(fe) and tc[
                                        "surface"] == ttc["surface"]:
                                    patch["3dcurves"].append(ttc["3dcurve_id"])
                                    patch["2dcurves"].append(ttc["2dcurve_id"])
                                    patch["wire_ids"].append(wc)
                                    orientation = fe.Orientation()
                                    patch["orientations"].append(orientation)

                    patches.append(patch)
                    break

            location = TopLoc_Location()
            facing = (bt.Triangulation(faces1[fci], location))
            if facing != None:
                tab = facing.Nodes()
                tri = facing.Triangles()
                verts = []
                for i in range(1, facing.NbNodes() + 1):
                    verts.append(list(tab.Value(i).Coord()))

                faces = []
                for i in range(1, facing.NbTriangles() + 1):
                    index1, index2, index3 = tri.Value(i).Get()
                    faces.append([index1 - 1, index2 - 1, index3 - 1])

                os.makedirs(res_path, exist_ok=True)
                igl.write_triangle_mesh(
                    "%s/%s_%03i_mesh_%04i.obj" % (res_path, fil, occ_cnt, fci),
                    np.array(verts), np.array(faces))
                d2_feat["faces"] = faces
                d2_feat["verts"] = verts
            else:
                print("Missing triangulation")
                continue

            d2_feats.append(d2_feat)
            total_surfs += 1

        bbox = get_boundingbox(occ_steps[occ_cnt], use_mesh=False)
        xmin, ymin, zmin, xmax, ymax, zmax = bbox[:6]
        bbox1 = [
            "%.2f" % xmin,
            "%.2f" % ymin,
            "%.2f" % zmin,
            "%.2f" % xmax,
            "%.2f" % ymax,
            "%.2f" % zmax,
            "%.2f" % (xmax - xmin),
            "%.2f" % (ymax - ymin),
            "%.2f" % (zmax - zmin)
        ]
        stats["#edges"] = total_edges
        stats["#surfs"] = total_surfs

        # Fix possible orientation problems
        if convert:
            for p in patches:

                # Check orientation of first curve
                if len(p["2dcurves"]) >= 2:
                    cur = tr_curves[p["2dcurves"][0]]
                    nxt = tr_curves[p["2dcurves"][1]]
                    c_ori = p["orientations"][0]
                    n_ori = p["orientations"][1]
                    if c_ori == 0:
                        pole0 = np.array(cur["poles"][0])
                        pole1 = np.array(cur["poles"][-1])
                    else:
                        pole0 = np.array(cur["poles"][-1])
                        pole1 = np.array(cur["poles"][0])

                    if n_ori == 0:
                        pole2 = np.array(nxt["poles"][0])
                        pole3 = np.array(nxt["poles"][-1])
                    else:
                        pole2 = np.array(nxt["poles"][-1])
                        pole3 = np.array(nxt["poles"][0])

                    d02 = np.abs(pole0 - pole2)
                    d12 = np.abs(pole1 - pole2)
                    d03 = np.abs(pole0 - pole3)
                    d13 = np.abs(pole1 - pole3)

                    amin = np.argmin([d02, d12, d03, d13])

                    if amin == 0 or amin == 2:  # Orientation of first curve incorrect, fix
                        p["orientations"][0] = abs(c_ori - 1)

                # Fix all orientations
                for i in range(len(p["2dcurves"]) - 1):
                    cur = tr_curves[p["2dcurves"][i]]
                    nxt = tr_curves[p["2dcurves"][i + 1]]
                    c_ori = p["orientations"][i]
                    n_ori = p["orientations"][i + 1]
                    if c_ori == 0:
                        pole1 = np.array(cur["poles"][-1])
                    else:
                        pole1 = np.array(cur["poles"][0])

                    if n_ori == 0:
                        pole2 = np.array(nxt["poles"][0])
                        pole3 = np.array(nxt["poles"][-1])
                    else:
                        pole2 = np.array(nxt["poles"][-1])
                        pole3 = np.array(nxt["poles"][0])

                    d12 = np.abs(pole1 - pole2)
                    d13 = np.abs(pole1 - pole3)

                    amin = np.min([d12, d13])

                    if amin == 1:  # Incorrect orientation, flip
                        p["orientations"][i + 1] = abs(n_ori - 1)

        features = {
            "curves": d1_feats,
            "surfaces": d2_feats,
            "trim": tr_curves,
            "topo": patches,
            "bbox": bbox1
        }

        os.makedirs(res_path, exist_ok=True)
        fip = fil + "_features2"
        with open("%s/%s_%03i.yml" % (res_path, fip, occ_cnt), "w") as fili:
            yaml.dump(features, fili, indent=2)

        fip = fil + "_features"
        with open("%s/%s_%03i.yml" % (res_path, fip, occ_cnt), "w") as fili:
            features2 = copy.deepcopy(features)
            for sf in features2["surfaces"]:
                del sf["faces"]
                del sf["verts"]
            yaml.dump(features2, fili, indent=2)


#        res_path = folder.replace("/step/", "/stat/")
#        fip = fil + "_stats"
#        with open("%s/%s_%03i.yml"%(res_path, fip, occ_cnt), "w") as fili:
#            yaml.dump(stats, fili, indent=2)

    print("Writing results for %s with %i parts." % (model, len(occ_steps)))