Ejemplo n.º 1
0
    def AddShapeToScene(self,
                        shp,  # the TopoDS_Shape to be displayed
                        shape_color=default_shape_color,  # the default
                        render_edges=False,
                        edge_color=default_edge_color,
                        compute_uv_coords=False,
                        quality=1.0,
                        transparency=False,
                        opacity=1.):
        # first, compute the tesselation
        tess = Tesselator(shp)
        tess.Compute(uv_coords=compute_uv_coords,
                     compute_edges=render_edges,
                     mesh_quality=quality,
                     parallel=self._parallel)
        # get vertices and normals
        vertices_position = tess.GetVerticesPositionAsTuple()

        number_of_triangles = tess.ObjGetTriangleCount()
        number_of_vertices = len(vertices_position)

        # number of vertices should be a multiple of 3
        assert number_of_vertices % 3 == 0
        assert number_of_triangles * 9 == number_of_vertices

        # then we build the vertex and faces collections as numpy ndarrays
        np_vertices = np.array(vertices_position, dtype='float32').reshape(int(number_of_vertices / 3), 3)
        # Note: np_faces is just [0, 1, 2, 3, 4, 5, ...], thus arange is used
        np_faces = np.arange(np_vertices.shape[0], dtype='uint32')

        # set geometry properties
        buffer_geometry_properties = {'position': BufferAttribute(np_vertices),
                                      'index'   : BufferAttribute(np_faces)}
        if self._compute_normals_mode == NORMAL.SERVER_SIDE:
            # get the normal list, converts to a numpy ndarray. This should not raise
            # any issue, since normals have been computed by the server, and are available
            # as a list of floats
            np_normals = np.array(tess.GetNormalsAsTuple(), dtype='float32').reshape(-1, 3)
            # quick check
            assert np_normals.shape == np_vertices.shape
            buffer_geometry_properties['normal'] = BufferAttribute(np_normals)

        # build a BufferGeometry instance
        shape_geometry = BufferGeometry(attributes=buffer_geometry_properties)

        # if the client has to render normals, add the related js instructions
        if self._compute_normals_mode == NORMAL.CLIENT_SIDE:
            shape_geometry.exec_three_obj_method('computeVertexNormals')

        # then a default material
        shp_material = MeshPhongMaterial(color=shape_color,
                                         polygonOffset=True,
                                         polygonOffsetFactor=1,
                                         polygonOffsetUnits=1,
                                         shininess=0.9,
                                         transparent=transparency)

        # create a mesh unique id
        mesh_id = uuid.uuid4().hex

        # finally create the mash
        shape_mesh = Mesh(geometry=shape_geometry,
                          material=shp_material,
                          name=mesh_id)


        # and to the dict of shapes, to have a mapping between meshes and shapes
        self._shapes[mesh_id] = shp

        # edge rendering, if set to True
        edge_lines = None
        if render_edges:
            edges = list(map(lambda i_edge: [tess.GetEdgeVertex(i_edge, i_vert) for i_vert in range(tess.ObjEdgeGetVertexCount(i_edge))], range(tess.ObjGetEdgeCount())))
            edges = list(filter(lambda edge: len(edge) == 2, edges))
            np_edge_vertices = np.array(edges, dtype=np.float32).reshape(-1, 3)
            np_edge_indices = np.arange(np_edge_vertices.shape[0], dtype=np.uint32)
            edge_geometry = BufferGeometry(attributes={
                'position': BufferAttribute(np_edge_vertices),
                'index'   : BufferAttribute(np_edge_indices)
            })
            edge_material = LineBasicMaterial(color=edge_color, linewidth=1)
            edge_lines = LineSegments(geometry=edge_geometry, material=edge_material)

        # Add geometries to pickable or non pickable objects
        self._displayed_pickable_objects.add(shape_mesh)
        if render_edges:
            self._displayed_non_pickable_objects.add(edge_lines)
Ejemplo n.º 2
0
    def DisplayShape(self,
                     shp,  # the TopoDS_Shape to be displayed
                     shape_color=default_shape_color,  # the default
                     render_edges=False,
                     edge_color=default_edge_color,
                     compute_uv_coords=False,
                     quality=1.0,
                     update=False):
        """ Displays a topods_shape in the renderer instance.
        shp: the TopoDS_Shape to render
        shape_color: the shape color, in html corm, eg '#abe000'
        render_edges: optional, False by default. If True, compute and dislay all
                      edges as a linear interpolation of segments.
        edge_color: optional, black by default. The color used for edge rendering,
                    in html form eg '#ff00ee'
        compute_uv_coords: optional, false by default. If True, compute texture
                           coordinates (required if the shape has to be textured)
        quality: optional, 1.0 by default. If set to something lower than 1.0,
                      mesh will be more precise. If set to something higher than 1.0,
                      mesh will be less precise, i.e. lower numer of triangles.
        update: optional, False by default. If True, render all the shapes.
        """
        # first, compute the tesselation
        tess = Tesselator(shp)
        tess.Compute(uv_coords=compute_uv_coords,
                     compute_edges=render_edges,
                     mesh_quality=quality,
                     parallel=self._parallel)
        # get vertices and normals
        vertices_position = tess.GetVerticesPositionAsTuple()

        number_of_triangles = tess.ObjGetTriangleCount()
        number_of_vertices = len(vertices_position)

        # number of vertices should be a multiple of 3
        assert number_of_vertices % 3 == 0
        assert number_of_triangles * 9 == number_of_vertices

        # then we build the vertex and faces collections as numpy ndarrays
        np_vertices = np.array(vertices_position, dtype='float32').reshape(int(number_of_vertices / 3), 3)
        # Note: np_faces is just [0, 1, 2, 3, 4, 5, ...], thus arange is used
        np_faces = np.arange(np_vertices.shape[0], dtype='uint32')

        # set geometry properties
        buffer_geometry_properties = {'position': BufferAttribute(np_vertices),
                                      'index'   : BufferAttribute(np_faces)}
        if self._compute_normals_mode == NORMAL.SERVER_SIDE:
            # get the normal list, converts to a numpy ndarray. This should not raise
            # any issue, since normals have been computed by the server, and are available
            # as a list of floats
            np_normals = np.array(tess.GetNormalsAsTuple(), dtype='float32').reshape(-1, 3)
            # quick check
            assert np_normals.shape == np_vertices.shape
            buffer_geometry_properties['normal'] = BufferAttribute(np_normals)

        # build a BufferGeometry instance
        shape_geometry = BufferGeometry(attributes=buffer_geometry_properties)

        # if the client has to render normals, add the related js instructions
        if self._compute_normals_mode == NORMAL.CLIENT_SIDE:
            shape_geometry.exec_three_obj_method('computeVertexNormals')

        # then a default material
        shp_material = MeshPhongMaterial(color=shape_color,
                                         polygonOffset=True,
                                         polygonOffsetFactor=1,
                                         polygonOffsetUnits=1,
                                         shininess=0.9)

        # create a mesh unique id
        mesh_id = uuid.uuid4().hex

        # finally create the mash
        shape_mesh = Mesh(geometry=shape_geometry,
                          material=shp_material,
                          name=mesh_id)

        # adds this mesh to the list of meshes
        self._displayed_pickable_objects.add(shape_mesh)

        # and to the dict of shapes, to have a mapping between meshes and shapes
        self._shapes[mesh_id] = shp

        # edge rendering, if set to True
        edge_lines = None
        if render_edges:
            edges = list(map(lambda i_edge: [tess.GetEdgeVertex(i_edge, i_vert) for i_vert in range(tess.ObjEdgeGetVertexCount(i_edge))], range(tess.ObjGetEdgeCount())))
            edges = list(filter(lambda edge: len(edge) == 2, edges))
            np_edge_vertices = np.array(edges, dtype=np.float32).reshape(-1, 3)
            np_edge_indices = np.arange(np_edge_vertices.shape[0], dtype=np.uint32)
            edge_geometry = BufferGeometry(attributes={
                'position': BufferAttribute(np_edge_vertices),
                'index'   : BufferAttribute(np_edge_indices)
            })
            edge_material = LineBasicMaterial(color=edge_color, linewidth=1)
            edge_lines = LineSegments(geometry=edge_geometry, material=edge_material)
            self._displayed_pickable_objects.add(edge_lines)

        if update:
            self.Display()
Ejemplo n.º 3
0
try:
    import numpy as np
    HAVE_NUMPY = True
except:
    HAVE_NUMPY = False

# create the shape
box_s = BRepPrimAPI_MakeBox(10, 20, 30).Shape()

# compute the tesselation
tess = Tesselator(box_s)
tess.Compute()

# get vertices
vertices_position = tess.GetVerticesPositionAsTuple()

number_of_triangles = tess.ObjGetTriangleCount()
number_of_vertices = len(vertices_position)

# number of vertices should be a multiple of 3
assert number_of_vertices % 3 == 0
assert number_of_triangles * 9 == number_of_vertices

# get normals
normals = tess.GetNormalsAsTuple()
number_of_normals = len(normals)
assert number_of_normals == number_of_vertices

# if HAVE_NUMPY, we try to reshape the tuple so that it is of
# a ndarray such as [[x1, y1, z1], [x2, y2, z2], ...]