def process_data(self, classification_dict): """ Create and fill 3 list described in return section :param classification_dict: filled dictionary with min, max, avg classification probabilities, counter and class value :return: 3 list -> data (classification probabilities), Y (class values), metas (file names) """ metas, data, Y = [], [], [] for key, value in classification_dict.items(): class_value = None tmp_data = [] for x, y in value.items(): tmp_data += [y[1], y[2], y[0] / float(y[3])] class_value = y[-1] if(class_value not in self.discrete_atributes): self.discrete_atributes.append(class_value) Y.append(self.discrete_atributes.index(class_value)) else: Y.append(self.discrete_atributes.index(class_value)) metas.append([key]) data.append(tmp_data) return numpy.array(data), numpy.array(Y), numpy.array(metas)
def lookup_from_function(class_var, bound, function): """ Construct ClassifierByDataTable or ClassifierByLookupTable mirroring the given function. """ lookup = lookup_from_bound(class_var, bound) if lookup: for i, attrs in enumerate(Orange.utils.counters.LimitedCounter([len(var.values) for var in bound])): lookup.lookup_table[i] = Orange.data.Value(class_var, function(attrs)) return lookup else: dom = Orange.data.Domain(bound, class_var) data = Orange.data.Table(dom) for attrs in Orange.utils.counters.LimitedCounter([len(var.values) for var in dom.features]): data.append(Orange.data.Example(dom, attrs + [function(attrs)])) return LookupLearner(data)
def lookup_from_function(class_var, bound, function): """ Construct ClassifierByDataTable or ClassifierByLookupTable mirroring the given function. """ lookup = lookup_from_bound(class_var, bound) if lookup: for i, attrs in enumerate( Orange.utils.counters.LimitedCounter( [len(var.values) for var in bound])): lookup.lookup_table[i] = Orange.data.Value(class_var, function(attrs)) return lookup else: dom = Orange.data.Domain(bound, class_var) data = Orange.data.Table(dom) for attrs in Orange.utils.counters.LimitedCounter( [len(var.values) for var in dom.features]): data.append(Orange.data.Example(dom, attrs + [function(attrs)])) return LookupLearner(data)
def _get_data(self, dir_path): filecsv_list = [] for root, dirs, files in os.walk(dir_path): for file in files: if os.path.splitext(file)[1] == '.csv': filecsv_list.append(os.path.join(root, file)) data = pd.DataFrame() for csv in filecsv_list: df_tmp = pd.read_csv(csv, header=0, encoding='utf-8') data = data.append(df_tmp, ignore_index=True) return data
if (firstLine != 1): arr = [] i = 1 for val in line.split(";"): if (i != 15): arr.append(float(val)) elif (i == 15): l = int(val) leave.append(l) if (l == 0): countL0 += 1 else: countL1 += 1 countObj += 1 i += 1 data.append(arr) else: firstLine = 0 P = countL0 / countObj file = open(paramFile, "r") alg = file.readline().rstrip() if (alg == "H"): Ncluster = int(file.readline()) metric = file.readline().rstrip() link = file.readline().rstrip() elif (alg == "K"): Ncluster = int(file.readline()) initMeans = file.readline().rstrip() algMeans = file.readline().rstrip()