def test_init(self):
     data = Orange.data.Table(np.arange(100).reshape((100, 1)))
     res = ClusteringResults(data=data, nmethods=2, nrows=100)
     res.actual[:50] = 0
     res.actual[50:] = 1
     res.predicted = np.vstack((res.actual, res.actual))
     expected = [1.0, 1.0]
     np.testing.assert_almost_equal(AdjustedMutualInfoScore(res), expected)
Ejemplo n.º 2
0
 def test_kmeans(self):
     table = Orange.data.Table('iris')
     cr = ClusteringEvaluation(table, learners=[KMeans(n_clusters=2),
                                                KMeans(n_clusters=3),
                                                KMeans(n_clusters=5)], k=3)
     expected = [0.68081362,  0.55259194,  0.48851755]
     np.testing.assert_almost_equal(Silhouette(cr), expected, decimal=2)
     expected = [0.51936073,  0.74837231,  0.59178896]
     np.testing.assert_almost_equal(AdjustedMutualInfoScore(cr),
                                    expected, decimal=2)
Ejemplo n.º 3
0
    def test_kmeans(self):
        table = Orange.data.Table('iris')
        cr = ClusteringEvaluation(k=3)(table, learners=[KMeans(n_clusters=2),
                                                        KMeans(n_clusters=3),
                                                        KMeans(n_clusters=5)])
        expected = [0.68081362, 0.55259194, 0.48851755]
        np.testing.assert_almost_equal(Silhouette(cr), expected, decimal=2)
        expected = [0.65383807, 0.75511917, 0.68721092]
        np.testing.assert_almost_equal(AdjustedMutualInfoScore(cr),
                                       expected, decimal=2)
        self.assertIsNone(cr.models)

        cr = ClusteringEvaluation(k=3, store_models=True)(
            table, learners=[KMeans(n_clusters=2)])
        self.assertEqual(cr.models.shape, (3, 1))
        self.assertTrue(all(isinstance(m, KMeansModel)
                            for m in cr.models.flatten()))