def main():
    """Standalone test"""
    import sys
    from AnyQt.QtWidgets import QApplication
    from Orange.modelling.tree import TreeLearner
    a = QApplication(sys.argv)
    ow = OWTreeGraph()
    data = Table(sys.argv[1] if len(sys.argv) > 1 else "titanic")
    clf = TreeLearner()(data)
    clf.instances = data

    ow.ctree(clf)
    ow.show()
    ow.raise_()
    a.exec_()
    ow.saveSettings()
Ejemplo n.º 2
0
            minv = np.nanmin(self.dataset.Y)
            maxv = np.nanmax(self.dataset.Y)
            colors = self.scene.colors
            for node in self.scene.nodes():
                node_mean = self.tree_adapter.get_distribution(node.node_inst)[0][0]
                color = colors.value_to_qcolor(node_mean, minv, maxv)
                node.backgroundBrush = QBrush(color)
        else:
            nodes = list(self.scene.nodes())
            variances = [self.tree_adapter.get_distribution(node.node_inst)[0][1]
                         for node in nodes]
            max_var = max(variances)
            for node, var in zip(nodes, variances):
                node.backgroundBrush = QBrush(def_color.lighter(
                    120 - 20 * var / max_var))
        self.scene.update()

    def _get_tree_adapter(self, model):
        if isinstance(model, SklModel):
            return SklTreeAdapter(model)
        return TreeAdapter(model)


if __name__ == "__main__":  # pragma: no cover
    from Orange.modelling.tree import TreeLearner
    data = Table("titanic")
    # data = Table("housing")
    clf = TreeLearner()(data)
    clf.instances = data
    WidgetPreview(OWTreeGraph).run(clf)
Ejemplo n.º 3
0
        elif self.regression_colors == self.COL_MEAN:
            minv = np.nanmin(self.dataset.Y)
            maxv = np.nanmax(self.dataset.Y)
            fact = 1 / (maxv - minv) if minv != maxv else 1
            colors = self.scene.colors
            for node in self.scene.nodes():
                node_mean = self.tree_adapter.get_distribution(node.node_inst)[0][0]
                node.backgroundBrush = QBrush(colors[fact * (node_mean - minv)])
        else:
            nodes = list(self.scene.nodes())
            variances = [self.tree_adapter.get_distribution(node.node_inst)[0][1]
                         for node in nodes]
            max_var = max(variances)
            for node, var in zip(nodes, variances):
                node.backgroundBrush = QBrush(def_color.lighter(
                    120 - 20 * var / max_var))
        self.scene.update()

    def _get_tree_adapter(self, model):
        if isinstance(model, SklModel):
            return SklTreeAdapter(model)
        return TreeAdapter(model)


if __name__ == "__main__":  # pragma: no cover
    from Orange.modelling.tree import TreeLearner
    data = Table("titanic")
    clf = TreeLearner()(data)
    clf.instances = data
    WidgetPreview(OWTreeGraph).run(clf)