Ejemplo n.º 1
0
def get_lin_reg(x, y):
    data = Orange.data.Table("newdoc.csv")
    earth_predictor = earth.EarthLearner(data)

    tx1, ty1 = data.to_numpy("A/C")

    # pl.plot(x,y,".r")

    li = numpy.linspace(min(x), max(x), 20)
    # predictions = [earth_predictor([s, "?"]) for s in li]
    # pl.plot(linspace, predictions, "-b")
    # pl.show()
    data = Orange.data.Table("dat.tab")
    earth_predictor = earth.EarthLearner(data)

    X, Y = data.to_numpy("A/C")

    # pl.plot(X, Y, ".r")

    linspace = numpy.linspace(min(X), max(X), 20)
    predictions = [earth_predictor([s, "?"]) for s in linspace]

    # pl.plot(linspace, predictions, "-b")
    # pl.show()

    f = open("orangetrend.txt", "w+")
    for i in range(len(linspace)):
        # print linspace
        # exit(0)
        f.write(str(linspace[i]) + "," + str(predictions[i]) + "\n")
        # f.write(str(predictions[i])+"\n")

    f.close()
    def test_bagged_evimp(self, dataset):
        from Orange.ensemble.bagging import BaggedLearner
        bagged_learner = BaggedLearner(earth.EarthLearner(terms=10, degree=2),
                                       t=5)

        bagged_classifier = bagged_learner(dataset)
        evimp = earth.bagged_evimp(bagged_classifier, used_only=False)
    def apply(self):
        learner = earth.EarthLearner(
            degree=self.degree,
            terms=self.terms if self.terms >= 2 else None,
            penalty=self.penalty,
            name=self.name)

        predictor = None
        basis_matrix = None
        if self.preprocessor:
            learner = self.preprocessor.wrapLearner(learner)

        self.error(0)
        if self.data is not None:
            try:
                predictor = learner(self.data)
                predictor.name = self.name
            except Exception, ex:
                self.error(0, "An error during learning: %r" % ex)

            if predictor is not None:
                base_features = predictor.base_features()
                basis_domain = Orange.data.Domain(base_features,
                                                  self.data.domain.class_var,
                                                  self.data.domain.class_vars)
                basis_domain.add_metas(self.data.domain.get_metas())
                basis_matrix = Orange.data.Table(basis_domain, self.data)
    def test_multi_target_on_data(self, dataset):
        self.learner = earth.EarthLearner(degree=2, terms=10)

        self.predictor = self.multi_target_test(self.learner, dataset)

        self.assertTrue(bool(self.predictor.multitarget))

        s = str(self.predictor)
        self.assertEqual(s, self.predictor.to_string())
        self.assertNotEqual(s, self.predictor.to_string(3, 6))
Ejemplo n.º 5
0
    def apply(self):
        learner = earth.EarthLearner(
            degree=self.degree,
            terms=self.terms if self.terms >= 2 else None,
            penalty=self.penalty,
            name=self.name)
        predictor = None
        if self.preprocessor:
            learner = self.preprocessor.wrapLearner(learner)

        self.error(0)
        if self.data is not None:
            try:
                predictor = learner(self.data)
                predictor.name = self.name
            except Exception, ex:
                self.error(0, "An error during learning: %r" % ex)
Ejemplo n.º 6
0
os.chdir("C:/Documents and Settings/amcelhinney/My Documents/GitHub/MCS507ProjectTwo/data/")


# Remember to add the "class" keyword to the third line, under the target variable. See here:
# http://orange.biolab.si/doc/tutorial/load-data/
data = orange.ExampleTable("painted_data_wo_outlier")
print data.domain.attributes
print data[:4]

X, Y = data.to_numpy("A/C")

pl.plot(X, Y, ".r")
pl.title('Example Data Set')
pl.show()

earth_predictor = earth.EarthLearner(data)
print earth_predictor
linspace = numpy.linspace(min(X), max(X), 20)
predictions = [earth_predictor([s, "?"]) for s in linspace]
pl.plot(X, Y, ".r")
pl.plot(linspace, predictions, "-b")
pl.title('Example Data Set with Line Fit by MARS')
pl.show()


x=[]; y=[]
for i in range(len(X)):
    #print i
    x.append(float(X[i]))
    y.append(float(Y[i]))
 def setUp(self):
     self.learner = earth.EarthLearner(degree=2, terms=10)
Ejemplo n.º 8
0
os.chdir(
    "C:/Documents and Settings/amcelhinney/My Documents/GitHub/MCS507ProjectTwo/data/"
)
os.getcwd()

# Bring in the data using the C4.5 format, which brings in the .data file and then the .names file
data = orange.ExampleTable("auto-mpg")
print data.domain.attributes

# Divide data into training and validation data sets
index = Orange.data.sample.SubsetIndices2(p0=0.70)
ind = index(data)
data_training = data.select(ind, 0)
data_validation = data.select(ind, 1)

earth_predictor = earth.EarthLearner(data_training)

print earth_predictor

estimated = earth_predictor.predict(list(data_validation))

dl = list(data_validation)

# Predict all the data
estimated = []
for i in range(0, len(dl)):
    t = earth_predictor.predict(dl[i])
    estimated.append(t[0])

X, Y = data.to_numpy("A/C")
for i in range(0, len(names)):