Ejemplo n.º 1
0
    def draw_distributions(self):
        """Draw distributions with discrete attributes"""
        if not (self.show_distributions and self.data is not None and self.domain.has_discrete_class):
            return
        class_count = len(self.domain.class_var.values)
        class_ = self.domain.class_var

        # we create a hash table of possible class values (happens only if we have a discrete class)
        if self.domain_contingencies is None:
            self.domain_contingencies = dict(
                zip([attr for attr in self.domain if attr.is_discrete],
                    get_contingencies(self.data, skipContinuous=True)))
            self.domain_contingencies[class_] = get_contingency(self.data, class_, class_)

        max_count = max([contingency.max() for contingency in self.domain_contingencies.values()] or [1])
        sorted_class_values = get_variable_values_sorted(self.domain.class_var)

        for axis_idx, attr_idx in enumerate(self.attribute_indices):
            attr = self.domain[attr_idx]
            if attr.is_discrete:
                continue

            contingency = self.domain_contingencies[attr]
            attr_len = len(attr.values)

            # we create a hash table of variable values and their indices
            sorted_variable_values = get_variable_values_sorted(attr)

            # create bar curve
            for j in range(attr_len):
                attribute_value = sorted_variable_values[j]
                value_count = contingency[:, attribute_value]

                for i in range(class_count):
                    class_value = sorted_class_values[i]

                    color = QColor(*self.colors[i])
                    color.setAlpha(self.alpha_value)

                    width = float(value_count[class_value] * 0.5) / float(max_count)
                    y_off = float(1.0 + 2.0 * j) / float(2 * attr_len)
                    height = 0.7 / float(class_count * attr_len)

                    y_low_bottom = y_off + float(class_count * height) / 2.0 - i * height
                    curve = PolygonCurve(QPen(color),
                                         QBrush(color),
                                         xData=[axis_idx, axis_idx + width,
                                                axis_idx + width, axis_idx],
                                         yData=[y_low_bottom, y_low_bottom, y_low_bottom - height,
                                                y_low_bottom - height],
                                         tooltip=attr.name)
                    curve.attach(self)
Ejemplo n.º 2
0
 def draw_axes(self):
     self.remove_all_axes()
     for i in range(len(self.attributes)):
         axis_id = UserAxis + i
         a = self.add_axis(axis_id,
                           line=QLineF(i, 0, i, 1),
                           arrows=AxisStart | AxisEnd,
                           zoomable=True)
         a.always_horizontal_text = True
         a.max_text_width = 100
         a.title_margin = -10
         a.text_margin = 0
         a.setZValue(5)
         self.set_axis_title(axis_id, self.domain[self.attributes[i]].name)
         self.set_show_axis_title(axis_id, self.show_attr_values)
         if self.show_attr_values:
             attr = self.domain[self.attributes[i]]
             if attr.is_continuous:
                 self.set_axis_scale(axis_id, self.attr_values[attr][0],
                                     self.attr_values[attr][1])
             elif attr.is_discrete:
                 attribute_values = get_variable_values_sorted(
                     self.domain[self.attributes[i]])
                 attr_len = len(attribute_values)
                 values = [
                     float(1.0 + 2.0 * j) / float(2 * attr_len)
                     for j in range(len(attribute_values))
                 ]
                 a.set_bounds((0, 1))
                 self.set_axis_labels(axis_id,
                                      labels=attribute_values,
                                      values=values)
Ejemplo n.º 3
0
 def get_max_label_width(attr):
     values = get_variable_values_sorted(data.domain[attr])
     maxw = 0
     for val in values:
         t = CanvasText(self.canvas, val, 0, 0, bold=0, show=False)
         maxw = max(int(t.boundingRect().width()), maxw)
     return maxw
Ejemplo n.º 4
0
        def create_legend():
            if self.variable_color is None:
                names = [
                    "<-8", "-8:-4", "-4:-2", "-2:2", "2:4", "4:8", ">8",
                    "Residuals:"
                ]
                colors = self.RED_COLORS[::-1] + self.BLUE_COLORS[1:]
                edges = repeat(Qt.black)
            else:
                names = get_variable_values_sorted(class_var)
                edges = colors = [QColor(*col) for col in class_var.colors]

            items = []
            size = 8
            for name, color, edgecolor in zip(names, colors, edges):
                item = QGraphicsItemGroup()
                item.addToGroup(
                    CanvasRectangle(None, -size / 2, -size / 2, size, size,
                                    edgecolor, color))
                item.addToGroup(
                    CanvasText(None, name, size, 0, Qt.AlignVCenter))
                items.append(item)
            return wrap_legend_items(items,
                                     hspacing=20,
                                     vspacing=16 + size,
                                     max_width=self.canvas_view.width() - xoff)
Ejemplo n.º 5
0
 def get_max_label_width(attr):
     values = get_variable_values_sorted(attr)
     maxw = 0
     for val in values:
         t = CanvasText(self.canvas, val, 0, 0, bold=0, show=False)
         maxw = max(int(t.boundingRect().width()), maxw)
     return maxw
Ejemplo n.º 6
0
    def update_properties(self):
        ## Mostly copied from OWScatterPlotGraph
        if not self.plot():
            return

        if not self.rect:
            x, y = self.axes()
            self.rect = self.plot().data_rect_for_axes(x, y)
        s = self.graph_transform().mapRect(self.rect).size().toSize()
        if not s.isValid():
            return
        rx = s.width()
        ry = s.height()

        rx -= rx % self.granularity
        ry -= ry % self.granularity

        p = self.graph_transform().map(QPointF(
            0, 0)) - self.graph_transform().map(self.rect.topLeft())
        p = p.toPoint()

        ox = p.x()
        oy = -p.y()

        if self.classifier.classVar.is_continuous:
            imagebmp = orangeom.potentialsBitmap(self.classifier, rx, ry, ox,
                                                 oy, self.granularity,
                                                 self.scale)
            palette = [
                qRgb(255. * i / 255., 255. * i / 255., 255 - (255. * i / 255.))
                for i in range(255)
            ] + [qRgb(255, 255, 255)]
        else:
            imagebmp, nShades = orangeom.potentialsBitmap(
                self.classifier, rx, ry, ox, oy, self.granularity, self.scale,
                self.spacing)
            palette = []
            sortedClasses = get_variable_values_sorted(
                self.classifier.domain.classVar)
            for cls in self.classifier.classVar.values:
                color = self.plot().discPalette.getRGB(
                    sortedClasses.index(cls))
                towhite = [255 - c for c in color]
                for s in range(nShades):
                    si = 1 - float(s) / nShades
                    palette.append(
                        qRgb(*tuple(
                            [color[i] + towhite[i] * si for i in (0, 1, 2)])))
            palette.extend(
                [qRgb(255, 255, 255) for i in range(256 - len(palette))])

        self.potentialsImage = QImage(imagebmp, rx, ry, QImage.Format_Indexed8)
        self.potentialsImage.setColorTable(
            ColorPaletteDlg.signedPalette(palette
                                          ) if qVersion() < "4.5" else palette)
        self.potentialsImage.setNumColors(256)
        self.pixmap_item.setPixmap(QPixmap.fromImage(self.potentialsImage))
        self.pixmap_item.setPos(self.graph_transform().map(
            self.rect.bottomLeft()))
Ejemplo n.º 7
0
 def setup_plot(self):
     super().setup_plot()
     for axis, var in (("bottom", self.attr_x), ("left", self.attr_y)):
         self.graph.set_axis_title(axis, var)
         if var and var.is_discrete:
             self.graph.set_axis_labels(axis,
                                        get_variable_values_sorted(var))
         else:
             self.graph.set_axis_labels(axis, None)
Ejemplo n.º 8
0
        def draw_legend(x0_x1, y0_y1):
            x0, x1 = x0_x1
            _, y1 = y0_y1
            if self.interior_coloring == self.PEARSON:
                names = [
                    "<-8",
                    "-8:-4",
                    "-4:-2",
                    "-2:2",
                    "2:4",
                    "4:8",
                    ">8",
                    "Residuals:",
                ]
                colors = self.RED_COLORS[::-1] + self.BLUE_COLORS[1:]
            else:
                names = get_variable_values_sorted(class_var) + [class_var.name + ":"]
                colors = [QColor(*col) for col in class_var.colors]

            names = [
                CanvasText(self.canvas, name, alignment=Qt.AlignVCenter)
                for name in names
            ]
            totalwidth = sum(text.boundingRect().width() for text in names)

            # compute the x position of the center of the legend
            y = y1 + self.ATTR_NAME_OFFSET + self.ATTR_VAL_OFFSET + 35
            distance = 30
            startx = (x0 + x1) / 2 - (totalwidth + (len(names)) * distance) / 2

            names[-1].setPos(startx + 15, y)
            names[-1].show()
            xoffset = names[-1].boundingRect().width() + distance

            size = 8

            for i in range(len(names) - 1):
                if self.interior_coloring == self.PEARSON:
                    edgecolor = Qt.black
                else:
                    edgecolor = colors[i]

                CanvasRectangle(
                    self.canvas,
                    startx + xoffset,
                    y - size / 2,
                    size,
                    size,
                    edgecolor,
                    colors[i],
                )
                names[i].setPos(startx + xoffset + 10, y)
                xoffset += distance + names[i].boundingRect().width()
Ejemplo n.º 9
0
 def update_axes(self):
     for axis, var in self.master.get_axes().items():
         axis_item = self.plot_widget.plotItem.getAxis(axis)
         if var and var.is_discrete:
             ticks = [list(enumerate(get_variable_values_sorted(var)))]
             axis_item.setTicks(ticks)
         else:
             axis_item.setTicks(None)
         use_time = var and var.is_time
         self.plot_widget.plotItem.getAxis(axis).use_time(use_time)
         self.plot_widget.setLabel(axis=axis, text=var or "")
         if not var:
             self.plot_widget.hideAxis(axis)
Ejemplo n.º 10
0
    def attr_changed(self):
        self.graph.reset_graph()
        for axis, var in (("bottom", self.attr_x), ("left", self.attr_y)):
            self.graph.set_axis_title(axis, var)
            if var and var.is_discrete:
                self.graph.set_axis_labels(axis,
                                           get_variable_values_sorted(var))
            else:
                self.graph.set_axis_labels(axis, None)

        self.cb_class_density.setEnabled(self.can_draw_density())
        self.cb_reg_line.setEnabled(self.can_draw_regresssion_line())
        self.send_features()
Ejemplo n.º 11
0
 def draw_legend(self):
     domain = self.data.domain
     class_var = domain.class_var
     if class_var:
         if class_var.is_discrete:
             self.legend().clear()
             values = get_variable_values_sorted(class_var)
             for i, value in enumerate(values):
                 self.legend().add_item(
                     class_var.name, value,
                     OWPoint(OWPoint.Rect, QColor(*self.colors[i]), 10))
         else:
             values = self.attr_values[class_var]
             decimals = class_var.number_of_decimals
             self.legend().add_color_gradient(
                 class_var.name, ["%%.%df" % decimals % v for v in values])
     else:
         self.legend().clear()
         self.old_legend_keys = []
Ejemplo n.º 12
0
    def update_properties(self):
        ## Mostly copied from OWScatterPlotGraph
        if not self.plot():
            return

        if not self.rect:
            x,y = self.axes()
            self.rect = self.plot().data_rect_for_axes(x,y)
        s = self.graph_transform().mapRect(self.rect).size().toSize()
        if not s.isValid():
            return
        rx = s.width()
        ry = s.height()

        rx -= rx % self.granularity
        ry -= ry % self.granularity

        p = self.graph_transform().map(QPointF(0, 0)) - self.graph_transform().map(self.rect.topLeft())
        p = p.toPoint()

        ox = p.x()
        oy = -p.y()

        if self.classifier.classVar.is_continuous:
            imagebmp = orangeom.potentialsBitmap(self.classifier, rx, ry, ox, oy, self.granularity, self.scale)
            palette = [qRgb(255.*i/255., 255.*i/255., 255-(255.*i/255.)) for i in range(255)] + [qRgb(255, 255, 255)]
        else:
            imagebmp, nShades = orangeom.potentialsBitmap(self.classifier, rx, ry, ox, oy, self.granularity, self.scale, self.spacing)
            palette = []
            sortedClasses = get_variable_values_sorted(self.classifier.domain.classVar)
            for cls in self.classifier.classVar.values:
                color = self.plot().discPalette.getRGB(sortedClasses.index(cls))
                towhite = [255-c for c in color]
                for s in range(nShades):
                    si = 1-float(s)/nShades
                    palette.append(qRgb(*tuple([color[i]+towhite[i]*si for i in (0, 1, 2)])))
            palette.extend([qRgb(255, 255, 255) for i in range(256-len(palette))])

        self.potentialsImage = QImage(imagebmp, rx, ry, QImage.Format_Indexed8)
        self.potentialsImage.setColorTable(palette)
        self.potentialsImage.setNumColors(256)
        self.pixmap_item.setPixmap(QPixmap.fromImage(self.potentialsImage))
        self.pixmap_item.setPos(self.graph_transform().map(self.rect.bottomLeft()))
Ejemplo n.º 13
0
 def draw_legend(self):
     domain = self.data.domain
     class_var = domain.class_var
     if class_var:
         if class_var.is_discrete:
             self.legend().clear()
             values = get_variable_values_sorted(class_var)
             for i, value in enumerate(values):
                 self.legend().add_item(
                     class_var.name, value,
                     OWPoint(OWPoint.Rect, QColor(*self.colors[i]), 10))
         else:
             values = self.attr_values[class_var]
             decimals = class_var.number_of_decimals
             self.legend().add_color_gradient(
                 class_var.name, ["%%.%df" % decimals % v for v in values])
     else:
         self.legend().clear()
         self.old_legend_keys = []
Ejemplo n.º 14
0
        def draw_legend(x0_x1, y0_y1):
            x0, x1 = x0_x1
            y0, y1 = y0_y1
            if self.interior_coloring == self.PEARSON:
                names = ["<-8", "-8:-4", "-4:-2", "-2:2", "2:4", "4:8", ">8",
                         "Residuals:"]
                colors = self.RED_COLORS[::-1] + self.BLUE_COLORS[1:]
            else:
                names = get_variable_values_sorted(class_var) + \
                        [class_var.name + ":"]
                colors = [QColor(*col) for col in class_var.colors]

            names = [CanvasText(self.canvas, name, alignment=Qt.AlignVCenter)
                     for name in names]
            totalwidth = sum(text.boundingRect().width() for text in names)

            # compute the x position of the center of the legend
            y = y1 + self.ATTR_NAME_OFFSET + self.ATTR_VAL_OFFSET + 35
            distance = 30
            startx = (x0 + x1) / 2 - (totalwidth + (len(names)) * distance) / 2

            names[-1].setPos(startx + 15, y)
            names[-1].show()
            xoffset = names[-1].boundingRect().width() + distance

            size = 8

            for i in range(len(names) - 1):
                if self.interior_coloring == self.PEARSON:
                    edgecolor = Qt.black
                else:
                    edgecolor = colors[i]

                CanvasRectangle(self.canvas, startx + xoffset, y - size / 2,
                                size, size, edgecolor, colors[i])
                names[i].setPos(startx + xoffset + 10, y)
                xoffset += distance + names[i].boundingRect().width()
Ejemplo n.º 15
0
 def draw_axes(self):
     self.remove_all_axes()
     for i in range(len(self.attributes)):
         axis_id = UserAxis + i
         a = self.add_axis(axis_id, line=QLineF(i, 0, i, 1), arrows=AxisStart | AxisEnd,
                           zoomable=True)
         a.always_horizontal_text = True
         a.max_text_width = 100
         a.title_margin = -10
         a.text_margin = 0
         a.setZValue(5)
         self.set_axis_title(axis_id, self.domain[self.attributes[i]].name)
         self.set_show_axis_title(axis_id, self.show_attr_values)
         if self.show_attr_values:
             attr = self.domain[self.attributes[i]]
             if attr.is_continuous:
                 self.set_axis_scale(axis_id, self.attr_values[attr][0],
                                     self.attr_values[attr][1])
             elif attr.is_discrete:
                 attribute_values = get_variable_values_sorted(self.domain[self.attributes[i]])
                 attr_len = len(attribute_values)
                 values = [float(1.0 + 2.0 * j) / float(2 * attr_len) for j in range(len(attribute_values))]
                 a.set_bounds((0, 1))
                 self.set_axis_labels(axis_id, labels=attribute_values, values=values)
Ejemplo n.º 16
0
    def update_data(self, attr_x, attr_y, reset_view=True):
        self.master.Warning.missing_coords.clear()
        self.master.Information.missing_coords.clear()
        self._clear_plot_widget()

        self.shown_x, self.shown_y = attr_x, attr_y

        if self.jittered_data is None or not len(self.jittered_data):
            self.valid_data = None
        else:
            index_x = self.domain.index(attr_x)
            index_y = self.domain.index(attr_y)
            self.valid_data = self.get_valid_list([index_x, index_y])
            if not np.any(self.valid_data):
                self.valid_data = None
        if self.valid_data is None:
            self.selection = None
            self.n_points = 0
            self.master.Warning.missing_coords(
                self.shown_x.name, self.shown_y.name)
            return

        x_data, y_data = self.get_xy_data_positions(
            attr_x, attr_y, self.valid_data)
        self.n_points = len(x_data)

        if reset_view:
            min_x, max_x = np.nanmin(x_data), np.nanmax(x_data)
            min_y, max_y = np.nanmin(y_data), np.nanmax(y_data)
            self.view_box.setRange(
                QRectF(min_x, min_y, max_x - min_x, max_y - min_y),
                padding=0.025)
            self.view_box.init_history()
            self.view_box.tag_history()
        [min_x, max_x], [min_y, max_y] = self.view_box.viewRange()

        for axis, name, index in (("bottom", attr_x, index_x),
                                  ("left", attr_y, index_y)):
            self.set_axis_title(axis, name)
            var = self.domain[index]
            if var.is_discrete:
                self.set_labels(axis, get_variable_values_sorted(var))
            else:
                self.set_labels(axis, None)

        color_data, brush_data = self.compute_colors()
        color_data_sel, brush_data_sel = self.compute_colors_sel()
        size_data = self.compute_sizes()
        shape_data = self.compute_symbols()

        if self.should_draw_density():
            rgb_data = [pen.color().getRgb()[:3] for pen in color_data]
            self.density_img = classdensity.class_density_image(
                min_x, max_x, min_y, max_y, self.resolution,
                x_data, y_data, rgb_data)
            self.plot_widget.addItem(self.density_img)

        data_indices = np.flatnonzero(self.valid_data)
        if len(data_indices) != self.original_data.shape[1]:
            self.master.Information.missing_coords(
                self.shown_x.name, self.shown_y.name)

        self.scatterplot_item = ScatterPlotItem(
            x=x_data, y=y_data, data=data_indices,
            symbol=shape_data, size=size_data, pen=color_data, brush=brush_data
        )
        self.scatterplot_item_sel = ScatterPlotItem(
            x=x_data, y=y_data, data=data_indices,
            symbol=shape_data, size=size_data + SELECTION_WIDTH,
            pen=color_data_sel, brush=brush_data_sel
        )
        self.plot_widget.addItem(self.scatterplot_item_sel)
        self.plot_widget.addItem(self.scatterplot_item)

        self.scatterplot_item.selected_points = []
        self.scatterplot_item.sigClicked.connect(self.select_by_click)

        self.update_labels()
        self.make_legend()
        self.plot_widget.replot()
Ejemplo n.º 17
0
        def add_rect(x0,
                     x1,
                     y0,
                     y1,
                     condition,
                     used_attrs,
                     used_vals,
                     attr_vals=""):
            area_index = len(self.areas)
            x1 += (x0 == x1)
            y1 += (y0 == y1)
            # rectangles of width and height 1 are not shown - increase
            y1 += (x1 - x0 + y1 - y0 == 2)
            colors = class_var and [QColor(*col) for col in class_var.colors]

            def select_area(_, ev):
                self.select_area(area_index, ev)

            def rect(x, y, w, h, z, pen_color=None, brush_color=None, **args):
                if pen_color is None:
                    return CanvasRectangle(self.canvas,
                                           x,
                                           y,
                                           w,
                                           h,
                                           z=z,
                                           onclick=select_area,
                                           **args)
                if brush_color is None:
                    brush_color = pen_color
                return CanvasRectangle(self.canvas,
                                       x,
                                       y,
                                       w,
                                       h,
                                       pen_color,
                                       brush_color,
                                       z=z,
                                       onclick=select_area,
                                       **args)

            def line(x1, y1, x2, y2):
                r = QGraphicsLineItem(x1, y1, x2, y2, None)
                self.canvas.addItem(r)
                r.setPen(QPen(Qt.white, 2))
                r.setZValue(30)

            outer_rect = rect(x0, y0, x1 - x0, y1 - y0, 30)
            self.areas.append((used_attrs, used_vals, outer_rect))
            if not conditionaldict[attr_vals]:
                return

            if self.variable_color is None:
                s = sum(apriori_dists[0])
                expected = s * reduce(
                    mul, (apriori_dists[i][used_vals[i]] / float(s)
                          for i in range(len(used_vals))))
                actual = conditionaldict[attr_vals]
                pearson = float((actual - expected) / sqrt(expected))
                if pearson == 0:
                    ind = 0
                else:
                    ind = max(0, min(int(log(abs(pearson), 2)), 3))
                color = [self.RED_COLORS, self.BLUE_COLORS][pearson > 0][ind]
                rect(x0, y0, x1 - x0, y1 - y0, -20, color)
                outer_rect.setToolTip(
                    condition + "<hr/>" + "Expected instances: %.1f<br>"
                    "Actual instances: %d<br>"
                    "Standardized (Pearson) residual: %.1f" %
                    (expected, conditionaldict[attr_vals], pearson))
            else:
                cls_values = get_variable_values_sorted(class_var)
                prior = get_distribution(data, class_var.name)
                total = 0
                for i, value in enumerate(cls_values):
                    val = conditionaldict[attr_vals + "-" + value]
                    if val == 0:
                        continue
                    if i == len(cls_values) - 1:
                        v = y1 - y0 - total
                    else:
                        v = ((y1 - y0) * val) / conditionaldict[attr_vals]
                    rect(x0, y0 + total, x1 - x0, v, -20, colors[i])
                    total += v

                if self.use_boxes and \
                        abs(x1 - x0) > bar_width and abs(y1 - y0) > bar_width:
                    total = 0
                    line(x0 + bar_width, y0, x0 + bar_width, y1)
                    n = sum(prior)
                    for i, (val, color) in enumerate(zip(prior, colors)):
                        if i == len(prior) - 1:
                            h = y1 - y0 - total
                        else:
                            h = (y1 - y0) * val / n
                        rect(x0, y0 + total, bar_width, h, 20, color)
                        total += h

                if conditionalsubsetdict:
                    if conditionalsubsetdict[attr_vals]:
                        if self.subset_indices is not None:
                            line(x1 - bar_width, y0, x1 - bar_width, y1)
                            total = 0
                            n = conditionalsubsetdict[attr_vals]
                            if n:
                                for i, (cls, color) in \
                                        enumerate(zip(cls_values, colors)):
                                    val = conditionalsubsetdict[attr_vals +
                                                                "-" + cls]
                                    if val == 0:
                                        continue
                                    if i == len(prior) - 1:
                                        v = y1 - y0 - total
                                    else:
                                        v = ((y1 - y0) * val) / n
                                    rect(x1 - bar_width, y0 + total, bar_width,
                                         v, 15, color)
                                    total += v

                actual = [
                    conditionaldict[attr_vals + "-" + cls_values[i]]
                    for i in range(len(prior))
                ]
                n_actual = sum(actual)
                if n_actual > 0:
                    apriori = [prior[key] for key in cls_values]
                    n_apriori = sum(apriori)
                    text = "<br/>".join(
                        "<b>%s</b>: %d / %.1f%% (Expected %.1f / %.1f%%)" %
                        (cls, act, 100.0 * act / n_actual,
                         apr / n_apriori * n_actual, 100.0 * apr / n_apriori)
                        for cls, act, apr in zip(cls_values, actual, apriori))
                else:
                    text = ""
                outer_rect.setToolTip("{}<hr>Instances: {}<br><br>{}".format(
                    condition, n_actual, text[:-4]))
Ejemplo n.º 18
0
        def draw_text(side, attr, x0_x1, y0_y1, total_attrs, used_attrs,
                      used_vals, attr_vals):
            x0, x1 = x0_x1
            y0, y1 = y0_y1
            if side in drawn_sides:
                return

            # the text on the right will be drawn when we are processing
            # visualization of the last value of the first attribute
            if side == 3:
                attr1values = get_variable_values_sorted(used_attrs[0])
                if used_vals[0] != attr1values[-1]:
                    return

            if not conditionaldict[attr_vals]:
                if side not in draw_positions:
                    draw_positions[side] = (x0, x1, y0, y1)
                return
            else:
                if side in draw_positions:
                    # restore the positions of attribute values and name
                    (x0, x1, y0, y1) = draw_positions[side]

            drawn_sides.add(side)

            values = get_variable_values_sorted(attr)
            if side % 2:
                values = values[::-1]

            spaces = spacing * (total_attrs - side) * (len(values) - 1)
            width = x1 - x0 - spaces * (side % 2 == 0)
            height = y1 - y0 - spaces * (side % 2 == 1)

            # calculate position of first attribute
            currpos = 0
            total, counts = get_counts(attr_vals, values)
            aligns = [
                Qt.AlignTop | Qt.AlignHCenter, Qt.AlignRight | Qt.AlignVCenter,
                Qt.AlignBottom | Qt.AlignHCenter,
                Qt.AlignLeft | Qt.AlignVCenter
            ]
            align = aligns[side]
            for i, val in enumerate(values):
                if distributiondict[val] != 0:
                    perc = counts[i] / float(total)
                    rwidth = width * perc
                    xs = [
                        x0 + currpos + rwidth / 2, x0 - self.ATTR_VAL_OFFSET,
                        x0 + currpos + rwidth / 2, x1 + self.ATTR_VAL_OFFSET
                    ]
                    ys = [
                        y1 + self.ATTR_VAL_OFFSET,
                        y0 + currpos + height * 0.5 * perc,
                        y0 - self.ATTR_VAL_OFFSET,
                        y0 + currpos + height * 0.5 * perc
                    ]

                    CanvasText(self.canvas,
                               val,
                               xs[side],
                               ys[side],
                               align,
                               max_width=rwidth if side == 0 else None)
                    space = height if side % 2 else width
                    currpos += perc * space + spacing * (total_attrs - side)

            xs = [
                x0 + (x1 - x0) / 2, x0 - max_ylabel_w1 - self.ATTR_VAL_OFFSET,
                x0 + (x1 - x0) / 2, x1 + max_ylabel_w2 + self.ATTR_VAL_OFFSET
            ]
            ys = [
                y1 + self.ATTR_VAL_OFFSET + self.ATTR_NAME_OFFSET,
                y0 + (y1 - y0) / 2,
                y0 - self.ATTR_VAL_OFFSET - self.ATTR_NAME_OFFSET,
                y0 + (y1 - y0) / 2
            ]
            CanvasText(self.canvas,
                       attr.name,
                       xs[side],
                       ys[side],
                       align,
                       bold=True,
                       vertical=side % 2)
Ejemplo n.º 19
0
        def draw_data(attr_list,
                      x0_x1,
                      y0_y1,
                      side,
                      condition,
                      total_attrs,
                      used_attrs,
                      used_vals,
                      attr_vals=""):
            x0, x1 = x0_x1
            y0, y1 = y0_y1
            if conditionaldict[attr_vals] == 0:
                add_rect(x0,
                         x1,
                         y0,
                         y1,
                         "",
                         used_attrs,
                         used_vals,
                         attr_vals=attr_vals)
                # store coordinates for later drawing of labels
                draw_text(side, attr_list[0], (x0, x1), (y0, y1), total_attrs,
                          used_attrs, used_vals, attr_vals)
                return

            attr = attr_list[0]
            # how much smaller rectangles do we draw
            edge = len(attr_list) * spacing
            values = get_variable_values_sorted(attr)
            if side % 2:
                values = values[::-1]  # reverse names if necessary

            if side % 2 == 0:  # we are drawing on the x axis
                # remove the space needed for separating different attr. values
                whole = max(0, (x1 - x0) - edge * (len(values) - 1))
                if whole == 0:
                    edge = (x1 - x0) / float(len(values) - 1)
            else:  # we are drawing on the y axis
                whole = max(0, (y1 - y0) - edge * (len(values) - 1))
                if whole == 0:
                    edge = (y1 - y0) / float(len(values) - 1)

            total, counts = get_counts(attr_vals, values)

            # when visualizing the third attribute and the first attribute has
            # the last value, reverse the order in which the boxes are drawn;
            # otherwise, if the last cell, nearest to the labels of the fourth
            # attribute, is empty, we wouldn't be able to position the labels
            valrange = list(range(len(values)))
            if len(attr_list + used_attrs) == 4 and len(used_attrs) == 2:
                attr1values = get_variable_values_sorted(used_attrs[0])
                if used_vals[0] == attr1values[-1]:
                    valrange = valrange[::-1]

            for i in valrange:
                start = i * edge + whole * float(sum(counts[:i]) / total)
                end = i * edge + whole * float(sum(counts[:i + 1]) / total)
                val = values[i]
                htmlval = to_html(val)
                newattrvals = attr_vals + "-" + val if attr_vals else val

                tooltip = "{}&nbsp;&nbsp;&nbsp;&nbsp;{}: <b>{}</b><br/>".format(
                    condition, attr.name, htmlval)
                attrs = used_attrs + [attr]
                vals = used_vals + [val]
                args = attrs, vals, newattrvals
                if side % 2 == 0:  # if we are moving horizontally
                    if len(attr_list) == 1:
                        add_rect(x0 + start, x0 + end, y0, y1, tooltip, *args)
                    else:
                        draw_data(attr_list[1:], (x0 + start, x0 + end),
                                  (y0, y1), side + 1, tooltip, total_attrs,
                                  *args)
                else:
                    if len(attr_list) == 1:
                        add_rect(x0, x1, y0 + start, y0 + end, tooltip, *args)
                    else:
                        draw_data(attr_list[1:], (x0, x1),
                                  (y0 + start, y0 + end), side + 1, tooltip,
                                  total_attrs, *args)
            draw_text(side, attr_list[0], (x0, x1), (y0, y1), total_attrs,
                      used_attrs, used_vals, attr_vals)
Ejemplo n.º 20
0
    def update_data(self, attr_x, attr_y, reset_view=True):
        self.master.Warning.missing_coords.clear()
        self.master.Information.missing_coords.clear()
        self._clear_plot_widget()

        self.shown_x, self.shown_y = attr_x, attr_y

        if self.jittered_data is None or not len(self.jittered_data):
            self.valid_data = None
        else:
            index_x = self.domain.index(attr_x)
            index_y = self.domain.index(attr_y)
            self.valid_data = self.get_valid_list([index_x, index_y])
            if not np.any(self.valid_data):
                self.valid_data = None
        if self.valid_data is None:
            self.selection = None
            self.n_points = 0
            self.master.Warning.missing_coords(self.shown_x.name,
                                               self.shown_y.name)
            return

        x_data, y_data = self.get_xy_data_positions(attr_x, attr_y,
                                                    self.valid_data)
        self.n_points = len(x_data)

        if reset_view:
            min_x, max_x = np.nanmin(x_data), np.nanmax(x_data)
            min_y, max_y = np.nanmin(y_data), np.nanmax(y_data)
            self.view_box.setRange(QRectF(min_x, min_y, max_x - min_x,
                                          max_y - min_y),
                                   padding=0.025)
            self.view_box.init_history()
            self.view_box.tag_history()
        [min_x, max_x], [min_y, max_y] = self.view_box.viewRange()

        for axis, name, index in (("bottom", attr_x, index_x), ("left", attr_y,
                                                                index_y)):
            self.set_axis_title(axis, name)
            var = self.domain[index]
            if var.is_discrete:
                self.set_labels(axis, get_variable_values_sorted(var))
            else:
                self.set_labels(axis, None)

        color_data, brush_data = self.compute_colors()
        color_data_sel, brush_data_sel = self.compute_colors_sel()
        size_data = self.compute_sizes()
        shape_data = self.compute_symbols()

        if self.should_draw_density():
            rgb_data = [pen.color().getRgb()[:3] for pen in color_data]
            self.density_img = classdensity.class_density_image(
                min_x, max_x, min_y, max_y, self.resolution, x_data, y_data,
                rgb_data)
            self.plot_widget.addItem(self.density_img)

        data_indices = np.flatnonzero(self.valid_data)
        if len(data_indices) != self.original_data.shape[1]:
            self.master.Information.missing_coords(self.shown_x.name,
                                                   self.shown_y.name)

        self.scatterplot_item = ScatterPlotItem(x=x_data,
                                                y=y_data,
                                                data=data_indices,
                                                symbol=shape_data,
                                                size=size_data,
                                                pen=color_data,
                                                brush=brush_data)
        self.scatterplot_item_sel = ScatterPlotItem(x=x_data,
                                                    y=y_data,
                                                    data=data_indices,
                                                    symbol=shape_data,
                                                    size=size_data +
                                                    SELECTION_WIDTH,
                                                    pen=color_data_sel,
                                                    brush=brush_data_sel)
        self.plot_widget.addItem(self.scatterplot_item_sel)
        self.plot_widget.addItem(self.scatterplot_item)

        self.scatterplot_item.selected_points = []
        self.scatterplot_item.sigClicked.connect(self.select_by_click)

        self.update_labels()
        self.make_legend()
        self.plot_widget.replot()
Ejemplo n.º 21
0
        def draw_data(attr_list, x0_x1, y0_y1, side, condition,
                      total_attrs, used_attrs, used_vals, attr_vals=""):
            x0, x1 = x0_x1
            y0, y1 = y0_y1
            if conditionaldict[attr_vals] == 0:
                add_rect(x0, x1, y0, y1, "",
                         used_attrs, used_vals, attr_vals=attr_vals)
                # store coordinates for later drawing of labels
                draw_text(side, attr_list[0], (x0, x1), (y0, y1), total_attrs,
                          used_attrs, used_vals, attr_vals)
                return

            attr = attr_list[0]
            # how much smaller rectangles do we draw
            edge = len(attr_list) * spacing
            values = get_variable_values_sorted(attr)
            if side % 2:
                values = values[::-1]  # reverse names if necessary

            if side % 2 == 0:  # we are drawing on the x axis
                # remove the space needed for separating different attr. values
                whole = max(0, (x1 - x0) - edge * (len(values) - 1))
                if whole == 0:
                    edge = (x1 - x0) / float(len(values) - 1)
            else:  # we are drawing on the y axis
                whole = max(0, (y1 - y0) - edge * (len(values) - 1))
                if whole == 0:
                    edge = (y1 - y0) / float(len(values) - 1)

            total, counts = get_counts(attr_vals, values)

            # when visualizing the third attribute and the first attribute has
            # the last value, reverse the order in which the boxes are drawn;
            # otherwise, if the last cell, nearest to the labels of the fourth
            # attribute, is empty, we wouldn't be able to position the labels
            valrange = list(range(len(values)))
            if len(attr_list + used_attrs) == 4 and len(used_attrs) == 2:
                attr1values = get_variable_values_sorted(used_attrs[0])
                if used_vals[0] == attr1values[-1]:
                    valrange = valrange[::-1]

            for i in valrange:
                start = i * edge + whole * float(sum(counts[:i]) / total)
                end = i * edge + whole * float(sum(counts[:i + 1]) / total)
                val = values[i]
                htmlval = to_html(val)
                newattrvals = attr_vals + "-" + val if attr_vals else val

                tooltip = "{}&nbsp;&nbsp;&nbsp;&nbsp;{}: <b>{}</b><br/>".format(
                    condition, attr.name, htmlval)
                attrs = used_attrs + [attr]
                vals = used_vals + [val]
                args = attrs, vals, newattrvals
                if side % 2 == 0:  # if we are moving horizontally
                    if len(attr_list) == 1:
                        add_rect(x0 + start, x0 + end, y0, y1, tooltip, *args)
                    else:
                        draw_data(
                            attr_list[1:], (x0 + start, x0 + end), (y0, y1),
                            side + 1, tooltip, total_attrs, *args)
                else:
                    if len(attr_list) == 1:
                        add_rect(x0, x1, y0 + start, y0 + end, tooltip, *args)
                    else:
                        draw_data(
                            attr_list[1:], (x0, x1), (y0 + start, y0 + end),
                            side + 1, tooltip, total_attrs, *args)
            draw_text(side, attr_list[0], (x0, x1), (y0, y1),
                      total_attrs, used_attrs, used_vals, attr_vals)
Ejemplo n.º 22
0
        def add_rect(x0, x1, y0, y1, condition="",
                     used_attrs=[], used_vals=[], attr_vals=""):
            area_index = len(self.areas)
            if x0 == x1:
                x1 += 1
            if y0 == y1:
                y1 += 1

            # rectangles of width and height 1 are not shown - increase
            if x1 - x0 + y1 - y0 == 2:
                y1 += 1

            if class_var and class_var.is_discrete:
                colors = [QColor(*col) for col in class_var.colors]
            else:
                colors = None

            def select_area(_, ev):
                self.select_area(area_index, ev)

            def rect(x, y, w, h, z, pen_color=None, brush_color=None, **args):
                if pen_color is None:
                    return CanvasRectangle(
                            self.canvas, x, y, w, h, z=z, onclick=select_area,
                            **args)
                if brush_color is None:
                    brush_color = pen_color
                return CanvasRectangle(
                        self.canvas, x, y, w, h, pen_color, brush_color, z=z,
                        onclick=select_area, **args)

            def line(x1, y1, x2, y2):
                r = QGraphicsLineItem(x1, y1, x2, y2, None)
                self.canvas.addItem(r)
                r.setPen(QPen(Qt.white, 2))
                r.setZValue(30)

            outer_rect = rect(x0, y0, x1 - x0, y1 - y0, 30)
            self.areas.append((used_attrs, used_vals, outer_rect))
            if not conditionaldict[attr_vals]:
                return

            if self.interior_coloring == self.PEARSON:
                s = sum(apriori_dists[0])
                expected = s * reduce(
                        mul,
                        (apriori_dists[i][used_vals[i]] / float(s)
                         for i in range(len(used_vals))))
                actual = conditionaldict[attr_vals]
                pearson = (actual - expected) / sqrt(expected)
                if pearson == 0:
                    ind = 0
                else:
                    ind = max(0, min(int(log(abs(pearson), 2)), 3))
                color = [self.RED_COLORS, self.BLUE_COLORS][pearson > 0][ind]
                rect(x0, y0, x1 - x0, y1 - y0, -20, color)
                outer_rect.setToolTip(
                        condition + "<hr/>" +
                        "Expected instances: %.1f<br>"
                        "Actual instances: %d<br>"
                        "Standardized (Pearson) residual: %.1f" %
                        (expected, conditionaldict[attr_vals], pearson))
            else:
                cls_values = get_variable_values_sorted(class_var)
                prior = get_distribution(data, class_var.name)
                total = 0
                for i, value in enumerate(cls_values):
                    val = conditionaldict[attr_vals + "-" + value]
                    if val == 0:
                        continue
                    if i == len(cls_values) - 1:
                        v = y1 - y0 - total
                    else:
                        v = ((y1 - y0) * val) / conditionaldict[attr_vals]
                    rect(x0, y0 + total, x1 - x0, v, -20, colors[i])
                    total += v

                if self.use_boxes and \
                        abs(x1 - x0) > bar_width and \
                        abs(y1 - y0) > bar_width:
                    total = 0
                    line(x0 + bar_width, y0, x0 + bar_width, y1)
                    n = sum(prior)
                    for i, (val, color) in enumerate(zip(prior, colors)):
                        if i == len(prior) - 1:
                            h = y1 - y0 - total
                        else:
                            h = (y1 - y0) * val / n
                        rect(x0, y0 + total, bar_width, h, 20, color)
                        total += h

                if conditionalsubsetdict:
                    if conditionalsubsetdict[attr_vals]:
                        counts = [conditionalsubsetdict[attr_vals + "-" + val]
                                  for val in cls_values]
                        if sum(counts) == 1:
                            rect(x0 - 2, y0 - 2, x1 - x0 + 5, y1 - y0 + 5, -550,
                                 colors[counts.index(1)], Qt.white,
                                 penWidth=2, penStyle=Qt.DashLine)
                        if self.subset_data is not None:
                            line(x1 - bar_width, y0, x1 - bar_width, y1)
                            total = 0
                            n = conditionalsubsetdict[attr_vals]
                            if n:
                                for i, (cls, color) in \
                                        enumerate(zip(cls_values, colors)):
                                    val = conditionalsubsetdict[
                                        attr_vals + "-" + cls]
                                    if val == 0:
                                        continue
                                    if i == len(prior) - 1:
                                        v = y1 - y0 - total
                                    else:
                                        v = ((y1 - y0) * val) / n
                                    rect(x1 - bar_width, y0 + total,
                                         bar_width, v, 15, color)
                                    total += v

                actual = [conditionaldict[attr_vals + "-" + cls_values[i]]
                          for i in range(len(prior))]
                n_actual = sum(actual)
                if n_actual > 0:
                    apriori = [prior[key] for key in cls_values]
                    n_apriori = sum(apriori)
                    text = "<br/>".join(
                            "<b>%s</b>: %d / %.1f%% (Expected %.1f / %.1f%%)" %
                            (cls, act, 100.0 * act / n_actual,
                             apr / n_apriori * n_actual, 100.0 * apr / n_apriori
                             )
                            for cls, act, apr in zip(cls_values, actual, apriori
                                                     ))
                else:
                    text = ""
                outer_rect.setToolTip(
                        "{}<hr>Instances: {}<br><br>{}".format(
                                condition, n_actual, text[:-4]))
Ejemplo n.º 23
0
        def draw_text(side, attr, x0_x1, y0_y1,
                      total_attrs, used_attrs, used_vals, attr_vals):
            x0, x1 = x0_x1
            y0, y1 = y0_y1
            if side in drawn_sides:
                return

            # the text on the right will be drawn when we are processing
            # visualization of the last value of the first attribute
            if side == 3:
                attr1values = \
                    get_variable_values_sorted(data.domain[used_attrs[0]])
                if used_vals[0] != attr1values[-1]:
                    return

            if not conditionaldict[attr_vals]:
                if side not in draw_positions:
                    draw_positions[side] = (x0, x1, y0, y1)
                return
            else:
                if side in draw_positions:
                    # restore the positions of attribute values and name
                    (x0, x1, y0, y1) = draw_positions[side]

            drawn_sides.add(side)

            values = get_variable_values_sorted(data.domain[attr])
            if side % 2:
                values = values[::-1]

            spaces = spacing * (total_attrs - side) * (len(values) - 1)
            width = x1 - x0 - spaces * (side % 2 == 0)
            height = y1 - y0 - spaces * (side % 2 == 1)

            # calculate position of first attribute
            currpos = 0

            if attr_vals == "":
                counts = [conditionaldict.get(val, 1) for val in values]
            else:
                counts = [conditionaldict.get(attr_vals + "-" + val, 1)
                          for val in values]
            total = sum(counts)
            if total == 0:
                counts = [1] * len(values)
                total = sum(counts)

            aligns = [Qt.AlignTop | Qt.AlignHCenter,
                      Qt.AlignRight | Qt.AlignVCenter,
                      Qt.AlignBottom | Qt.AlignHCenter,
                      Qt.AlignLeft | Qt.AlignVCenter]
            align = aligns[side]
            for i in range(len(values)):
                val = values[i]
                perc = counts[i] / float(total)
                if distributiondict[val] != 0:
                    if side == 0:
                        CanvasText(self.canvas, str(val),
                                   x0 + currpos + width * 0.5 * perc,
                                   y1 + self.ATTR_VAL_OFFSET, align)
                    elif side == 1:
                        CanvasText(self.canvas, str(val),
                                   x0 - self.ATTR_VAL_OFFSET,
                                   y0 + currpos + height * 0.5 * perc, align)
                    elif side == 2:
                        CanvasText(self.canvas, str(val),
                                   x0 + currpos + width * perc * 0.5,
                                   y0 - self.ATTR_VAL_OFFSET, align)
                    else:
                        CanvasText(self.canvas, str(val),
                                   x1 + self.ATTR_VAL_OFFSET,
                                   y0 + currpos + height * 0.5 * perc, align)

                if side % 2 == 0:
                    currpos += perc * width + spacing * (total_attrs - side)
                else:
                    currpos += perc * height + spacing * (total_attrs - side)

            if side == 0:
                CanvasText(
                        self.canvas, attr,
                        x0 + (x1 - x0) / 2,
                        y1 + self.ATTR_VAL_OFFSET +
                        self.ATTR_NAME_OFFSET,
                        align, bold=1)
            elif side == 1:
                CanvasText(
                        self.canvas, attr,
                        x0 - max_ylabel_w1 - self.ATTR_VAL_OFFSET,
                        y0 + (y1 - y0) / 2,
                        align, bold=1, vertical=True)
            elif side == 2:
                CanvasText(
                        self.canvas, attr,
                        x0 + (x1 - x0) / 2,
                        y0 - self.ATTR_VAL_OFFSET -
                        self.ATTR_NAME_OFFSET,
                        align, bold=1)
            else:
                CanvasText(
                        self.canvas, attr,
                        x1 + max_ylabel_w2 + self.ATTR_VAL_OFFSET,
                        y0 + (y1 - y0) / 2,
                        align, bold=1, vertical=True)
Ejemplo n.º 24
0
        def draw_data(attr_list, x0_x1, y0_y1, side, condition,
                      total_attrs, used_attrs=[], used_vals=[],
                      attr_vals=""):
            x0, x1 = x0_x1
            y0, y1 = y0_y1
            if conditionaldict[attr_vals] == 0:
                add_rect(x0, x1, y0, y1, "",
                         used_attrs, used_vals, attr_vals=attr_vals)
                # store coordinates for later drawing of labels
                draw_text(side, attr_list[0], (x0, x1), (y0, y1), total_attrs,
                          used_attrs, used_vals, attr_vals)
                return

            attr = attr_list[0]
            # how much smaller rectangles do we draw
            edge = len(attr_list) * spacing
            values = get_variable_values_sorted(data.domain[attr])
            if side % 2:
                values = values[::-1]  # reverse names if necessary

            if side % 2 == 0:  # we are drawing on the x axis
                # remove the space needed for separating different attr. values
                whole = max(0, (x1 - x0) - edge * (
                    len(values) - 1))
                if whole == 0:
                    edge = (x1 - x0) / float(len(values) - 1)
            else:  # we are drawing on the y axis
                whole = max(0, (y1 - y0) - edge * (len(values) - 1))
                if whole == 0:
                    edge = (y1 - y0) / float(len(values) - 1)

            if attr_vals == "":
                counts = [conditionaldict[val] for val in values]
            else:
                counts = [conditionaldict[attr_vals + "-" + val]
                          for val in values]
            total = sum(counts)

            # if we are visualizing the third attribute and the first attribute
            # has the last value, we have to reverse the order in which the
            # boxes will be drawn otherwise, if the last cell, nearest to the
            # labels of the fourth attribute, is empty, we wouldn't be able to
            # position the labels
            valrange = list(range(len(values)))
            if len(attr_list + used_attrs) == 4 and len(used_attrs) == 2:
                attr1values = get_variable_values_sorted(
                        data.domain[used_attrs[0]])
                if used_vals[0] == attr1values[-1]:
                    valrange = valrange[::-1]

            for i in valrange:
                start = i * edge + whole * float(sum(counts[:i]) / total)
                end = i * edge + whole * float(sum(counts[:i + 1]) / total)
                val = values[i]
                htmlval = to_html(val)
                if attr_vals != "":
                    newattrvals = attr_vals + "-" + val
                else:
                    newattrvals = val

                tooltip = condition + 4 * "&nbsp;" + attr + \
                    ": <b>" + htmlval + "</b><br>"
                attrs = used_attrs + [attr]
                vals = used_vals + [val]
                common_args = attrs, vals, newattrvals
                if side % 2 == 0:  # if we are moving horizontally
                    if len(attr_list) == 1:
                        add_rect(x0 + start, x0 + end, y0, y1,
                                 tooltip, *common_args)
                    else:
                        draw_data(attr_list[1:], (x0 + start, x0 + end),
                                  (y0, y1), side + 1,
                                  tooltip, total_attrs, *common_args)
                else:
                    if len(attr_list) == 1:
                        add_rect(x0, x1, y0 + start, y0 + end,
                                 tooltip, *common_args)
                    else:
                        draw_data(attr_list[1:], (x0, x1),
                                  (y0 + start, y0 + end), side + 1,
                                  tooltip, total_attrs, *common_args)

            draw_text(side, attr_list[0], (x0, x1), (y0, y1),
                      total_attrs, used_attrs, used_vals, attr_vals)
Ejemplo n.º 25
0
    def draw_distributions(self):
        """Draw distributions with discrete attributes"""
        if not (self.show_distributions and self.data is not None
                and self.domain.has_discrete_class):
            return
        class_count = len(self.domain.class_var.values)
        class_ = self.domain.class_var

        # we create a hash table of possible class values (happens only if we have a discrete class)
        if self.domain_contingencies is None:
            self.domain_contingencies = dict(
                zip([attr for attr in self.domain if attr.is_discrete],
                    get_contingencies(self.data, skipContinuous=True)))
            self.domain_contingencies[class_] = get_contingency(
                self.data, class_, class_)

        max_count = max([
            contingency.max()
            for contingency in self.domain_contingencies.values()
        ] or [1])
        sorted_class_values = get_variable_values_sorted(self.domain.class_var)

        for axis_idx, attr_idx in enumerate(self.attribute_indices):
            attr = self.domain[attr_idx]
            if attr.is_discrete:
                continue

            contingency = self.domain_contingencies[attr]
            attr_len = len(attr.values)

            # we create a hash table of variable values and their indices
            sorted_variable_values = get_variable_values_sorted(attr)

            # create bar curve
            for j in range(attr_len):
                attribute_value = sorted_variable_values[j]
                value_count = contingency[:, attribute_value]

                for i in range(class_count):
                    class_value = sorted_class_values[i]

                    color = QColor(*self.colors[i])
                    color.setAlpha(self.alpha_value)

                    width = float(
                        value_count[class_value] * 0.5) / float(max_count)
                    y_off = float(1.0 + 2.0 * j) / float(2 * attr_len)
                    height = 0.7 / float(class_count * attr_len)

                    y_low_bottom = y_off + float(
                        class_count * height) / 2.0 - i * height
                    curve = PolygonCurve(QPen(color),
                                         QBrush(color),
                                         xData=[
                                             axis_idx, axis_idx + width,
                                             axis_idx + width, axis_idx
                                         ],
                                         yData=[
                                             y_low_bottom, y_low_bottom,
                                             y_low_bottom - height,
                                             y_low_bottom - height
                                         ],
                                         tooltip=attr.name)
                    curve.attach(self)
Ejemplo n.º 26
0
        def draw_text(side, attr, x0_x1, y0_y1, total_attrs, used_attrs,
                      used_vals, attr_vals):
            x0, x1 = x0_x1
            y0, y1 = y0_y1
            if side in drawn_sides:
                return

            # the text on the right will be drawn when we are processing
            # visualization of the last value of the first attribute
            if side == 3:
                attr1values = \
                    get_variable_values_sorted(data.domain[used_attrs[0]])
                if used_vals[0] != attr1values[-1]:
                    return

            if not conditionaldict[attr_vals]:
                if side not in draw_positions:
                    draw_positions[side] = (x0, x1, y0, y1)
                return
            else:
                if side in draw_positions:
                    # restore the positions of attribute values and name
                    (x0, x1, y0, y1) = draw_positions[side]

            drawn_sides.add(side)

            values = get_variable_values_sorted(data.domain[attr])
            if side % 2:
                values = values[::-1]

            spaces = spacing * (total_attrs - side) * (len(values) - 1)
            width = x1 - x0 - spaces * (side % 2 == 0)
            height = y1 - y0 - spaces * (side % 2 == 1)

            # calculate position of first attribute
            currpos = 0

            if attr_vals == "":
                counts = [conditionaldict.get(val, 1) for val in values]
            else:
                counts = [
                    conditionaldict.get(attr_vals + "-" + val, 1)
                    for val in values
                ]
            total = sum(counts)
            if total == 0:
                counts = [1] * len(values)
                total = sum(counts)

            aligns = [
                Qt.AlignTop | Qt.AlignHCenter, Qt.AlignRight | Qt.AlignVCenter,
                Qt.AlignBottom | Qt.AlignHCenter,
                Qt.AlignLeft | Qt.AlignVCenter
            ]
            align = aligns[side]
            for i in range(len(values)):
                val = values[i]
                perc = counts[i] / float(total)
                if distributiondict[val] != 0:
                    if side == 0:
                        CanvasText(self.canvas, str(val),
                                   x0 + currpos + width * 0.5 * perc,
                                   y1 + self.ATTR_VAL_OFFSET, align)
                    elif side == 1:
                        CanvasText(self.canvas, str(val),
                                   x0 - self.ATTR_VAL_OFFSET,
                                   y0 + currpos + height * 0.5 * perc, align)
                    elif side == 2:
                        CanvasText(self.canvas, str(val),
                                   x0 + currpos + width * perc * 0.5,
                                   y0 - self.ATTR_VAL_OFFSET, align)
                    else:
                        CanvasText(self.canvas, str(val),
                                   x1 + self.ATTR_VAL_OFFSET,
                                   y0 + currpos + height * 0.5 * perc, align)

                if side % 2 == 0:
                    currpos += perc * width + spacing * (total_attrs - side)
                else:
                    currpos += perc * height + spacing * (total_attrs - side)

            if side == 0:
                CanvasText(self.canvas,
                           attr,
                           x0 + (x1 - x0) / 2,
                           y1 + self.ATTR_VAL_OFFSET + self.ATTR_NAME_OFFSET,
                           align,
                           bold=1)
            elif side == 1:
                CanvasText(self.canvas,
                           attr,
                           x0 - max_ylabel_w1 - self.ATTR_VAL_OFFSET,
                           y0 + (y1 - y0) / 2,
                           align,
                           bold=1,
                           vertical=True)
            elif side == 2:
                CanvasText(self.canvas,
                           attr,
                           x0 + (x1 - x0) / 2,
                           y0 - self.ATTR_VAL_OFFSET - self.ATTR_NAME_OFFSET,
                           align,
                           bold=1)
            else:
                CanvasText(self.canvas,
                           attr,
                           x1 + max_ylabel_w2 + self.ATTR_VAL_OFFSET,
                           y0 + (y1 - y0) / 2,
                           align,
                           bold=1,
                           vertical=True)
Ejemplo n.º 27
0
        def draw_text(side, attr, x0_x1, y0_y1,
                      total_attrs, used_attrs, used_vals, attr_vals):
            x0, x1 = x0_x1
            y0, y1 = y0_y1
            if side in drawn_sides:
                return

            # the text on the right will be drawn when we are processing
            # visualization of the last value of the first attribute
            if side == 3:
                attr1values = get_variable_values_sorted(used_attrs[0])
                if used_vals[0] != attr1values[-1]:
                    return

            if not conditionaldict[attr_vals]:
                if side not in draw_positions:
                    draw_positions[side] = (x0, x1, y0, y1)
                return
            else:
                if side in draw_positions:
                    # restore the positions of attribute values and name
                    (x0, x1, y0, y1) = draw_positions[side]

            drawn_sides.add(side)

            values = get_variable_values_sorted(attr)
            if side % 2:
                values = values[::-1]

            spaces = spacing * (total_attrs - side) * (len(values) - 1)
            width = x1 - x0 - spaces * (side % 2 == 0)
            height = y1 - y0 - spaces * (side % 2 == 1)

            # calculate position of first attribute
            currpos = 0
            total, counts = get_counts(attr_vals, values)
            aligns = [Qt.AlignTop | Qt.AlignHCenter,
                      Qt.AlignRight | Qt.AlignVCenter,
                      Qt.AlignBottom | Qt.AlignHCenter,
                      Qt.AlignLeft | Qt.AlignVCenter]
            align = aligns[side]
            for i, val in enumerate(values):
                if distributiondict[val] != 0:
                    perc = counts[i] / float(total)
                    xs = [x0 + currpos + width * 0.5 * perc,
                          x0 - self.ATTR_VAL_OFFSET,
                          x0 + currpos + width * perc * 0.5,
                          x1 + self.ATTR_VAL_OFFSET]
                    ys = [y1 + self.ATTR_VAL_OFFSET,
                          y0 + currpos + height * 0.5 * perc,
                          y0 - self.ATTR_VAL_OFFSET,
                          y0 + currpos + height * 0.5 * perc]
                    CanvasText(self.canvas, val, xs[side], ys[side], align)
                    space = height if side % 2 else width
                    currpos += perc * space + spacing * (total_attrs - side)

            xs = [x0 + (x1 - x0) / 2,
                  x0 - max_ylabel_w1 - self.ATTR_VAL_OFFSET,
                  x0 + (x1 - x0) / 2,
                  x1 + max_ylabel_w2 + self.ATTR_VAL_OFFSET]
            ys = [y1 + self.ATTR_VAL_OFFSET + self.ATTR_NAME_OFFSET,
                  y0 + (y1 - y0) / 2,
                  y0 - self.ATTR_VAL_OFFSET - self.ATTR_NAME_OFFSET,
                  y0 + (y1 - y0) / 2]
            CanvasText(
                self.canvas, attr.name, xs[side], ys[side], align, bold=True,
                vertical=side % 2)
Ejemplo n.º 28
0
    def update_data(self, attr_x, attr_y, reset_view=True):
        self.master.Warning.missing_coords.clear()
        self.master.Information.missing_coords.clear()
        self._clear_plot_widget()

        if self.shown_y != attr_y:
            # 'reset' the axis text width estimation. Without this the left
            # axis tick labels space only ever expands
            yaxis = self.plot_widget.getAxis("left")
            yaxis.textWidth = 30

        self.shown_x, self.shown_y = attr_x, attr_y
        if attr_x not in self.data.domain or attr_y not in self.data.domain:
            data = self.sparse_to_dense()
            self.set_data(data)

        if self.jittered_data is None or not len(self.jittered_data):
            self.valid_data = None
        else:
            self.valid_data = self.get_valid_list([attr_x, attr_y])
            if not np.any(self.valid_data):
                self.valid_data = None
        if self.valid_data is None:
            self.selection = None
            self.n_points = 0
            self.master.Warning.missing_coords(
                self.shown_x.name, self.shown_y.name)
            return

        x_data, y_data = self.get_xy_data_positions(
            attr_x, attr_y, self.valid_data)
        self.n_points = len(x_data)

        if reset_view:
            min_x, max_x = np.nanmin(x_data), np.nanmax(x_data)
            min_y, max_y = np.nanmin(y_data), np.nanmax(y_data)
            self.view_box.setRange(
                QRectF(min_x, min_y, max_x - min_x, max_y - min_y),
                padding=0.025)
            self.view_box.init_history()
            self.view_box.tag_history()
        [min_x, max_x], [min_y, max_y] = self.view_box.viewRange()

        for axis, var in (("bottom", attr_x), ("left", attr_y)):
            self.set_axis_title(axis, var)
            if var.is_discrete:
                self.set_labels(axis, get_variable_values_sorted(var))
            else:
                self.set_labels(axis, None)

        color_data, brush_data = self.compute_colors()
        color_data_sel, brush_data_sel = self.compute_colors_sel()
        size_data = self.compute_sizes()
        shape_data = self.compute_symbols()

        if self.should_draw_density():
            rgb_data = [pen.color().getRgb()[:3] for pen in color_data]
            self.density_img = classdensity.class_density_image(
                min_x, max_x, min_y, max_y, self.resolution,
                x_data, y_data, rgb_data)
            self.plot_widget.addItem(self.density_img)

        self.data_indices = np.flatnonzero(self.valid_data)
        if len(self.data_indices) != len(self.data):
            self.master.Information.missing_coords(
                self.shown_x.name, self.shown_y.name)

        self.scatterplot_item = ScatterPlotItem(
            x=x_data, y=y_data, data=self.data_indices,
            symbol=shape_data, size=size_data, pen=color_data, brush=brush_data
        )
        self.scatterplot_item_sel = ScatterPlotItem(
            x=x_data, y=y_data, data=self.data_indices,
            symbol=shape_data, size=size_data + SELECTION_WIDTH,
            pen=color_data_sel, brush=brush_data_sel
        )
        self.plot_widget.addItem(self.scatterplot_item_sel)
        self.plot_widget.addItem(self.scatterplot_item)

        self.scatterplot_item.selected_points = []
        self.scatterplot_item.sigClicked.connect(self.select_by_click)
        if self.show_reg_line:
            _x_data = self.data.get_column_view(self.shown_x)[0]
            _y_data = self.data.get_column_view(self.shown_y)[0]
            _x_data = _x_data[self.valid_data]
            _y_data = _y_data[self.valid_data]
            assert _x_data.size
            assert _y_data.size
            self.draw_regression_line(
                _x_data, _y_data, np.min(_x_data), np.max(_y_data))

        self.update_labels()
        self.make_legend()
        self.plot_widget.replot()
Ejemplo n.º 29
0
    def update_data(self, attr_x, attr_y, reset_view=True):
        self.master.Warning.missing_coords.clear()
        self.master.Information.missing_coords.clear()
        self._clear_plot_widget()

        if self.shown_y != attr_y:
            # 'reset' the axis text width estimation. Without this the left
            # axis tick labels space only ever expands
            yaxis = self.plot_widget.getAxis("left")
            yaxis.textWidth = 30

        self.shown_x, self.shown_y = attr_x, attr_y
        if attr_x not in self.data.domain or attr_y not in self.data.domain:
            data = self.sparse_to_dense()
            self.set_data(data)

        if self.jittered_data is None or not len(self.jittered_data):
            self.valid_data = None
        else:
            self.valid_data = self.get_valid_list([attr_x, attr_y])
            if not np.any(self.valid_data):
                self.valid_data = None
        if self.valid_data is None:
            self.selection = None
            self.n_points = 0
            self.master.Warning.missing_coords(self.shown_x.name,
                                               self.shown_y.name)
            return

        x_data, y_data = self.get_xy_data_positions(attr_x, attr_y,
                                                    self.valid_data)
        self.n_points = len(x_data)

        if reset_view:
            min_x, max_x = np.nanmin(x_data), np.nanmax(x_data)
            min_y, max_y = np.nanmin(y_data), np.nanmax(y_data)
            self.view_box.setRange(QRectF(min_x, min_y, max_x - min_x,
                                          max_y - min_y),
                                   padding=0.025)
            self.view_box.init_history()
            self.view_box.tag_history()
        [min_x, max_x], [min_y, max_y] = self.view_box.viewRange()

        for axis, var in (("bottom", attr_x), ("left", attr_y)):
            self.set_axis_title(axis, var)
            if var.is_discrete:
                self.set_labels(axis, get_variable_values_sorted(var))
            else:
                self.set_labels(axis, None)

        color_data, brush_data = self.compute_colors()
        color_data_sel, brush_data_sel = self.compute_colors_sel()
        size_data = self.compute_sizes()
        shape_data = self.compute_symbols()

        if self.should_draw_density():
            rgb_data = [pen.color().getRgb()[:3] for pen in color_data]
            self.density_img = classdensity.class_density_image(
                min_x, max_x, min_y, max_y, self.resolution, x_data, y_data,
                rgb_data)
            self.plot_widget.addItem(self.density_img)

        self.data_indices = np.flatnonzero(self.valid_data)
        if len(self.data_indices) != len(self.data):
            self.master.Information.missing_coords(self.shown_x.name,
                                                   self.shown_y.name)

        self.scatterplot_item = ScatterPlotItem(x=x_data,
                                                y=y_data,
                                                data=self.data_indices,
                                                symbol=shape_data,
                                                size=size_data,
                                                pen=color_data,
                                                brush=brush_data)
        self.scatterplot_item_sel = ScatterPlotItem(x=x_data,
                                                    y=y_data,
                                                    data=self.data_indices,
                                                    symbol=shape_data,
                                                    size=size_data +
                                                    SELECTION_WIDTH,
                                                    pen=color_data_sel,
                                                    brush=brush_data_sel)
        self.plot_widget.addItem(self.scatterplot_item_sel)
        self.plot_widget.addItem(self.scatterplot_item)

        self.scatterplot_item.selected_points = []
        self.scatterplot_item.sigClicked.connect(self.select_by_click)
        if self.show_reg_line:
            _x_data = self.data.get_column_view(self.shown_x)[0]
            _y_data = self.data.get_column_view(self.shown_y)[0]
            _x_data = _x_data[self.valid_data]
            _y_data = _y_data[self.valid_data]
            assert _x_data.size
            assert _y_data.size
            self.draw_regression_line(_x_data, _y_data, np.min(_x_data),
                                      np.max(_y_data))

        self.update_labels()
        self.make_legend()
        self.plot_widget.replot()
Ejemplo n.º 30
0
    def draw_statistics(self):
        """Draw lines that represent standard deviation or quartiles"""
        return # TODO: Implement using BasicStats
        if self.show_statistics and self.data is not None:
            data = []
            domain = self.data.domain
            for attr_idx in self.attribute_indices:
                if not self.domain[attr_idx].is_continuous:
                    data.append([()])
                    continue  # only for continuous attributes

                if not domain.class_var or domain.has_continuous_class:
                    if self.show_statistics == MEANS:
                        m = self.domain_data_stat[attr_idx].mean
                        dev = self.domain_data_stat[attr_idx].var
                        data.append([(m - dev, m, m + dev)])
                    elif self.show_statistics == MEDIAN:
                        data.append([(0, 0, 0)]); continue

                        sorted_array = np.sort(attr_values)
                        if len(sorted_array) > 0:
                            data.append([(sorted_array[int(len(sorted_array) / 4.0)],
                                          sorted_array[int(len(sorted_array) / 2.0)],
                                          sorted_array[int(len(sorted_array) * 0.75)])])
                        else:
                            data.append([(0, 0, 0)])
                else:
                    curr = []
                    class_values = get_variable_values_sorted(self.domain.class_var)
                    class_index = self.domain.index(self.domain.class_var)

                    for c in range(len(class_values)):
                        attr_values = self.data[attr_idx, self.data[class_index] == c]
                        attr_values = attr_values[~np.isnan(attr_values)]

                        if len(attr_values) == 0:
                            curr.append((0, 0, 0))
                            continue
                        if self.show_statistics == MEANS:
                            m = attr_values.mean()
                            dev = attr_values.std()
                            curr.append((m - dev, m, m + dev))
                        elif self.show_statistics == MEDIAN:
                            sorted_array = np.sort(attr_values)
                            curr.append((sorted_array[int(len(attr_values) / 4.0)],
                                         sorted_array[int(len(attr_values) / 2.0)],
                                         sorted_array[int(len(attr_values) * 0.75)]))
                    data.append(curr)

            # draw vertical lines
            for i in range(len(data)):
                for c in range(len(data[i])):
                    if data[i][c] == ():
                        continue
                    x = i - 0.03 * (len(data[i]) - 1) / 2.0 + c * 0.03
                    col = QColor(self.discrete_palette[c])
                    col.setAlpha(self.alpha_value_2)
                    self.add_curve("", col, col, 3, OWCurve.Lines, OWPoint.NoSymbol, xData=[x, x, x],
                                   yData=[data[i][c][0], data[i][c][1], data[i][c][2]], lineWidth=4)
                    self.add_curve("", col, col, 1, OWCurve.Lines, OWPoint.NoSymbol, xData=[x - 0.03, x + 0.03],
                                   yData=[data[i][c][0], data[i][c][0]], lineWidth=4)
                    self.add_curve("", col, col, 1, OWCurve.Lines, OWPoint.NoSymbol, xData=[x - 0.03, x + 0.03],
                                   yData=[data[i][c][1], data[i][c][1]], lineWidth=4)
                    self.add_curve("", col, col, 1, OWCurve.Lines, OWPoint.NoSymbol, xData=[x - 0.03, x + 0.03],
                                   yData=[data[i][c][2], data[i][c][2]], lineWidth=4)

            # draw lines with mean/median values
            if not domain.class_var or domain.has_continuous_class:
                class_count = 1
            else:
                class_count = len(self.domain.class_var.values)
            for c in range(class_count):
                diff = - 0.03 * (class_count - 1) / 2.0 + c * 0.03
                ys = []
                xs = []
                for i in range(len(data)):
                    if data[i] != [()]:
                        ys.append(data[i][c][1])
                        xs.append(i + diff)
                    else:
                        if len(xs) > 1:
                            col = QColor(self.discrete_palette[c])
                            col.setAlpha(self.alpha_value_2)
                            self.add_curve("", col, col, 1, OWCurve.Lines,
                                           OWPoint.NoSymbol, xData=xs, yData=ys, lineWidth=4)
                        xs = []
                        ys = []
                col = QColor(self.discrete_palette[c])
                col.setAlpha(self.alpha_value_2)
                self.add_curve("", col, col, 1, OWCurve.Lines,
                               OWPoint.NoSymbol, xData=xs, yData=ys, lineWidth=4)
Ejemplo n.º 31
0
    def draw_statistics(self):
        """Draw lines that represent standard deviation or quartiles"""
        return  # TODO: Implement using BasicStats
        if self.show_statistics and self.data is not None:
            data = []
            domain = self.data.domain
            for attr_idx in self.attribute_indices:
                if not self.domain[attr_idx].is_continuous:
                    data.append([()])
                    continue  # only for continuous attributes

                if not domain.class_var or domain.has_continuous_class:
                    if self.show_statistics == MEANS:
                        m = self.domain_data_stat[attr_idx].mean
                        dev = self.domain_data_stat[attr_idx].var
                        data.append([(m - dev, m, m + dev)])
                    elif self.show_statistics == MEDIAN:
                        data.append([(0, 0, 0)])
                        continue

                        sorted_array = np.sort(attr_values)
                        if len(sorted_array) > 0:
                            data.append([
                                (sorted_array[int(len(sorted_array) / 4.0)],
                                 sorted_array[int(len(sorted_array) / 2.0)],
                                 sorted_array[int(len(sorted_array) * 0.75)])
                            ])
                        else:
                            data.append([(0, 0, 0)])
                else:
                    curr = []
                    class_values = get_variable_values_sorted(
                        self.domain.class_var)
                    class_index = self.domain.index(self.domain.class_var)

                    for c in range(len(class_values)):
                        attr_values = self.data[attr_idx,
                                                self.data[class_index] == c]
                        attr_values = attr_values[~np.isnan(attr_values)]

                        if len(attr_values) == 0:
                            curr.append((0, 0, 0))
                            continue
                        if self.show_statistics == MEANS:
                            m = attr_values.mean()
                            dev = attr_values.std()
                            curr.append((m - dev, m, m + dev))
                        elif self.show_statistics == MEDIAN:
                            sorted_array = np.sort(attr_values)
                            curr.append(
                                (sorted_array[int(len(attr_values) / 4.0)],
                                 sorted_array[int(len(attr_values) / 2.0)],
                                 sorted_array[int(len(attr_values) * 0.75)]))
                    data.append(curr)

            # draw vertical lines
            for i in range(len(data)):
                for c in range(len(data[i])):
                    if data[i][c] == ():
                        continue
                    x = i - 0.03 * (len(data[i]) - 1) / 2.0 + c * 0.03
                    col = QColor(self.discrete_palette[c])
                    col.setAlpha(self.alpha_value_2)
                    self.add_curve(
                        "",
                        col,
                        col,
                        3,
                        OWCurve.Lines,
                        OWPoint.NoSymbol,
                        xData=[x, x, x],
                        yData=[data[i][c][0], data[i][c][1], data[i][c][2]],
                        lineWidth=4)
                    self.add_curve("",
                                   col,
                                   col,
                                   1,
                                   OWCurve.Lines,
                                   OWPoint.NoSymbol,
                                   xData=[x - 0.03, x + 0.03],
                                   yData=[data[i][c][0], data[i][c][0]],
                                   lineWidth=4)
                    self.add_curve("",
                                   col,
                                   col,
                                   1,
                                   OWCurve.Lines,
                                   OWPoint.NoSymbol,
                                   xData=[x - 0.03, x + 0.03],
                                   yData=[data[i][c][1], data[i][c][1]],
                                   lineWidth=4)
                    self.add_curve("",
                                   col,
                                   col,
                                   1,
                                   OWCurve.Lines,
                                   OWPoint.NoSymbol,
                                   xData=[x - 0.03, x + 0.03],
                                   yData=[data[i][c][2], data[i][c][2]],
                                   lineWidth=4)

            # draw lines with mean/median values
            if not domain.class_var or domain.has_continuous_class:
                class_count = 1
            else:
                class_count = len(self.domain.class_var.values)
            for c in range(class_count):
                diff = -0.03 * (class_count - 1) / 2.0 + c * 0.03
                ys = []
                xs = []
                for i in range(len(data)):
                    if data[i] != [()]:
                        ys.append(data[i][c][1])
                        xs.append(i + diff)
                    else:
                        if len(xs) > 1:
                            col = QColor(self.discrete_palette[c])
                            col.setAlpha(self.alpha_value_2)
                            self.add_curve("",
                                           col,
                                           col,
                                           1,
                                           OWCurve.Lines,
                                           OWPoint.NoSymbol,
                                           xData=xs,
                                           yData=ys,
                                           lineWidth=4)
                        xs = []
                        ys = []
                col = QColor(self.discrete_palette[c])
                col.setAlpha(self.alpha_value_2)
                self.add_curve("",
                               col,
                               col,
                               1,
                               OWCurve.Lines,
                               OWPoint.NoSymbol,
                               xData=xs,
                               yData=ys,
                               lineWidth=4)
Ejemplo n.º 32
0
        def draw_data(attr_list,
                      x0_x1,
                      y0_y1,
                      side,
                      condition,
                      total_attrs,
                      used_attrs=[],
                      used_vals=[],
                      attr_vals=""):
            x0, x1 = x0_x1
            y0, y1 = y0_y1
            if conditionaldict[attr_vals] == 0:
                add_rect(x0,
                         x1,
                         y0,
                         y1,
                         "",
                         used_attrs,
                         used_vals,
                         attr_vals=attr_vals)
                # store coordinates for later drawing of labels
                draw_text(side, attr_list[0], (x0, x1), (y0, y1), total_attrs,
                          used_attrs, used_vals, attr_vals)
                return

            attr = attr_list[0]
            # how much smaller rectangles do we draw
            edge = len(attr_list) * spacing
            values = get_variable_values_sorted(data.domain[attr])
            if side % 2:
                values = values[::-1]  # reverse names if necessary

            if side % 2 == 0:  # we are drawing on the x axis
                # remove the space needed for separating different attr. values
                whole = max(0, (x1 - x0) - edge * (len(values) - 1))
                if whole == 0:
                    edge = (x1 - x0) / float(len(values) - 1)
            else:  # we are drawing on the y axis
                whole = max(0, (y1 - y0) - edge * (len(values) - 1))
                if whole == 0:
                    edge = (y1 - y0) / float(len(values) - 1)

            if attr_vals == "":
                counts = [conditionaldict[val] for val in values]
            else:
                counts = [
                    conditionaldict[attr_vals + "-" + val] for val in values
                ]
            total = sum(counts)

            # if we are visualizing the third attribute and the first attribute
            # has the last value, we have to reverse the order in which the
            # boxes will be drawn otherwise, if the last cell, nearest to the
            # labels of the fourth attribute, is empty, we wouldn't be able to
            # position the labels
            valrange = list(range(len(values)))
            if len(attr_list + used_attrs) == 4 and len(used_attrs) == 2:
                attr1values = get_variable_values_sorted(
                    data.domain[used_attrs[0]])
                if used_vals[0] == attr1values[-1]:
                    valrange = valrange[::-1]

            for i in valrange:
                start = i * edge + whole * float(sum(counts[:i]) / total)
                end = i * edge + whole * float(sum(counts[:i + 1]) / total)
                val = values[i]
                htmlval = to_html(val)
                if attr_vals != "":
                    newattrvals = attr_vals + "-" + val
                else:
                    newattrvals = val

                tooltip = condition + 4 * "&nbsp;" + attr + \
                    ": <b>" + htmlval + "</b><br>"
                attrs = used_attrs + [attr]
                vals = used_vals + [val]
                common_args = attrs, vals, newattrvals
                if side % 2 == 0:  # if we are moving horizontally
                    if len(attr_list) == 1:
                        add_rect(x0 + start, x0 + end, y0, y1, tooltip,
                                 *common_args)
                    else:
                        draw_data(attr_list[1:], (x0 + start, x0 + end),
                                  (y0, y1), side + 1, tooltip, total_attrs,
                                  *common_args)
                else:
                    if len(attr_list) == 1:
                        add_rect(x0, x1, y0 + start, y0 + end, tooltip,
                                 *common_args)
                    else:
                        draw_data(attr_list[1:], (x0, x1),
                                  (y0 + start, y0 + end), side + 1, tooltip,
                                  total_attrs, *common_args)

            draw_text(side, attr_list[0], (x0, x1), (y0, y1), total_attrs,
                      used_attrs, used_vals, attr_vals)