Ejemplo n.º 1
0
def create_data(i):
    data_info = pd.read_csv('./upright_examples.txt')
    depth_dir = './examples/'
    rgb_dir = '/home/paulo/datasets/my3d60/'
    rgb = mpimg.imread(rgb_dir + data_info['input'][i] + '.png')
    random_r = R.from_euler(
        'zyx', [0, data_info['rand_y'][i], data_info['rand_x'][i]],
        degrees=True)
    correction_r = R.from_euler(
        'zyx', [0, data_info['pred_y'][i], data_info['pred_x'][i]],
        degrees=True)

    rgb_random_rot = synthesizeRotation(rgb, random_r.as_matrix())
    rgb_upright = synthesizeRotation(rgb_random_rot,
                                     correction_r.inv().as_matrix())

    pred_depth = np.load(depth_dir + str(i) + '_corrected_output.npy')
    pred_depth_rot = synthesizeRotation(pred_depth, correction_r.as_matrix())

    gt = cv2.imread(
        rgb_dir + data_info['input'][i].replace('color', 'depth') + '.exr',
        cv2.IMREAD_ANYDEPTH)
    gt[gt > 40] = 0

    mpimg.imsave('./upright_vr/' + str(i) + '_rgb_random_rot.png',
                 rgb_random_rot)
    mpimg.imsave('./upright_vr/' + str(i) + '_rgb_upright.png', rgb_upright)
    mpimg.imsave('./upright_vr/' + str(i) + '_rgb_original.png', rgb)
    np.save('./upright_vr/' + str(i) + '_pred_depth_rot.npy', pred_depth_rot)
    np.save('./upright_vr/' + str(i) + '_pred_depth_upright', pred_depth)
    np.save('./upright_vr/' + str(i) + '_gt_depth.npy', gt)
Ejemplo n.º 2
0
def create_data(i):
    data_info = pd.read_csv('./upright_examples.txt')
    depth_dir = './examples/'
    rgb_dir = '/home/paulo/datasets/my3d60/'
    rgb = mpimg.imread(rgb_dir + data_info['input'][i] + '.png')
    random_r = R.from_euler(
        'zxy', [0, data_info['rand_x'][i], data_info['rand_y'][i]],
        degrees=True)
    correction_r = R.from_euler(
        'zxy', [0, data_info['pred_x'][i], data_info['pred_y'][i]],
        degrees=True)

    rgb_random_rot = synthesizeRotation(rgb, random_r.as_matrix())
    rgb_upright = synthesizeRotation(rgb_random_rot,
                                     correction_r.inv().as_matrix())

    upright_output = np.load(depth_dir + str(i) + '_corrected_output.npy')
    rot_output = np.load(depth_dir + str(i) + '_rot_output.npy')

    gt = cv2.imread(
        rgb_dir + data_info['input'][i].replace('color', 'depth') + '.exr',
        cv2.IMREAD_ANYDEPTH)
    gt[gt > 40] = 0

    import matplotlib.pyplot as plt
    import matplotlib.gridspec as gridspec

    plt.figure(figsize=(16, 64))
    gs1 = gridspec.GridSpec(1, 4)
    gs1.update(wspace=0.025, hspace=0.05)  # set the spacing between axes.

    ax1 = plt.subplot(gs1[0])
    plt.axis('off')
    ax1.imshow(rgb_random_rot)
    ax1 = plt.subplot(gs1[1])
    plt.axis('off')
    ax1.imshow(synthesizeRotation(gt, random_r.as_matrix()))
    ax1 = plt.subplot(gs1[2])
    plt.axis('off')
    ax1.imshow(rot_output)
    ax1 = plt.subplot(gs1[3])
    plt.axis('off')
    ax1.imshow(synthesizeRotation(upright_output, correction_r.as_matrix()))

    plt.savefig('upright_vs_omnidepth.png', bbox_inches='tight')
    """
Ejemplo n.º 3
0
def create_data(i):
    data_info = pd.read_csv('./upright_examples.txt')
    depth_dir = './examples/'
    rgb_dir = '/home/paulo/datasets/my3d60/'
    rgb = mpimg.imread(rgb_dir + data_info['input'][i] + '.png')
    random_r = R.from_euler(
        'zyx', [0, data_info['rand_y'][i], data_info['rand_x'][i]],
        degrees=True)
    correction_r = R.from_euler(
        'zyx', [0, data_info['pred_y'][i], data_info['pred_x'][i]],
        degrees=True)

    rgb_random_rot = synthesizeRotation(rgb, random_r.as_matrix())
    rgb_upright = synthesizeRotation(rgb_random_rot,
                                     correction_r.inv().as_matrix())

    upright_output = np.load(depth_dir + str(i) + '_corrected_output.npy')
    rot_output = np.load(depth_dir + str(i) + '_rot_output.npy')
    input_output = np.load(depth_dir + str(i) + '_input_output.npy')

    gt = cv2.imread(
        rgb_dir + data_info['input'][i].replace('color', 'depth') + '.exr',
        cv2.IMREAD_ANYDEPTH)
    gt[gt > 40] = 0

    plt.subplot(1, 3, 1)
    plt.axis('off')
    plt.imshow(rgb)
    plt.subplot(1, 3, 2)
    plt.axis('off')
    plt.imshow(gt)
    plt.subplot(1, 3, 3)
    plt.axis('off')
    plt.imshow(input_output)
    plt.savefig('rectified_vs_rotated_depth_1.png', bbox_inches='tight')
    plt.subplot(1, 3, 1)
    plt.axis('off')
    plt.imshow(rgb_random_rot)
    plt.subplot(1, 3, 2)
    plt.axis('off')
    plt.imshow(synthesizeRotation(gt, random_r.as_matrix()))
    plt.subplot(1, 3, 3)
    plt.axis('off')
    plt.imshow(rot_output)
    plt.savefig('rectified_vs_rotated_depth_2.png', bbox_inches='tight')
Ejemplo n.º 4
0
def create_data(i):
    data_info = pd.read_csv('./upright_examples.txt')
    depth_dir = './examples/'
    rgb_dir = '/home/paulo/datasets/my3d60/'
    rgb = mpimg.imread(rgb_dir + data_info['input'][i] + '.png')
    random_r = R.from_euler(
        'zyx', [0, data_info['rand_y'][i], data_info['rand_x'][i]],
        degrees=True)
    correction_r = R.from_euler(
        'zyx', [0, data_info['pred_y'][i], data_info['pred_x'][i]],
        degrees=True)

    rgb_random_rot = synthesizeRotation(rgb, random_r.as_matrix())
    rgb_upright = synthesizeRotation(rgb_random_rot,
                                     correction_r.inv().as_matrix())

    pred_depth = np.load(depth_dir + str(i) + '_corrected_output.npy')
    pred_depth_rot = synthesizeRotation(pred_depth, correction_r.as_matrix())

    gt = cv2.imread(
        rgb_dir + data_info['input'][i].replace('color', 'depth') + '.exr',
        cv2.IMREAD_ANYDEPTH)
    gt[gt > 40] = 0

    plt.subplot(2, 3, 1)
    plt.imshow(rgb_random_rot)
    plt.subplot(2, 3, 2)
    plt.imshow(rgb_upright)
    plt.subplot(2, 3, 3)
    plt.imshow(rgb)
    plt.subplot(2, 3, 4)
    plt.imshow(pred_depth_rot)
    plt.subplot(2, 3, 5)
    plt.imshow(pred_depth)
    plt.subplot(2, 3, 6)
    plt.imshow(gt)
    plt.show()
Ejemplo n.º 5
0

if __name__ == '__main__':
    samples = 100

    pano = mpimg.imread(
        '/home/paulo/datasets/3d60/Matteport3D/92_fa5f164b48f043c6b2b0bb9e8631a4821_color_0_Left_Down_0.0.png'
    )
    plt.imshow(pano)
    plt.show()
    panos = np.zeros((samples, ) + pano.shape)
    r = R.from_rotvec([0, 0, 0])
    points = fibonacci_sphere(samples)
    for i in range(len(points)):
        az, el, _ = cart2sph(points[i][0], points[i][1], points[i][2])
        panos[i] = synthesizeRotation(pano,
                                      R.from_rotvec([el, 0, az]).as_matrix())

    fig = plt.figure()
    ax = fig.add_subplot(111, projection='3d')
    for point in points:
        ax.scatter(point[0], point[1], point[2], c='r', marker='o')
    plt.show()

    results = pd.read_csv('rotations_results.txt')
    error = np.zeros(100)
    frequency = np.zeros(100)
    for index, row in results.iterrows():
        error[int(row['point'])] += row['abs_rel_error']
        frequency[int(row['point'])] += 1
    error = error / frequency
    def upright_examples(self,
                         checkpoint_path,
                         num_tests,
                         rot_range,
                         device,
                         seed=42):
        print('Evaluating on rotations....')

        # Set seed
        np.random.seed(seed)
        torch.manual_seed(seed)

        # Load the checkpoint to evaluate
        self.load_checkpoint(checkpoint_path, True, True)

        # Put the model in eval mode
        self.network = self.network.eval()

        # print(self.network.module.input0_0.conv.bias)
        # print(self.network.module.input0_0.conv.bias.shape)
        # exit()

        # Reset meter
        self.reset_eval_metrics()

        # Reset output file
        with open('upright_examples.txt', 'w') as output:
            output.write('input,rand_x,rand_y,pred_x,pred_y\n')

        #set upright model
        upright = DenseNetUprightAdjustment()
        up_save_dict = torch.load('best90.pth')
        upright.to(device)
        upright.load_state_dict(up_save_dict['model'])

        aug = Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])

        # Load data
        s = time.time()
        with torch.no_grad():
            for iteration in range(num_tests):
                print('Evaluating {}/{}'.format(iteration, num_tests),
                      end='\r')

                data = iter(self.val_dataloader).next()

                # Parse the data
                inputs, gt, other = self.parse_data(data)

                # Rotate randomly

                rx, ry = np.random.uniform(rot_range[0], rot_range[1], 2)
                random_r = R.from_euler('zxy', [0, rx, ry], degrees=True)

                rot_inputs = synthesizeRotation(
                    np.rollaxis(inputs[0].cpu().data.numpy()[0], 0, 3),
                    random_r.as_matrix())
                rot_inputs = np.expand_dims(np.rollaxis(rot_inputs, 2, 0),
                                            axis=0)
                rot_inputs = [torch.from_numpy(rot_inputs).float().to(device)]

                img = np.rollaxis(rot_inputs[0].cpu().data.numpy()[0], 0,
                                  3) * 255
                img = cv2.resize(img, (442, 221))

                data = {"image": img}
                img = aug(**data)["image"]

                img_pt = torch.from_numpy(img).permute(2, 0, 1)
                img_pt = img_pt.unsqueeze(0).to(device)

                with torch.no_grad():
                    rot = upright(img_pt)

                rot = (float(rot[0][0] * 90), float(rot[0][1] * 90))

                correction_r = R.from_euler('zxy', [0, rot[0], rot[1]],
                                            degrees=True)
                corrected_inputs = synthesizeRotation(
                    np.rollaxis(rot_inputs[0].cpu().data.numpy()[0], 0, 3),
                    correction_r.inv().as_matrix())
                corrected_inputs = np.expand_dims(np.rollaxis(
                    corrected_inputs, 2, 0),
                                                  axis=0)
                corrected_inputs = [
                    torch.from_numpy(corrected_inputs).float().to(device)
                ]
                """
                plt.subplot(2,3,1)
                plt.imshow(np.rollaxis(inputs[0].cpu().data.numpy()[0], 0, 3))
                plt.subplot(2,3,2)
                plt.imshow(np.rollaxis(rot_inputs[0].cpu().data.numpy()[0], 0, 3))
                plt.subplot(2,3,3)
                plt.imshow(np.rollaxis(corrected_inputs[0].cpu().data.numpy()[0], 0, 3))
                """

                # Run a forward pass
                input_output = self.forward_pass(inputs)
                rot_output = self.forward_pass(rot_inputs)
                corrected_output = self.forward_pass(corrected_inputs)
                """
                plt.subplot(2,3,4)
                plt.imshow(np.squeeze(np.rollaxis(input_output[0].cpu().data.numpy()[0], 0, 3)))
                plt.subplot(2,3,5)
                plt.imshow(np.squeeze(np.rollaxis(rot_output[0].cpu().data.numpy()[0], 0, 3)))
                plt.subplot(2,3,6)
                plt.imshow(np.squeeze(np.rollaxis(corrected_output[0].cpu().data.numpy()[0], 0, 3)))

                plt.show()
                """

                np.save(
                    './examples/' + str(iteration) + '_input_output.npy',
                    np.squeeze(
                        np.rollaxis(input_output[0].cpu().data.numpy()[0], 0,
                                    3)))
                np.save(
                    './examples/' + str(iteration) + '_rot_output.npy',
                    np.squeeze(
                        np.rollaxis(rot_output[0].cpu().data.numpy()[0], 0,
                                    3)))
                np.save(
                    './examples/' + str(iteration) + '_corrected_output.npy',
                    np.squeeze(
                        np.rollaxis(corrected_output[0].cpu().data.numpy()[0],
                                    0, 3)))

                with open('upright_examples.txt', 'a') as output:
                    output.write('{},{},{},{},{}\n'.format(
                        other[0], rx, ry, rot[0], rot[1]))

        # Print a report on the validation results
        print('Evaluation finished in {} seconds'.format(time.time() - s))
    def evaluate_upright(self,
                         checkpoint_path,
                         num_tests,
                         rot_range,
                         device,
                         seed=42):
        print('Evaluating on rotations....')

        # Set seed
        np.random.seed(seed)
        torch.manual_seed(seed)

        # Load the checkpoint to evaluate
        self.load_checkpoint(checkpoint_path, True, True)

        # Put the model in eval mode
        self.network = self.network.eval()

        # print(self.network.module.input0_0.conv.bias)
        # print(self.network.module.input0_0.conv.bias.shape)
        # exit()

        # Reset meter
        self.reset_eval_metrics()

        # Reset output file
        with open('upright_results.txt', 'w') as output:
            output.write(
                'input,rand_x,rand_y,pred_x,pred_y,abs_rel,sq_rel,rms_sq_lin,rms_sq_log,d1,d2,d3\n'
            )

        #set upright model
        upright = DenseNetUprightAdjustment()
        up_save_dict = torch.load('best90.pth')
        upright.to(device)
        upright.load_state_dict(up_save_dict['model'])

        aug = Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])

        # Load data
        s = time.time()
        with torch.no_grad():
            for iteration in range(num_tests):
                print('Evaluating {}/{}'.format(iteration, num_tests),
                      end='\r')

                data = iter(self.val_dataloader).next()

                # Parse the data
                inputs, gt, other = self.parse_data(data)

                # Rotate randomly

                rx, ry = np.random.uniform(rot_range[0], rot_range[1], 2)
                random_r = R.from_euler('zxy', [0, rx, ry], degrees=True)

                inputs = synthesizeRotation(
                    np.rollaxis(inputs[0].cpu().data.numpy()[0], 0, 3),
                    random_r.as_matrix())
                inputs = np.expand_dims(np.rollaxis(inputs, 2, 0), axis=0)
                inputs = [torch.from_numpy(inputs).float().to(device)]
                """
                plt.subplot(1,2,1)
                plt.imshow(np.rollaxis(inputs[0].cpu().data.numpy()[0], 0, 3))
                """

                img = np.rollaxis(inputs[0].cpu().data.numpy()[0], 0, 3) * 255
                img = cv2.resize(img, (442, 221))

                data = {"image": img}
                img = aug(**data)["image"]

                img_pt = torch.from_numpy(img).permute(2, 0, 1)
                img_pt = img_pt.unsqueeze(0).to(device)

                with torch.no_grad():
                    rot = upright(img_pt)

                rot = (float(rot[0][0] * 90), float(rot[0][1] * 90))

                #################################################################
                #if rot[1] > 90:
                #    print(rot[1])
                #################################################################
                correction_r = R.from_euler('zxy', [0, rot[0], rot[1]],
                                            degrees=True)
                inputs = synthesizeRotation(
                    np.rollaxis(inputs[0].cpu().data.numpy()[0], 0, 3),
                    correction_r.inv().as_matrix())
                inputs = np.expand_dims(np.rollaxis(inputs, 2, 0), axis=0)
                inputs = [torch.from_numpy(inputs).float().to(device)]
                """ 
                print('expected: {}, {}'.format(rx, ry))
                print('predicted: {}, {}'.format(rot[0], rot[1]))

                
                plt.subplot(1,2,2)
                plt.imshow(np.rollaxis(inputs[0].cpu().data.numpy()[0], 0, 3))
                plt.show()
                """
                # Run a forward pass
                output = self.forward_pass(inputs)

                output = synthesizeRotation(
                    np.rollaxis(output[0].cpu().data.numpy()[0], 0, 3),
                    correction_r.as_matrix())
                output = np.expand_dims(np.rollaxis(output, 2, 0), axis=0)
                output = [torch.from_numpy(output).float().to(device)]

                output = synthesizeRotation(
                    np.rollaxis(output[0].cpu().data.numpy()[0], 0, 3),
                    random_r.inv().as_matrix())
                output = np.expand_dims(np.rollaxis(output, 2, 0), axis=0)
                output = [torch.from_numpy(output).float().to(device)]

                # Compute the evaluation metrics
                self.compute_eval_metrics(output, gt)

                with open('upright_results.txt', 'a') as output:
                    output.write(
                        '{},{},{},{},{},{},{},{},{},{},{},{}\n'.format(
                            other[0], rx, ry, rot[0], rot[1],
                            self.abs_rel_error_meter.avg,
                            self.sq_rel_error_meter.avg,
                            self.lin_rms_sq_error_meter.avg,
                            self.log_rms_sq_error_meter.avg,
                            self.d1_inlier_meter.avg, self.d2_inlier_meter.avg,
                            self.d3_inlier_meter.avg))

                self.reset_eval_metrics()

                # If trying to save intermediate outputs
                if self.validation_sample_freq >= 0:
                    # Save the intermediate outputs
                    if i % self.validation_sample_freq == 0:
                        self.save_samples(inputs, gt, other, output)

        # Print a report on the validation results
        print('Evaluation finished in {} seconds'.format(time.time() - s))
    def evaluate_rotations(self,
                           checkpoint_path,
                           num_tests,
                           rot_range,
                           device,
                           seed=42):
        print('Evaluating on rotations....')

        # Set seed
        np.random.seed(seed)
        torch.manual_seed(seed)

        # Load the checkpoint to evaluate
        self.load_checkpoint(checkpoint_path, True, True)

        # Put the model in eval mode
        self.network = self.network.eval()

        # print(self.network.module.input0_0.conv.bias)
        # print(self.network.module.input0_0.conv.bias.shape)
        # exit()

        # Reset meter
        self.reset_eval_metrics()

        # Reset output file
        with open('rotations_results.txt', 'w') as output:
            output.write(
                'input,rand_x,rand_y,abs_rel,sq_rel,rms_sq_lin,rms_sq_log,d1,d2,d3\n'
            )

        # Load data
        s = time.time()
        with torch.no_grad():
            for iteration in range(num_tests):
                print('Evaluating {}/{}'.format(iteration, num_tests),
                      end='\r')

                data = iter(self.val_dataloader).next()

                # Parse the data
                inputs, gt, other = self.parse_data(data)

                # Rotate randomly

                rx, ry = np.random.uniform(rot_range[0], rot_range[1], 2)
                random_r = R.from_euler('zxy', [0, rx, ry], degrees=True)

                inputs = synthesizeRotation(
                    np.rollaxis(inputs[0].cpu().data.numpy()[0], 0, 3),
                    random_r.as_matrix())
                inputs = np.expand_dims(np.rollaxis(inputs, 2, 0), axis=0)
                inputs = [torch.from_numpy(inputs).float().to(device)]
                """
                plt.subplot(1,2,1)
                plt.imshow(np.rollaxis(inputs[0].cpu().data.numpy()[0], 0, 3))
                plt.show()
                """

                # Run a forward pass
                output = self.forward_pass(inputs)

                output = synthesizeRotation(
                    np.rollaxis(output[0].cpu().data.numpy()[0], 0, 3),
                    random_r.inv().as_matrix())
                output = np.expand_dims(np.rollaxis(output, 2, 0), axis=0)
                output = [torch.from_numpy(output).float().to(device)]

                # Compute the evaluation metrics
                self.compute_eval_metrics(output, gt)

                with open('rotations_results.txt', 'a') as output:
                    output.write('{},{},{},{},{},{},{},{},{},{}\n'.format(
                        other[0], rx, ry, self.abs_rel_error_meter.avg,
                        self.sq_rel_error_meter.avg,
                        self.lin_rms_sq_error_meter.avg,
                        self.log_rms_sq_error_meter.avg,
                        self.d1_inlier_meter.avg, self.d2_inlier_meter.avg,
                        self.d3_inlier_meter.avg))

                #self.reset_eval_metrics()

                # If trying to save intermediate outputs
                if self.validation_sample_freq >= 0:
                    # Save the intermediate outputs
                    if i % self.validation_sample_freq == 0:
                        self.save_samples(inputs, gt, other, output)

        # Print a report on the validation results
        print('Evaluation finished in {} seconds'.format(time.time() - s))
        self.print_validation_report()
        for j in range(pano.shape[1] // 2 - 5, pano.shape[1] // 2 + 5):
            pano[i, j, 0] = 255
            pano[i, j, 1] = 0
            pano[i, j, 2] = 0

    plt.imshow(pano)
    plt.show()
    panos = np.zeros((samples, ) + pano.shape)
    r = R.from_rotvec([0, 0, 0])
    points = fibonacci_sphere(samples)
    sph_points = [cart2sph(p[0], p[1], p[2]) for p in points]

    for i in range(len(points)):
        az, el, _ = cart2sph(points[i][0], points[i][1], points[i][2])
        #panos[i] = synthesizeRotation(pano, R.from_euler('zyx',[az, 0, el]).as_matrix())
        panos[i] = synthesizeRotation(pano,
                                      R.from_rotvec(points[i]).as_matrix())

    fig = plt.figure()
    ax = fig.add_subplot(111, projection='3d')
    for i in range(samples):
        ax.scatter(points[i][0], points[i][1], points[i][2], c='r', marker='o')
        ax.text(points[i][0] + 0.01,
                points[i][1] + 0.01,
                points[i][2] + 0.01,
                "{0:.4f},{1:.4f}".format(np.rad2deg(sph_points[i][0]),
                                         np.rad2deg(sph_points[i][1])),
                fontsize=9)

        ax.set_xlim3d(-1, 1)
        ax.set_ylim3d(-1, 1)
        ax.set_zlim3d(-1, 1)