Ejemplo n.º 1
0
def plot():
        
    plslp1 = 0.71
    plslp2 = 0.05
    plbrk = 2679.92
    bbt = 1158.99
    bbflxnrm = 0.25
    galfra = 0.89
    elscal = 0.72
    imod = 18.0 
    scahal = 1.0
    
    with open('input.yml', 'r') as f:
        parfile = yaml.load(f)
    
    # Load stuff
    fittingobj = load(parfile)
    wavlen = fittingobj.get_wavlen()
    
    flxcorr = np.array([1.0] * len(wavlen))

    ik0, ik1, ik2 = [], [], []

    zs = np.arange(2,4.01,0.01)
    
    for z in zs:

        print z 

        magtmp, wavlentmp1, fluxtmp1 = model(plslp1,
                                             plslp2,
                                             plbrk,
                                             bbt,
                                             bbflxnrm,
                                             elscal,
                                             scahal,
                                             galfra,
                                             0.0,
                                             imod,
                                             z,
                                             fittingobj,
                                             flxcorr,
                                             parfile)

        ik0.append( magtmp[3] - magtmp[8] )

        magtmp, wavlentmp1, fluxtmp1 = model(plslp1,
                                             plslp2,
                                             plbrk,
                                             bbt,
                                             bbflxnrm,
                                             elscal,
                                             scahal,
                                             galfra,
                                             0.1,
                                             imod,
                                             z,
                                             fittingobj,
                                             flxcorr,
                                             parfile)

        ik1.append( magtmp[3] - magtmp[8] )

        magtmp, wavlentmp1, fluxtmp1 = model(plslp1,
                                             plslp2,
                                             plbrk,
                                             bbt,
                                             bbflxnrm,
                                             elscal,
                                             scahal,
                                             galfra,
                                             0.2,
                                             imod,
                                             z,
                                             fittingobj,
                                             flxcorr,
                                             parfile)

        ik2.append( magtmp[3] - magtmp[8] )                           
 

    datmag, sigma, datz, name, snr = loaddatraw('DR10',
                                                '/data/lc585/SDSS/DR10QSO_AllWISE_matched.v2.fits',
                                                True,
                                                0,
                                                23.0,
                                                15.0,
                                                False,
                                                0.1)

    

    fig = plt.figure(figsize=figsize(0.7))
    ax = fig.add_subplot(111)
    ax.plot(zs,ik0,color='black',linewidth=2, zorder=1)
    ax.plot(zs,ik1,color='black',linewidth=2, zorder=1)
    ax.plot(zs,ik2,color='black',linewidth=2, zorder=1)

    ax.plot(datz,
            datmag[:,3] - datmag[:,8],
            marker='o',
            markersize=2,
            alpha=0.5,
            markeredgecolor='none',
            markerfacecolor='gray',
            linestyle='',
            zorder=0)
    
    textprops = dict(fontsize=10,ha='left',va='center', zorder=1, color='red')

    ax.text(3.5,0.646,'E(B-V) = 0.0', **textprops)
    ax.text(3.5,1.455,'E(B-V) = 0.1', **textprops)
    ax.text(3.5,2.285,'E(B-V) = 0.2', **textprops)

    ax.set_xlim(2,4)
    ax.set_ylim(-2,4)

    ax.set_xlabel(r'Redshift $z$')
    ax.set_ylabel(r'$i - K$')
    
    fig.tight_layout()

    fig.savefig('/home/lc585/thesis/figures/chapter06/ik_versus_z_high_ext.pdf')
    plt.show() 

    return None
Ejemplo n.º 2
0
def plot():

    tab = Table.read('/data/lc585/QSOSED/Results/141203/sample1/out_add.fits')
    tab = tab[tab['BBT_STDERR'] < 200.0]
    tab = tab[tab['BBFLXNRM_STDERR'] < 0.05]
    tab = tab[tab['CHI2_RED'] < 3.0]
    tab = tab[tab['LUM_IR'] > 40.0]  # just gets rid of one annoying point

    mycm = cm.get_cmap('YlOrRd_r')
    mycm.set_under('w')
    cset = brewer2mpl.get_map('YlOrRd', 'sequential', 9).mpl_colors
    mycm = truncate_colormap(mycm, 0.0, 0.8)

    set_plot_properties()  # change style

    fig = plt.figure(figsize=figsize(1.5, 0.7))

    gs = gridspec.GridSpec(9, 13)

    ax1 = fig.add_subplot(gs[1:5, 0:4])
    ax2 = fig.add_subplot(gs[5:, 0:4])
    ax3 = fig.add_subplot(gs[0, 0:4])

    ax4 = fig.add_subplot(gs[1:5, 4:8])
    ax5 = fig.add_subplot(gs[5:, 4:8])
    ax6 = fig.add_subplot(gs[0, 4:8])

    ax7 = fig.add_subplot(gs[1:5, 8:12])
    ax8 = fig.add_subplot(gs[5:, 8:12])
    ax9 = fig.add_subplot(gs[0, 8:12])

    ax10 = fig.add_subplot(gs[1:5, 12])
    ax11 = fig.add_subplot(gs[5:, 12])

    fig.subplots_adjust(wspace=0.0)
    fig.subplots_adjust(hspace=0.0)

    #histogram definition
    xyrange = [[44, 48], [0, 2]]  # data range
    bins = [80, 40]  # number of bins
    thresh = 4  #density threshold

    #data definition
    xdat, ydat = tab['LUM_UV'], tab['RATIO_IR_UV']

    # histogram the data
    hh, locx, locy = histogram2d(xdat, ydat, range=xyrange, bins=bins)
    posx = np.digitize(xdat, locx)
    posy = np.digitize(ydat, locy)

    #select points within the histogram
    ind = (posx > 0) & (posx <= bins[0]) & (posy > 0) & (posy <= bins[1])
    hhsub = hh[posx[ind] - 1,
               posy[ind] - 1]  # values of the histogram where the points are
    xdat1 = xdat[ind][hhsub < thresh]  # low density points
    ydat1 = ydat[ind][hhsub < thresh]
    hh[hh < thresh] = np.nan  # fill the areas with low density by NaNs

    im = ax1.imshow(np.flipud(hh.T),
                    cmap=mycm,
                    extent=np.array(xyrange).flatten(),
                    interpolation='none',
                    aspect='auto',
                    vmin=thresh,
                    vmax=45)

    ax1.scatter(xdat1, ydat1, color=cset[-1])

    ax1.set_ylabel(r'$R_{{\rm NIR}/{\rm UV}}$', fontsize=14)

    ax1.set_ylim(0., 2.)
    ax1.set_xlim(45.25, 47)

    ax3.hist(tab['LUM_UV'], color=cset[-1], bins=20)
    ax3.set_xlim(ax1.get_xlim())
    ax3.set_axis_off()

    #histogram definition
    xyrange = [[44, 48], [200, 2000]]  # data range
    bins = [90, 35]  # number of bins
    thresh = 4  #density threshold

    #data definition
    xdat, ydat = tab['LUM_UV'], tab['BBT']

    # histogram the data
    hh, locx, locy = histogram2d(xdat, ydat, range=xyrange, bins=bins)
    posx = np.digitize(xdat, locx)
    posy = np.digitize(ydat, locy)

    #select points within the histogram
    ind = (posx > 0) & (posx <= bins[0]) & (posy > 0) & (posy <= bins[1])
    hhsub = hh[posx[ind] - 1,
               posy[ind] - 1]  # values of the histogram where the points are
    xdat1 = xdat[ind][hhsub < thresh]  # low density points
    ydat1 = ydat[ind][hhsub < thresh]
    hh[hh < thresh] = np.nan  # fill the areas with low density by NaNs

    im = ax2.imshow(np.flipud(hh.T),
                    cmap=mycm,
                    extent=np.array(xyrange).flatten(),
                    interpolation='none',
                    aspect='auto',
                    vmin=thresh,
                    vmax=45)

    ax2.scatter(xdat1, ydat1, color=cset[-1])

    ax2.set_xlabel(r'Log$_{10} (L_{\rm UV} ({\rm erg/s}))$', fontsize=14)
    ax2.set_ylabel(r'$T_{\mathrm{BB}}$', fontsize=14)

    ax2.set_xlim(ax1.get_xlim())
    ax2.set_ylim(500, 2100)

    plt.tick_params(axis='both', which='major', labelsize=10)

    ax1.get_xaxis().set_ticks([])
    ax2.get_yaxis().set_ticks([600, 800, 1000, 1200, 1400, 1600, 1800, 2000])
    ax2.get_xaxis().set_ticks([45.4, 45.6, 45.8, 46.0, 46.2, 46.4, 46.6, 46.8])

    #############################################################################

    #histogram definition
    xyrange = [[7.5, 10.5], [0, 2]]  # data range
    bins = [30, 30]  # number of bins
    thresh = 4  #density threshold

    #data definition
    xdat, ydat = tab['LOGBH'], tab['RATIO_IR_UV']

    # histogram the data
    hh, locx, locy = histogram2d(xdat, ydat, range=xyrange, bins=bins)
    posx = np.digitize(xdat, locx)
    posy = np.digitize(ydat, locy)

    #select points within the histogram
    ind = (posx > 0) & (posx <= bins[0]) & (posy > 0) & (posy <= bins[1])
    hhsub = hh[posx[ind] - 1,
               posy[ind] - 1]  # values of the histogram where the points are
    xdat1 = xdat[ind][hhsub < thresh]  # low density points
    ydat1 = ydat[ind][hhsub < thresh]
    hh[hh < thresh] = np.nan  # fill the areas with low density by NaNs

    im = ax4.imshow(np.flipud(hh.T),
                    cmap=mycm,
                    extent=np.array(xyrange).flatten(),
                    interpolation='none',
                    aspect='auto',
                    vmin=thresh,
                    vmax=45)

    ax4.scatter(xdat1, ydat1, color=cset[-1])

    ax4.set_ylim(ax1.get_ylim())
    ax4.set_xlim(7.5, 10.5)
    ax4.set_xticklabels([])
    ax4.set_yticklabels([])

    ax6.hist(tab[tab['LOGBH'] > 6]['LOGBH'], color=cset[-1], bins=20)
    ax6.set_xlim(ax4.get_xlim())
    ax6.set_axis_off()

    #histogram definition
    xyrange = [[7.5, 10.5], [500, 2000]]  # data range
    bins = [50, 30]  # number of bins
    thresh = 4  #density threshold

    #data definition
    xdat, ydat = tab['LOGBH'], tab['BBT']

    # histogram the data
    hh, locx, locy = histogram2d(xdat, ydat, range=xyrange, bins=bins)
    posx = np.digitize(xdat, locx)
    posy = np.digitize(ydat, locy)

    #select points within the histogram
    ind = (posx > 0) & (posx <= bins[0]) & (posy > 0) & (posy <= bins[1])
    hhsub = hh[posx[ind] - 1,
               posy[ind] - 1]  # values of the histogram where the points are
    xdat1 = xdat[ind][hhsub < thresh]  # low density points
    ydat1 = ydat[ind][hhsub < thresh]
    hh[hh < thresh] = np.nan  # fill the areas with low density by NaNs

    im = ax5.imshow(np.flipud(hh.T),
                    cmap=mycm,
                    extent=np.array(xyrange).flatten(),
                    interpolation='none',
                    aspect='auto',
                    vmin=thresh,
                    vmax=45)

    ax5.scatter(xdat1, ydat1, color=cset[-1])

    ax5.set_xlabel(r'Log$_{10}$ (Black Hole Mass $M_{\rm BH}$)')

    ax5.set_yticklabels([])

    # ax5.hist(tab['BBT'], orientation='horizontal',color=cset[-1],bins=20)
    # ax5.set_ylim(ax2.get_ylim())
    # ax5.set_axis_off()

    plt.tick_params(axis='both', which='major')

    ax4.set_ylim(ax1.get_ylim())
    ax5.set_ylim(ax2.get_ylim())
    ax5.set_xlim(ax4.get_xlim())

    ax6.hist(tab['LOGBH'][tab['LOGBH'] > 6], color=cset[-1], bins=20)
    ax6.set_xlim(ax5.get_xlim())
    ax6.set_axis_off()

    ######################################################################################

    #histogram definition
    xyrange = [[-2, 0.5], [0, 2]]  # data range
    bins = [30, 30]  # number of bins
    thresh = 4  #density threshold

    #data definition
    xdat, ydat = tab['LOGEDD_RATIO'], tab['RATIO_IR_UV']

    # histogram the data
    hh, locx, locy = histogram2d(xdat, ydat, range=xyrange, bins=bins)
    posx = np.digitize(xdat, locx)
    posy = np.digitize(ydat, locy)

    #select points within the histogram
    ind = (posx > 0) & (posx <= bins[0]) & (posy > 0) & (posy <= bins[1])
    hhsub = hh[posx[ind] - 1,
               posy[ind] - 1]  # values of the histogram where the points are
    xdat1 = xdat[ind][hhsub < thresh]  # low density points
    ydat1 = ydat[ind][hhsub < thresh]
    hh[hh < thresh] = np.nan  # fill the areas with low density by NaNs

    im = ax7.imshow(np.flipud(hh.T),
                    cmap=mycm,
                    extent=np.array(xyrange).flatten(),
                    interpolation='none',
                    aspect='auto',
                    vmin=thresh,
                    vmax=45)
    ax7.scatter(xdat1, ydat1, color=cset[-1])

    ax7.set_ylim(ax1.get_ylim())
    ax7.set_xlim(-2, 0.5)

    ax9.hist(tab[tab['LOGEDD_RATIO'] > -2.5]['LOGEDD_RATIO'],
             color=cset[-1],
             bins=20)
    ax9.set_xlim(ax7.get_xlim())
    ax9.set_axis_off()

    #histogram definition
    xyrange = [[-2, 0.5], [500, 2000]]  # data range
    bins = [50, 30]  # number of bins
    thresh = 4  #density threshold

    #data definition
    xdat, ydat = tab['LOGEDD_RATIO'], tab['BBT']

    # histogram the data
    hh, locx, locy = histogram2d(xdat, ydat, range=xyrange, bins=bins)
    posx = np.digitize(xdat, locx)
    posy = np.digitize(ydat, locy)

    #select points within the histogram
    ind = (posx > 0) & (posx <= bins[0]) & (posy > 0) & (posy <= bins[1])
    hhsub = hh[posx[ind] - 1,
               posy[ind] - 1]  # values of the histogram where the points are
    xdat1 = xdat[ind][hhsub < thresh]  # low density points
    ydat1 = ydat[ind][hhsub < thresh]
    hh[hh < thresh] = np.nan  # fill the areas with low density by NaNs

    im = ax8.imshow(np.flipud(hh.T),
                    cmap=mycm,
                    extent=np.array(xyrange).flatten(),
                    interpolation='none',
                    aspect='auto',
                    vmin=thresh,
                    vmax=45)
    ax8.scatter(xdat1, ydat1, color=cset[-1])

    axcb = fig.add_axes([0.33, 0.05, 0.33, 0.02])
    clb = fig.colorbar(im, cax=axcb, orientation='horizontal')
    clb.set_label('Number of Objects')

    ax8.set_xlabel(r'Log$_{10}$ (Eddington Ratio $\lambda$)')

    ax8.set_ylim(ax2.get_ylim())
    ax8.set_xlim(ax7.get_xlim())

    plt.tick_params(axis='both', which='major')

    ax8.set_yticklabels([])
    ax8.set_xticklabels(['', '-1.5', '-1.0', '-0.5', '0.0', '0.5'])
    ax7.set_yticklabels([])
    ax7.set_xticklabels([])

    ax9.hist(tab['LOGBH'][tab['LOGBH'] > 6], color=cset[-1], bins=20)
    ax9.set_xlim(ax8.get_xlim())
    ax9.set_axis_off()

    ax10.hist(tab['RATIO_IR_UV'],
              orientation='horizontal',
              color=cset[-1],
              bins=np.arange(0, 2, 0.1))
    ax10.set_ylim(ax1.get_ylim())
    ax10.set_axis_off()

    ax11.hist(tab['BBT'], orientation='horizontal', color=cset[-1], bins=20)
    ax11.set_ylim(ax2.get_ylim())
    ax11.set_axis_off()

    s1 = spearmanr(tab[tab['LOGEDD_RATIO'] > -2.5]['LOGEDD_RATIO'],
                   tab[tab['LOGEDD_RATIO'] > -2.5]['RATIO_IR_UV'])[0]
    s2 = spearmanr(tab[tab['LOGBH'] > 6]['LOGBH'],
                   tab[tab['LOGBH'] > 6]['RATIO_IR_UV'])[0]
    s3 = spearmanr(tab['LUM_UV'], tab['RATIO_IR_UV'])[0]
    s4 = spearmanr(tab[tab['LOGEDD_RATIO'] > -2.5]['LOGEDD_RATIO'],
                   tab[tab['LOGEDD_RATIO'] > -2.5]['BBT'])[0]
    s5 = spearmanr(tab[tab['LOGBH'] > 6]['LOGBH'],
                   tab[tab['LOGBH'] > 6]['BBT'])[0]
    s6 = spearmanr(tab['LUM_UV'], tab['BBT'])[0]

    ax1.text(46.5, 0.2, r'$\rho =$ {0:.2f}'.format(s3))
    ax4.text(9.7, 0.2, r'$\rho =$ {0:.2f}'.format(s2))
    ax7.text(-0.1, 0.2, r'$\rho =$ {0:.2f}'.format(s1))
    ax2.text(46.5, 1900, r'$\rho =$ {0:.2f}'.format(s6))
    ax5.text(9.7, 1900, r'$\rho =$ {0:.2f}'.format(s5))
    ax8.text(-0.1, 1900, r'$\rho =$ {0:.2f}'.format(s4))

    fig.savefig('/home/lc585/thesis/figures/chapter06/correlations.pdf')

    plt.show()

    return None
def plot():

    mycm = cm.get_cmap('YlOrRd_r')
    mycm.set_under('w')
    mycm = truncate_colormap(mycm, 0.0, 0.8)
    cset = brewer2mpl.get_map('YlOrRd', 'sequential', 9).mpl_colors

    set_plot_properties()  # change style

    tab = Table.read('/data/lc585/QSOSED/Results/150217/sample2/out_add.fits')

    tab = tab[~np.isnan(tab['BBT_STDERR'])]
    tab = tab[tab['BBT_STDERR'] < 500.]
    tab = tab[tab['BBT_STDERR'] > 5.0]
    tab = tab[(tab['LUM_IR_SIGMA'] * tab['RATIO_IR_UV']) < 0.4]

    fig = plt.figure(figsize=figsize(1, 0.6))

    gs = gridspec.GridSpec(6, 13)

    ax1 = fig.add_subplot(gs[1:5, 0:4])
    ax3 = fig.add_subplot(gs[0, 0:4])

    ax4 = fig.add_subplot(gs[1:5, 4:8])
    ax6 = fig.add_subplot(gs[0, 4:8])

    ax7 = fig.add_subplot(gs[1:5, 8:12])
    ax9 = fig.add_subplot(gs[0, 8:12])

    ax10 = fig.add_subplot(gs[1:5, 12])

    fig.subplots_adjust(wspace=0.0)
    fig.subplots_adjust(hspace=0.0)

    #histogram definition
    xyrange = [[43, 47], [0, 2]]  # data range
    bins = [60, 40]  # number of bins
    thresh = 4  #density threshold

    #data definition
    xdat, ydat = tab['LUM_UV'], tab['RATIO_IR_UV']

    # histogram the data
    hh, locx, locy = histogram2d(xdat, ydat, range=xyrange, bins=bins)
    posx = np.digitize(xdat, locx)
    posy = np.digitize(ydat, locy)

    #select points within the histogram
    ind = (posx > 0) & (posx <= bins[0]) & (posy > 0) & (posy <= bins[1])
    hhsub = hh[posx[ind] - 1,
               posy[ind] - 1]  # values of the histogram where the points are
    xdat1 = xdat[ind][hhsub < thresh]  # low density points
    ydat1 = ydat[ind][hhsub < thresh]
    hh[hh < thresh] = np.nan  # fill the areas with low density by NaNs

    im = ax1.imshow(np.flipud(hh.T),
                    cmap=mycm,
                    extent=np.array(xyrange).flatten(),
                    interpolation='none',
                    aspect='auto',
                    vmin=thresh)
    ax1.scatter(xdat1, ydat1, color=cset[-1])

    ax1.set_ylabel(r'$R_{1-3{\mu}m/UV}$')

    ax1.set_ylim(-0.4, 1)
    ax1.set_xlim(45, 47)

    ax3.hist(tab['LUM_UV'], color=cset[-1], bins=20)
    ax3.set_xlim(ax1.get_xlim())
    ax3.set_axis_off()

    #ax1.get_xaxis().set_ticks([46,46.5,47])
    #ax1.get_yaxis().set_ticks([0.05,0.15,0.25,0.35,0.45])

    ############################################################################

    #histogram definition
    xyrange = [[7.5, 10.5], [0, 2]]  # data range
    bins = [40, 40]  # number of bins
    thresh = 4  #density threshold

    #data definition
    xdat, ydat = tab['LOGBH'], tab['RATIO_IR_UV']

    # histogram the data
    hh, locx, locy = histogram2d(xdat, ydat, range=xyrange, bins=bins)
    posx = np.digitize(xdat, locx)
    posy = np.digitize(ydat, locy)

    #select points within the histogram
    ind = (posx > 0) & (posx <= bins[0]) & (posy > 0) & (posy <= bins[1])
    hhsub = hh[posx[ind] - 1,
               posy[ind] - 1]  # values of the histogram where the points are
    xdat1 = xdat[ind][hhsub < thresh]  # low density points
    ydat1 = ydat[ind][hhsub < thresh]
    hh[hh < thresh] = np.nan  # fill the areas with low density by NaNs

    im = ax4.imshow(np.flipud(hh.T),
                    cmap=mycm,
                    extent=np.array(xyrange).flatten(),
                    interpolation='none',
                    aspect='auto',
                    vmin=thresh)

    ax4.scatter(xdat1, ydat1, color=cset[-1])

    ax4.set_ylim(ax1.get_ylim())
    ax4.set_xlim(7.9, 10.5)
    ax4.set_xticklabels([7.5, 8, 8.5, 9, 9.5, 10])
    #ax4.set_yticks([0.05,0.15,0.25,0.35,0.45])
    ax4.set_yticklabels([])

    ax6.hist(tab[tab['LOGBH'] > 6]['LOGBH'], color=cset[-1], bins=20)
    ax6.set_xlim(ax4.get_xlim())

    ax4.set_ylim(ax1.get_ylim())

    ax6.hist(tab['LOGBH'][tab['LOGBH'] > 6], color=cset[-1], bins=20)
    ax6.set_xlim(ax4.get_xlim())
    ax6.set_axis_off()

    ######################################################################################

    #histogram definition
    xyrange = [[-2, 0.5], [0, 2]]  # data range
    bins = [40, 40]  # number of bins
    thresh = 4  #density threshold

    #data definition
    xdat, ydat = tab['LOGEDD_RATIO'], tab['RATIO_IR_UV']

    # histogram the data
    hh, locx, locy = histogram2d(xdat, ydat, range=xyrange, bins=bins)
    posx = np.digitize(xdat, locx)
    posy = np.digitize(ydat, locy)

    #select points within the histogram
    ind = (posx > 0) & (posx <= bins[0]) & (posy > 0) & (posy <= bins[1])
    hhsub = hh[posx[ind] - 1,
               posy[ind] - 1]  # values of the histogram where the points are
    xdat1 = xdat[ind][hhsub < thresh]  # low density points
    ydat1 = ydat[ind][hhsub < thresh]
    hh[hh < thresh] = np.nan  # fill the areas with low density by NaNs

    im = ax7.imshow(np.flipud(hh.T),
                    cmap=mycm,
                    extent=np.array(xyrange).flatten(),
                    interpolation='none',
                    aspect='auto',
                    vmin=thresh)
    ax7.scatter(xdat1, ydat1, color=cset[-1])

    ax7.set_ylim(ax1.get_ylim())
    ax7.set_xlim(-1.8, 0.7)

    ax9.hist(tab[tab['LOGEDD_RATIO'] > -2.5]['LOGEDD_RATIO'],
             color=cset[-1],
             bins=20)
    ax9.set_xlim(ax7.get_xlim())
    ax9.set_axis_off()

    plt.tick_params(axis='both', which='major')

    #ax7.set_yticks([0.05,0.15,0.25,0.35,0.45])
    ax7.set_yticklabels([])
    #ax7.set_xticklabels([])

    ax9.hist(tab['LOGBH'][tab['LOGBH'] > 6], color=cset[-1], bins=20)
    ax9.set_xlim(ax7.get_xlim())
    ax9.set_axis_off()

    ax10.hist(tab['RATIO_IR_UV'],
              orientation='horizontal',
              color=cset[-1],
              bins=25)
    ax10.set_ylim(ax1.get_ylim())
    ax10.set_axis_off()

    ax4.set_xlabel(r'Log$_{10}$ (BH Mass $M_{\rm BH}$)')
    ax1.set_xlabel(r'Log$_{10} (L_{\rm UV} ({\rm erg/s}))$')
    ax7.set_xlabel(r'Log$_{10}$ ($\lambda_{\rm Edd}$)')

    axcb = fig.add_axes([0.33, 0.1, 0.33, 0.03])
    clb = fig.colorbar(im, cax=axcb, orientation='horizontal')
    clb.set_label('Number of Objects', fontsize=14)

    s1 = spearmanr(tab[tab['LOGEDD_RATIO'] > -2.5]['LOGEDD_RATIO'],
                   tab[tab['LOGEDD_RATIO'] > -2.5]['RATIO_IR_UV'])[0]
    s2 = spearmanr(tab[tab['LOGBH'] > 6]['LOGBH'],
                   tab[tab['LOGBH'] > 6]['RATIO_IR_UV'])[0]
    s3 = spearmanr(tab['LUM_UV'], tab['RATIO_IR_UV'])[0]

    p1 = spearmanr(tab[tab['LOGEDD_RATIO'] > -2.5]['LOGEDD_RATIO'],
                   tab[tab['LOGEDD_RATIO'] > -2.5]['RATIO_IR_UV'])[1]
    p2 = spearmanr(tab[tab['LOGBH'] > 6]['LOGBH'],
                   tab[tab['LOGBH'] > 6]['RATIO_IR_UV'])[1]
    p3 = spearmanr(tab['LUM_UV'], tab['RATIO_IR_UV'])[1]

    ax1.text(45.6, -0.2, r'$\rho =$ {0:.2f} ({1:.2f})'.format(s3, p3))
    ax4.text(8.7, -0.2, r'$\rho =$ {0:.2f} ({1:.2f})'.format(s2, p2))
    ax7.text(-1.1, -0.2, r'$\rho =$ {0:.2f} ({1:.2f})'.format(s1, p1))

    fig.savefig(
        '/home/lc585/thesis/figures/chapter06/ratio_lowz_correlations.pdf')

    plt.show()

    return None
Ejemplo n.º 4
0
def plot():

    from astropy.table import Table, join
    import matplotlib.pyplot as plt
    import numpy as np
    from scipy.stats import spearmanr
    import brewer2mpl
    from PlottingTools.truncate_colormap import truncate_colormap
    from matplotlib import cm
    import matplotlib.gridspec as gridspec
    from scipy import histogram2d
    from PlottingTools.plot_setup import figsize, set_plot_properties

    mycm = cm.get_cmap('YlOrRd_r')
    mycm.set_under('w')
    cset = brewer2mpl.get_map('YlOrRd', 'sequential', 9).mpl_colors
    mycm = truncate_colormap(mycm, 0.0, 0.8)

    set_plot_properties()  # change style

    tab = Table.read(
        '/data/lc585/QSOSED/Results/141124/sample4/out_add_lumcalc.fits')
    tab.sort('Z')

    tab = tab[tab['BBPLSLP_STDERR'] < 0.25]

    fig = plt.figure(figsize=figsize(1.2, 0.4))

    gs = gridspec.GridSpec(6, 13)

    ax1 = fig.add_subplot(gs[1:5, 0:4])
    ax3 = fig.add_subplot(gs[0, 0:4])

    ax4 = fig.add_subplot(gs[1:5, 4:8])
    ax6 = fig.add_subplot(gs[0, 4:8])

    ax7 = fig.add_subplot(gs[1:5, 8:12])
    ax9 = fig.add_subplot(gs[0, 8:12])

    ax10 = fig.add_subplot(gs[1:5, 12])

    fig.subplots_adjust(wspace=0.0)
    fig.subplots_adjust(hspace=0.0)

    #histogram definition
    xyrange = [[45.5, 48], [-0.5, 1.5]]  # data range
    bins = [50, 30]  # number of bins
    thresh = 4  #density threshold

    #data definition
    xdat, ydat = tab['LUM_UV'], tab['BBPLSLP']

    # histogram the data
    hh, locx, locy = histogram2d(xdat, ydat, range=xyrange, bins=bins)
    posx = np.digitize(xdat, locx)
    posy = np.digitize(ydat, locy)

    #select points within the histogram
    ind = (posx > 0) & (posx <= bins[0]) & (posy > 0) & (posy <= bins[1])
    hhsub = hh[posx[ind] - 1,
               posy[ind] - 1]  # values of the histogram where the points are
    xdat1 = xdat[ind][hhsub < thresh]  # low density points
    ydat1 = ydat[ind][hhsub < thresh]
    hh[hh < thresh] = np.nan  # fill the areas with low density by NaNs

    im = ax1.imshow(np.flipud(hh.T),
                    cmap=mycm,
                    extent=np.array(xyrange).flatten(),
                    interpolation='none',
                    aspect='auto',
                    vmin=thresh,
                    vmax=45)

    ax1.scatter(xdat1, ydat1, color=cset[-1])

    ax1.set_ylabel(r'$\beta_{\rm NIR}$')

    ax1.set_ylim(-0.8, 1.5)
    ax1.set_xlim(45.8, 47.5)

    ax3.hist(tab['LUM_UV'], color=cset[-1], bins=20)
    ax3.set_xlim(ax1.get_xlim())
    ax3.set_axis_off()

    ax1.get_xaxis().set_ticks([46, 46.5, 47])
    #ax1.get_yaxis().set_ticks([0.05,0.15,0.25,0.35,0.45])

    ############################################################################

    #histogram definition
    xyrange = [[7.5, 10.5], [-0.5, 1.5]]  # data range
    bins = [30, 30]  # number of bins
    thresh = 4  #density threshold

    #data definition
    xdat, ydat = tab['LOGBH'], tab['BBPLSLP']

    # histogram the data
    hh, locx, locy = histogram2d(xdat, ydat, range=xyrange, bins=bins)
    posx = np.digitize(xdat, locx)
    posy = np.digitize(ydat, locy)

    #select points within the histogram
    ind = (posx > 0) & (posx <= bins[0]) & (posy > 0) & (posy <= bins[1])
    hhsub = hh[posx[ind] - 1,
               posy[ind] - 1]  # values of the histogram where the points are
    xdat1 = xdat[ind][hhsub < thresh]  # low density points
    ydat1 = ydat[ind][hhsub < thresh]
    hh[hh < thresh] = np.nan  # fill the areas with low density by NaNs

    im = ax4.imshow(np.flipud(hh.T),
                    cmap=mycm,
                    extent=np.array(xyrange).flatten(),
                    interpolation='none',
                    aspect='auto',
                    vmin=thresh,
                    vmax=45)

    ax4.scatter(xdat1, ydat1, color=cset[-1])

    ax4.set_ylim(ax1.get_ylim())
    ax4.set_xlim(7.9, 10.5)
    ax4.set_xticklabels([7.5, 8, 8.5, 9, 9.5, 10])
    #ax4.set_yticks([0.05,0.15,0.25,0.35,0.45])
    ax4.set_yticklabels([])

    ax6.hist(tab[tab['LOGBH'] > 6]['LOGBH'], color=cset[-1], bins=20)
    ax6.set_xlim(ax4.get_xlim())

    plt.tick_params(axis='both', which='major')

    ax4.set_ylim(ax1.get_ylim())

    ax6.hist(tab['LOGBH'][tab['LOGBH'] > 6], color=cset[-1], bins=20)
    ax6.set_xlim(ax4.get_xlim())
    ax6.set_axis_off()

    ######################################################################################

    #histogram definition
    xyrange = [[-2, 0.5], [-0.5, 1.5]]  # data range
    bins = [30, 30]  # number of bins
    thresh = 4  #density threshold

    #data definition
    xdat, ydat = tab['LOGEDD_RATIO'], tab['BBPLSLP']

    # histogram the data
    hh, locx, locy = histogram2d(xdat, ydat, range=xyrange, bins=bins)
    posx = np.digitize(xdat, locx)
    posy = np.digitize(ydat, locy)

    #select points within the histogram
    ind = (posx > 0) & (posx <= bins[0]) & (posy > 0) & (posy <= bins[1])
    hhsub = hh[posx[ind] - 1,
               posy[ind] - 1]  # values of the histogram where the points are
    xdat1 = xdat[ind][hhsub < thresh]  # low density points
    ydat1 = ydat[ind][hhsub < thresh]
    hh[hh < thresh] = np.nan  # fill the areas with low density by NaNs

    im = ax7.imshow(np.flipud(hh.T),
                    cmap=mycm,
                    extent=np.array(xyrange).flatten(),
                    interpolation='none',
                    aspect='auto',
                    vmin=thresh,
                    vmax=45)

    ax7.scatter(xdat1, ydat1, color=cset[-1])

    ax7.set_ylim(ax1.get_ylim())
    ax7.set_xlim(-1.8, 0.7)

    ax9.hist(tab[tab['LOGEDD_RATIO'] > -2.5]['LOGEDD_RATIO'],
             color=cset[-1],
             bins=20)
    ax9.set_xlim(ax7.get_xlim())
    ax9.set_axis_off()

    plt.tick_params(axis='both', which='major')

    #ax7.set_yticks([0.05,0.15,0.25,0.35,0.45])
    ax7.set_yticklabels([])
    #ax7.set_xticklabels([])

    ax9.hist(tab['LOGBH'][tab['LOGBH'] > 6], color=cset[-1], bins=20)
    ax9.set_xlim(ax7.get_xlim())
    ax9.set_axis_off()

    ax10.hist(tab['BBPLSLP'],
              orientation='horizontal',
              color=cset[-1],
              bins=25)
    ax10.set_ylim(ax1.get_ylim())
    ax10.set_axis_off()

    ax4.set_xlabel(r'Log$_{10}$ (Black Hole Mass $M_{\rm BH}$)')
    ax1.set_xlabel(r'Log$_{10} (L_{\rm UV} ({\rm erg/s}))$')
    ax7.set_xlabel(r'Log$_{10}$ (Eddington Ratio $\lambda$)')

    axcb = fig.add_axes([0.33, 0.1, 0.33, 0.03])
    clb = fig.colorbar(im, cax=axcb, orientation='horizontal')
    clb.set_label('Number of Objects')

    s1 = spearmanr(tab[tab['LOGEDD_RATIO'] > -2.5]['LOGEDD_RATIO'],
                   tab[tab['LOGEDD_RATIO'] > -2.5]['BBPLSLP'])[0]
    s2 = spearmanr(tab[tab['LOGBH'] > 6]['LOGBH'],
                   tab[tab['LOGBH'] > 6]['BBPLSLP'])[0]
    s3 = spearmanr(tab['LUM_UV'], tab['BBPLSLP'])[0]

    ax1.text(46.95, 1.2, r'$\rho =$ {0:.2f}'.format(s3))
    ax4.text(9.7, 1.2, r'$\rho =$ {0:.2f}'.format(s2))
    ax7.text(-0.1, 1.2, r'$\rho =$ {0:.2f}'.format(s1))

    fig.savefig('/home/lc585/thesis/figures/chapter06/correlations_highz.pdf')

    plt.show()

    return None
def plot():

    set_plot_properties()  # change style

    tab1 = Table.read('/data/lc585/QSOSED/Results/141209/sample1/out_add.fits')

    tab1 = tab1[~np.isnan(tab1['BBT_STDERR'])]
    tab1 = tab1[tab1['BBT_STDERR'] < 500.]
    tab1 = tab1[tab1['BBT_STDERR'] > 5.0]
    tab1 = tab1[(tab1['LUM_IR_SIGMA'] * tab1['RATIO_IR_UV']) < 0.4]

    tab2 = Table.read('/data/lc585/QSOSED/Results/150211/sample2/out_add.fits')

    tab2 = tab2[~np.isnan(tab2['BBT_STDERR'])]
    tab2 = tab2[tab2['BBT_STDERR'] < 500.]
    tab2 = tab2[tab2['BBT_STDERR'] > 5.0]
    tab2 = tab2[(tab2['LUM_IR_SIGMA'] * tab2['RATIO_IR_UV']) < 0.4]

    fig, axs = plt.subplots(1, 3, figsize=figsize(1, vscale=0.4), sharey=True)

    m1, m2 = tab1['LUM_UV'], tab1['BBT']

    xmin = m1.min()
    xmax = m1.max()
    ymin = m2.min()
    ymax = m2.max()

    X, Y = np.mgrid[xmin:xmax:100j, ymin:ymax:100j]
    positions = np.vstack([X.ravel(), Y.ravel()])
    values = np.vstack([m1, m2])
    kernel = stats.gaussian_kde(values)
    Z = np.reshape(kernel(positions).T, X.shape)

    CS = axs[0].contour(X, Y, Z, colors='black')

    threshold = CS.levels[0]

    z = kernel(values)

    # mask points above density threshold
    x = np.ma.masked_where(z > threshold, m1)
    y = np.ma.masked_where(z > threshold, m2)

    # plot unmasked points
    axs[0].scatter(x, y, c='black', edgecolor='None', s=3)

    m1, m2 = tab2['LUM_UV'], tab2['BBT']

    xmin = m1.min()
    xmax = m1.max()
    ymin = m2.min()
    ymax = m2.max()

    X, Y = np.mgrid[xmin:xmax:100j, ymin:ymax:100j]
    positions = np.vstack([X.ravel(), Y.ravel()])
    values = np.vstack([m1, m2])
    kernel = stats.gaussian_kde(values)
    Z = np.reshape(kernel(positions).T, X.shape)

    CS = axs[0].contour(X, Y, Z, colors='red')

    threshold = CS.levels[0]

    z = kernel(values)

    # mask points above density threshold
    x = np.ma.masked_where(z > threshold, m1)
    y = np.ma.masked_where(z > threshold, m2)

    # plot unmasked points
    axs[0].scatter(x, y, c='red', edgecolor='None', s=3)

    m1, m2 = tab1['LOGBH'], tab1['BBT']

    xmin = m1.min()
    xmax = m1.max()
    ymin = m2.min()
    ymax = m2.max()

    X, Y = np.mgrid[xmin:xmax:100j, ymin:ymax:100j]
    positions = np.vstack([X.ravel(), Y.ravel()])
    values = np.vstack([m1, m2])
    kernel = stats.gaussian_kde(values)
    Z = np.reshape(kernel(positions).T, X.shape)

    CS = axs[1].contour(X, Y, Z, colors='black')

    threshold = CS.levels[0]

    z = kernel(values)

    # mask points above density threshold
    x = np.ma.masked_where(z > threshold, m1)
    y = np.ma.masked_where(z > threshold, m2)

    # plot unmasked points
    axs[1].scatter(x, y, c='black', edgecolor='None', s=3)

    m1, m2 = tab2['LOGBH'], tab2['BBT']

    xmin = m1.min()
    xmax = m1.max()
    ymin = m2.min()
    ymax = m2.max()

    X, Y = np.mgrid[xmin:xmax:100j, ymin:ymax:100j]
    positions = np.vstack([X.ravel(), Y.ravel()])
    values = np.vstack([m1, m2])
    kernel = stats.gaussian_kde(values)
    Z = np.reshape(kernel(positions).T, X.shape)

    CS = axs[1].contour(X, Y, Z, colors='red')

    threshold = CS.levels[0]

    z = kernel(values)

    # mask points above density threshold
    x = np.ma.masked_where(z > threshold, m1)
    y = np.ma.masked_where(z > threshold, m2)

    # plot unmasked points
    axs[1].scatter(x, y, c='red', edgecolor='None', s=3)

    m1, m2 = tab1['LOGEDD_RATIO'][tab1['LOGEDD_RATIO'] > -2.0], tab1['BBT'][
        tab1['LOGEDD_RATIO'] > -2.0]

    xmin = m1.min()
    xmax = m1.max()
    ymin = m2.min()
    ymax = m2.max()

    X, Y = np.mgrid[xmin:xmax:100j, ymin:ymax:100j]
    positions = np.vstack([X.ravel(), Y.ravel()])
    values = np.vstack([m1, m2])
    kernel = stats.gaussian_kde(values)
    Z = np.reshape(kernel(positions).T, X.shape)

    CS = axs[2].contour(X, Y, Z, colors='black')

    threshold = CS.levels[0]

    z = kernel(values)

    # mask points above density threshold
    x = np.ma.masked_where(z > threshold, m1)
    y = np.ma.masked_where(z > threshold, m2)

    # plot unmasked points
    axs[2].scatter(x, y, c='black', edgecolor='None', s=3)

    m1, m2 = tab2['LOGEDD_RATIO'][tab2['LOGEDD_RATIO'] > -2.0], tab2['BBT'][
        tab2['LOGEDD_RATIO'] > -2.0]

    xmin = m1.min()
    xmax = m1.max()
    ymin = m2.min()
    ymax = m2.max()

    X, Y = np.mgrid[xmin:xmax:100j, ymin:ymax:100j]
    positions = np.vstack([X.ravel(), Y.ravel()])
    values = np.vstack([m1, m2])
    kernel = stats.gaussian_kde(values)
    Z = np.reshape(kernel(positions).T, X.shape)

    CS = axs[2].contour(X, Y, Z, colors='red')

    threshold = CS.levels[0]

    z = kernel(values)

    # mask points above density threshold
    x = np.ma.masked_where(z > threshold, m1)
    y = np.ma.masked_where(z > threshold, m2)

    # plot unmasked points
    axs[2].scatter(x, y, c='red', edgecolor='None', s=3)

    axs[0].set_ylim(800, 1800)
    axs[0].set_xlim(45.2, 47)
    axs[1].set_xlim(8, 10.5)
    axs[2].set_xlim(-1.6, 0.5)

    axs[0].set_xticks([45.4, 45.8, 46.2, 46.6])

    axs[0].set_ylabel('Blackbody Temperature')
    axs[0].set_xlabel('UV Luminosity')
    axs[1].set_xlabel('Black Hole Mass')
    axs[2].set_xlabel('Eddington Ratio')

    fig.tight_layout()

    fig.savefig(
        '/home/lc585/thesis/figures/chapter06/bbt_correlations_contour.pdf')

    plt.show()

    return None
def plot():

    mycm = cm.get_cmap('YlOrRd_r')
    mycm.set_under('w')
    mycm = truncate_colormap(mycm, 0.0, 0.8)
    
    cset = brewer2mpl.get_map('YlOrRd', 'sequential', 9).mpl_colors
    
    tab = Table.read('/data/lc585/QSOSED/Results/141031/sample1.fits')
    
    fig = plt.figure(figsize=figsize(0.7, vscale=1.5))
    
    ax1 = fig.add_subplot(2,1,1)
    ax2 = fig.add_subplot(2,1,2)
    fig.subplots_adjust(wspace=0.0)
    fig.subplots_adjust(hspace=0.0)
    fig.subplots_adjust(top=0.99, bottom=0.2)

    #histogram definition
    xyrange = [[0.5,1.5],[-0.4,1.2]] # data range
    bins = [45,45] # number of bins
    thresh = 4  #density threshold
    
    #data definition
    w1mag = tab['W1MPRO_ALLWISE'] + 2.699
    w2mag = tab['W2MPRO_ALLWISE'] + 3.339
    z = tab['Z_HEWETT']
    xdat, ydat = z, w1mag - w2mag
    
    # histogram the data
    hh, locx, locy = histogram2d(xdat, ydat, range=xyrange, bins=bins)
    posx = np.digitize(xdat, locx)
    posy = np.digitize(ydat, locy)
    
    #select points within the histogram
    ind = (posx > 0) & (posx <= bins[0]) & (posy > 0) & (posy <= bins[1])
    hhsub = hh[posx[ind] - 1, posy[ind] - 1] # values of the histogram where the points are
    xdat1 = xdat[ind][hhsub < thresh] # low density points
    ydat1 = ydat[ind][hhsub < thresh]
    hh[hh < thresh] = np.nan # fill the areas with low density by NaNs
    
    im = ax1.imshow(np.flipud(hh.T),cmap=mycm,extent=np.array(xyrange).flatten(), interpolation='none',aspect='auto', vmin=thresh, vmax=45)
    ax1.scatter(xdat1, ydat1,color=cset[-1])
    
    ax1.set_ylabel(r'$W1-W2$',fontsize=14)
    
    for tick in ax1.xaxis.get_major_ticks():
        tick.label.set_fontsize(10)
    for tick in ax1.yaxis.get_major_ticks():
        tick.label.set_fontsize(10)
    ax1.set_ylim(-0.4,1.2)
    ax1.set_xlim(0.25,1.7)
    
    im = ax2.imshow(np.flipud(hh.T),cmap=mycm,extent=np.array(xyrange).flatten(), interpolation='none',aspect='auto', vmin=thresh, vmax=45)
    ax2.scatter(xdat1, ydat1,color=cset[-1])
    
    axcb = fig.add_axes([0.13,0.1,0.75,0.02])
    clb = fig.colorbar(im, cax=axcb,orientation='horizontal')
    clb.set_label('Number of Objects',fontsize=12)
    clb.ax.tick_params(labelsize=10)
    
    ax2.set_xlabel(r'Redshift $z$',fontsize=14)
    ax2.set_ylabel(r'$W1-W2$',fontsize=14)
    
    for tick in ax2.xaxis.get_major_ticks():
        tick.label.set_fontsize(10)
    for tick in ax2.yaxis.get_major_ticks():
        tick.label.set_fontsize(10)
    ax2.set_ylim(ax1.get_ylim())
    ax2.set_xlim(ax1.get_xlim())
    tabtmp = tab
    tabtmp.sort('Z')
    
    
    #plt.tick_params(axis='both',which='major',labelsize=12)
    
    ax1.get_xaxis().set_ticks([])
    ax1.set_yticklabels(['',0.0,0.2,0.4,0.6,0.8,1.0,1.2])
    ax2.set_yticklabels([-0.4,-0.2,0.0,0.2,0.4,0.6,0.8,1.0])
    #plt.scatter(z,w1mag-w2mag,c='grey',alpha=0.3)
    
    #xdat = z
    #ydat = w1mag - w2mag
    #zdat = tab['LOGLBOL']
    #
    #plt.hexbin(xdat,ydat,C=tab['LUM_UV'],gridsize=10,cmap=mycm)
    #cb = plt.colorbar()
    #cb.set_label('UV Luminosity')
    #plt.ylim(-0.2,1.2)
    #plt.xlim(0.4,1.6)
    ##plt.savefig('/data/lc585/QSOSED/Results/141030/figure1.jpg')
    #
    #xyrange = [[0.5,1.5],[0,1.2]] # data range
    #bins = [10,6] # number of bins
    #thresh = 20
    #hh, locx, locy = histogram2d(xdat,
    #                             ydat,
    #                             range=xyrange,
    #                             bins=bins)
    #
    #
    #print locy
    #
    #posx = np.digitize(xdat, locx)
    #posy = np.digitize(ydat, locy)
    #
    #grid = []
    #for i in range(10):
    #    row = []
    #    for j in range(6):
    #        row.append(np.median(zdat[(posx == i+1) & (posy ==j+1)]))
    #    grid.append(row)
    
    #ind = (posx > 0) & (posx <= bins[0]) & (posy > 0) & (posy <= bins[1])
    #hhsub = hh[posx[ind] - 1, posy[ind] - 1] # values of the histogram where the points are
    #xdat1 = xdat[ind][hhsub < thresh] # low density points
    #ydat1 = ydat[ind][hhsub < thresh]
    #hh[hh < thresh] = np.nan # fill the areas with low density by NaNs
    
    #ax.scatter(z[ind],w1mag[ind]-w2mag[ind])
    
    #im = ax.imshow(np.flipud(hh.T),
    #                cmap=mycm,
    #                extent=np.array(xyrange).flatten(),
    #                interpolation='none',
    #                aspect='auto',vmin=10)
    #ax.scatter(xdat1,ydat1)
    
    # loop over bins
    #for i in range(len(locx)):
    #    for j in range(len(locy)):
    #        print np.median(tab['LUM_UV'][ (posx == i) & (posy == j)])
    #ax.hist2d(z,
    #          w1mag-w2mag,
    #          range=xyrange,
    #          bins=bins,
    #          cmap=mycm,
    #          vmin=10.)
    
    
    with open('/home/lc585/Dropbox/IoA/QSOSED/Model/qsofit/input.yml', 'r') as f:
        parfile = yaml.load(f)
    
    fittingobj = load(parfile)
    wavlen = fittingobj.get_wavlen()
    
    with open('/data/lc585/QSOSED/Results/140811/allsample_2/fluxcorr.array','rb') as f:
        flxcorr = pickle.load(f)
    
    plslp1 = 0.46
    plslp2 = 0.03
    plbrk = 2822.
    bbt = 1216.
    bbflxnrm = 0.24
    elscal = 0.71
    scahal = 0.86
    galfra = 0.31
    ebv = 0.0
    imod = 18.0
    
    zs = np.arange(0.5,1.525,0.025)
    
    bbt = 1200.
    w1w2_model = []
    for z in zs:
        magtmp, wavlentmp, fluxtmp = model(plslp1,
                                           plslp2,
                                           plbrk,
                                           bbt,
                                           bbflxnrm,
                                           elscal,
                                           scahal,
                                           galfra,
                                           ebv,
                                           imod,
                                           z,
                                           fittingobj,
                                           flxcorr,
                                           parfile)
        w1w2_model.append(magtmp[9] - magtmp[10])
    
    print w1w2_model[0]
    ax1.plot(zs,w1w2_model,linewidth=2.0,color='black')
    
    bbt = 1100.
    w1w2_model = []
    for z in zs:
        magtmp, wavlentmp, fluxtmp = model(plslp1,
                                           plslp2,
                                           plbrk,
                                           bbt,
                                           bbflxnrm,
                                           elscal,
                                           scahal,
                                           galfra,
                                           ebv,
                                           imod,
                                           z,
                                           fittingobj,
                                           flxcorr,
                                           parfile)
        w1w2_model.append(magtmp[9] - magtmp[10])
    print w1w2_model[0]
    ax1.plot(zs,w1w2_model,linewidth=2.0,color='black')
    
    bbt = 1300.
    w1w2_model = []
    for z in zs:
        magtmp, wavlentmp, fluxtmp = model(plslp1,
                                           plslp2,
                                           plbrk,
                                           bbt,
                                           bbflxnrm,
                                           elscal,
                                           scahal,
                                           galfra,
                                           ebv,
                                           imod,
                                           z,
                                           fittingobj,
                                           flxcorr,
                                           parfile)
        w1w2_model.append(magtmp[9] - magtmp[10])
    print w1w2_model[0]
    ax1.plot(zs,w1w2_model,linewidth=2.0,color='black')
    
    bbt = 1400.
    w1w2_model = []
    for z in zs:
        magtmp, wavlentmp, fluxtmp = model(plslp1,
                                           plslp2,
                                           plbrk,
                                           bbt,
                                           bbflxnrm,
                                           elscal,
                                           scahal,
                                           galfra,
                                           ebv,
                                           imod,
                                           z,
                                           fittingobj,
                                           flxcorr,
                                           parfile)
        w1w2_model.append(magtmp[9] - magtmp[10])
    print w1w2_model[0]
    ax1.plot(zs,w1w2_model,linewidth=2.0,color='black')
    
    bbt = 1500.
    w1w2_model = []
    for z in zs:
        magtmp, wavlentmp, fluxtmp = model(plslp1,
                                           plslp2,
                                           plbrk,
                                           bbt,
                                           bbflxnrm,
                                           elscal,
                                           scahal,
                                           galfra,
                                           ebv,
                                           imod,
                                           z,
                                           fittingobj,
                                           flxcorr,
                                           parfile)
        w1w2_model.append(magtmp[9] - magtmp[10])
    print w1w2_model[0]
    ax1.plot(zs,w1w2_model,linewidth=2.0,color='black')
    
    bbt = 1000.
    w1w2_model = []
    for z in zs:
        magtmp, wavlentmp, fluxtmp = model(plslp1,
                                           plslp2,
                                           plbrk,
                                           bbt,
                                           bbflxnrm,
                                           elscal,
                                           scahal,
                                           galfra,
                                           ebv,
                                           imod,
                                           z,
                                           fittingobj,
                                           flxcorr,
                                           parfile)
        w1w2_model.append(magtmp[9] - magtmp[10])
    
    ax1.plot(zs,w1w2_model,linewidth=2.0,color='black')
    
    ax1.text(0.33,0.67,'1000K',fontsize=12,color='black')
    ax1.text(0.33,0.52,'1100K',fontsize=12,color='black')
    ax1.text(0.33,0.40,'1200K',fontsize=12,color='black')
    ax1.text(0.33,0.28,'1300K',fontsize=12,color='black')
    ax1.text(0.33,0.20,'1400K',fontsize=12,color='black')
    ax1.text(0.33,0.10,'1500K',fontsize=12)
    
    
    #plt.savefig('/home/lc585/Dropbox/IoA/HotDustPaper/w1w2_temp.pdf')
    
    bbt = 1216.
    bbflxnrm = 0.0
    w1w2_model = []
    for z in zs:
        magtmp, wavlentmp, fluxtmp = model(plslp1,
                                           plslp2,
                                           plbrk,
                                           bbt,
                                           bbflxnrm,
                                           elscal,
                                           scahal,
                                           galfra,
                                           ebv,
                                           imod,
                                           z,
                                           fittingobj,
                                           flxcorr,
                                           parfile)
        w1w2_model.append(magtmp[9] - magtmp[10])
    
    ax2.plot(zs,w1w2_model,linewidth=2.0,color='black')
    
    bbflxnrm = 0.1
    w1w2_model = []
    for z in zs:
        magtmp, wavlentmp, fluxtmp = model(plslp1,
                                           plslp2,
                                           plbrk,
                                           bbt,
                                           bbflxnrm,
                                           elscal,
                                           scahal,
                                           galfra,
                                           ebv,
                                           imod,
                                           z,
                                           fittingobj,
                                           flxcorr,
                                           parfile)
        w1w2_model.append(magtmp[9] - magtmp[10])
    
    ax2.plot(zs,w1w2_model,linewidth=2.0,color='black')
    
    bbflxnrm = 0.2
    w1w2_model = []
    for z in zs:
        magtmp, wavlentmp, fluxtmp = model(plslp1,
                                           plslp2,
                                           plbrk,
                                           bbt,
                                           bbflxnrm,
                                           elscal,
                                           scahal,
                                           galfra,
                                           ebv,
                                           imod,
                                           z,
                                           fittingobj,
                                           flxcorr,
                                           parfile)
        w1w2_model.append(magtmp[9] - magtmp[10])
    
    ax2.plot(zs,w1w2_model,linewidth=2.0,color='black')
    
    bbflxnrm = 0.3
    w1w2_model = []
    for z in zs:
        magtmp, wavlentmp, fluxtmp = model(plslp1,
                                           plslp2,
                                           plbrk,
                                           bbt,
                                           bbflxnrm,
                                           elscal,
                                           scahal,
                                           galfra,
                                           ebv,
                                           imod,
                                           z,
                                           fittingobj,
                                           flxcorr,
                                           parfile)
        w1w2_model.append(magtmp[9] - magtmp[10])
    
    ax2.plot(zs,w1w2_model,linewidth=2.0,color='black')
    
    bbflxnrm = 0.4
    w1w2_model = []
    for z in zs:
        magtmp, wavlentmp, fluxtmp = model(plslp1,
                                           plslp2,
                                           plbrk,
                                           bbt,
                                           bbflxnrm,
                                           elscal,
                                           scahal,
                                           galfra,
                                           ebv,
                                           imod,
                                           z,
                                           fittingobj,
                                           flxcorr,
                                           parfile)
        w1w2_model.append(magtmp[9] - magtmp[10])
    
    ax2.plot(zs,w1w2_model,linewidth=2.0,color='black')
    
    #plt.xlim(0.2,1.8)
    
    ax2.text(1.55,-0.1,'0.17',fontsize=12,color='black')
    ax2.text(1.55,0.38,'0.28',fontsize=12,color='black')
    ax2.text(1.55,0.60,'0.40',fontsize=12,color='black')
    ax2.text(1.55,0.75,'0.52',fontsize=12,color='black')
    ax2.text(1.55,0.90,'0.64',fontsize=12,color='black')
    
    fig.savefig('/home/lc585/thesis/figures/chapter06/w1w2_versus_redshift.pdf')
    #plt.xlabel(r'$z$',fontsize=12)
    #plt.ylabel('$W1$-$W2$',fontsize=12)
    #plt.tight_layout()
    #plt.tick_params(axis='both',which='major',labelsize=10)
    
    #sns.set_style('ticks')
    #xdat = np.arange(0.1,1.2,0.2)
    #plt.savefig('/data/lc585/QSOSED/Results/141101/figure1.jpg')
    #fig, ax = plt.subplots()
    #for row in grid:
    #    ax.plot(xdat,row)
    #ax.set_xlabel('W1-W2')
    #ax.set_ylabel('LUM BOL')
    #plt.savefig('/data/lc585/QSOSED/Results/141101/figure2.jpg')
    #plt.show()
    #plt.savefig('/home/lc585/Dropbox/IoA/HotDustPaper/w1w2_bbnorm.pdf')

    plt.show() 
    

    return None 
Ejemplo n.º 7
0
def plot():  

    set_plot_properties() # change style 

    tab = Table.read('/data/lc585/QSOSED/Results/141203/sample1/out_add.fits')
    tab = tab[ tab['BBT_STDERR'] < 200.0 ]
    tab = tab[ tab['BBFLXNRM_STDERR'] < 0.05]
    tab = tab[ tab['CHI2_RED'] < 3.0]
    tab = tab[ tab['LUM_IR'] > 40.0] # just gets rid of one annoying point

    mycm = cm.get_cmap('YlOrRd_r')
    mycm.set_under('w')
    cset = brewer2mpl.get_map('YlOrRd', 'sequential', 9).mpl_colors
    mycm = truncate_colormap(mycm, 0.0, 0.8)

    fig = plt.figure(figsize=figsize(0.8, 1.8))
    
    gs = gridspec.GridSpec(9, 5)
    
    ax1 = fig.add_subplot(gs[1:5, 0:4])
    ax2 = fig.add_subplot(gs[5:, 0:4])
    ax3 = fig.add_subplot(gs[0,0:4])
    ax4 = fig.add_subplot(gs[1:5,4])
    ax5 = fig.add_subplot(gs[5:,4])
    
    fig.subplots_adjust(wspace=0.0)
    fig.subplots_adjust(hspace=0.0)
    
    #histogram definition
    xyrange = [[-0.4,1.6],[0,2]] # data range
    bins = [120,30] # number of bins
    thresh = 4  #density threshold
    
    #data definition
    xdat, ydat = tab['Z'],tab['RATIO_IR_UV']
    
    # histogram the data
    hh, locx, locy = histogram2d(xdat, ydat, range=xyrange, bins=bins)
    posx = np.digitize(xdat, locx)
    posy = np.digitize(ydat, locy)
    
    #select points within the histogram
    ind = (posx > 0) & (posx <= bins[0]) & (posy > 0) & (posy <= bins[1])
    hhsub = hh[posx[ind] - 1, posy[ind] - 1] # values of the histogram where the points are
    xdat1 = xdat[ind][hhsub < thresh] # low density points
    ydat1 = ydat[ind][hhsub < thresh]
    hh[hh < thresh] = np.nan # fill the areas with low density by NaNs
    
    im = ax1.imshow(np.flipud(hh.T),
    	            cmap=mycm,
    	            extent=np.array(xyrange).flatten(), 
    	            interpolation='none',
    	            aspect='auto', 
    	            vmin=thresh, 
    	            vmax=45)

    ax1.scatter(xdat1, ydat1,color=cset[-1])
    
    
    ax1.set_ylabel(r'$R_{{\rm NIR}/{\rm UV}}$')

    ax1.set_ylim(0.,2.0)
    ax1.set_xlim(1,1.5)
    tabtmp = tab
    tabtmp.sort('Z')
    xdat = running.RunningMedian(np.array(tabtmp['Z']),101)
    ydat = running.RunningMedian(np.array(tabtmp['RATIO_IR_UV']),101)
    ax1.plot(xdat[::100],ydat[::100],color='black',linewidth=2.0)
    ax1.axhline(np.median(tab['RATIO_IR_UV']),color='black',linestyle='--')
    ax1.axhline(np.percentile(tab['RATIO_IR_UV'],70),color='black',linestyle='--')
    ax1.axhline(np.percentile(tab['RATIO_IR_UV'],30),color='black',linestyle='--')
    ax1.get_xaxis().set_visible(False)
    
    ax3.hist(tab['Z'],color=cset[-1],bins=20)
    ax3.set_xlim(ax1.get_xlim())
    ax3.set_axis_off()
    
    ax4.hist(tab['RATIO_IR_UV'], orientation='horizontal',color=cset[-1],bins=np.arange(0,2,0.1))
    ax4.set_ylim(ax1.get_ylim())
    ax4.set_axis_off()
    
    #histogram definition
    xyrange = [[-0.4,1.6],[500,2000]] # data range
    bins = [100,50] # number of bins
    thresh = 4  #density threshold
    
    #data definition
    xdat, ydat = tab['Z'],tab['BBT']
    
    # histogram the data
    hh, locx, locy = histogram2d(xdat, ydat, range=xyrange, bins=bins)
    posx = np.digitize(xdat, locx)
    posy = np.digitize(ydat, locy)
    
    #select points within the histogram
    ind = (posx > 0) & (posx <= bins[0]) & (posy > 0) & (posy <= bins[1])
    hhsub = hh[posx[ind] - 1, posy[ind] - 1] # values of the histogram where the points are
    xdat1 = xdat[ind][hhsub < thresh] # low density points
    ydat1 = ydat[ind][hhsub < thresh]
    hh[hh < thresh] = np.nan # fill the areas with low density by NaNs
    
    im = ax2.imshow(np.flipud(hh.T),
    	            cmap=mycm,
    	            extent=np.array(xyrange).flatten(), 
    	            interpolation='none',
    	            aspect='auto', 
    	            vmin=thresh, 
    	            vmax=45)

    ax2.scatter(xdat1, ydat1,color=cset[-1])
    
    axcb = fig.add_axes([0.13,0.05,0.6,0.02]) 
    clb = fig.colorbar(im, cax=axcb,orientation='horizontal') 
    clb.set_label('Number of Objects')
    
    ax2.set_xlabel(r'Redshift $z$')
    ax2.set_ylabel(r'$T_{\mathrm{BB}}$')

    ax2.set_ylim(500,1900)
    ax2.set_xlim(1,1.5)
    tabtmp = tab
    tabtmp.sort('Z')
    xdat = running.RunningMedian(np.array(tabtmp['Z']),101)
    ydat = running.RunningMedian(np.array(tabtmp['BBT']),101)
    ax2.plot(xdat[::100],ydat[::100],color='black',linewidth=2.0)
    ax2.axhline(1200,color='black',linestyle='--')
    ax2.axhline(1100,color='black',linestyle='--')
    ax2.axhline(1300,color='black',linestyle='--')
    
    ax5.hist(tab['BBT'], orientation='horizontal',color=cset[-1],bins=20)
    ax5.set_ylim(ax2.get_ylim())
    ax5.set_axis_off()

    fig.savefig('/home/lc585/thesis/figures/chapter06/ratio_bbt_z.pdf')
    plt.show() 
    
    return None