Ejemplo n.º 1
0
def main():

    tasks = Dispenser(why_not)
    time = 0

    cmd, args = get_cmd( COMMANDS )
    while cmd != QUIT_CMD:
        if cmd == TICK_CMD:
            time += 1
            if not tasks.isEmpty():
                current = tasks.peek()
                current.time_left -= 1
                if current.time_left == 0:
                    print( "\nTask '" + current.name + \
                           "' completed at time " + str( time ) + "." )
                    tasks.remove()
                    if not tasks.isEmpty():
                        print( "New task is '" + tasks.peek().name + "'." )
                    else:
                        print( "Nothing else to do." )
            else:
                print( "Nothing to do." )
        elif cmd == ADD_CMD:
            new_task = Task( args[ 0 ], int( args[ 1 ] ) )
            tasks.insert( new_task )
            print( "\nAdded. Current task is '" + tasks.peek().name + \
                   "'." )
        else:
            assert True, "PROGRAM ERROR"
        cmd, args = get_cmd( COMMANDS )

    print( "\nTerminating the simulation." )
Ejemplo n.º 2
0
    def adiciona_vertice(self, v):
        '''
        Inclui um vértice no grafo se ele estiver no formato correto.
        :param v: O vértice a ser incluído no grafo.
        :raises VerticeInvalidoException se o vértice já existe ou se ele não estiver no formato válido.
        '''
        if v in self.N:
            raise VerticeInvalidoException('O vértice {} já existe'.format(v))

        if self.vertice_valido(v):
            if len(v) > self.__maior_vertice:
                self.__maior_vertice = len(v)

            self.N.append(v) # Adiciona vértice na lista de vértices
            self.M.append([]) # Adiciona a linha
            self.Mfila.append([])
            self.quantidadeVertices += 1 # incrementa Quantidade de Vertices

            for k in range(len(self.N)):
                if k != len(self.N) -1:
                    self.M[k].append(0) # adiciona os elementos da coluna do vértice
                    self.Mfila[k].append(PriorityQueue())
                    self.M[self.N.index(v)].append('-') # adiciona os elementos da linha do vértice
                    self.Mfila[self.N.index(v)].append(())
                else:
                    self.M[self.N.index(v)].append(0)  # adiciona um zero no último elemento da linha
                    self.Mfila[self.N.index(v)].append(PriorityQueue())
        else:
            raise VerticeInvalidoException('O vértice ' + v + ' é inválido')
def dijkstra(start, C):
    openSet = PriorityQueue()
    openSet_check = {}

    closedSet = {}
    g = {}
    for i in range(len(start)):
        g[start[i]] = 0

    for i in range(len(start)):
        openSet.put(start[i], 0)
        openSet_check[start[i]] = 1

    while not openSet.empty():
        currentState = openSet.get()
        closedSet[currentState] = 1
        for nextState in get_successors(currentState):
            if nextState in closedSet:
                continue

            newCost = g[currentState] + get_cost(C, nextState)
            if nextState not in openSet_check:
                g[nextState] = newCost
                openSet.put(nextState, g[nextState])
                openSet_check[nextState] = 1
            elif newCost >= g[nextState]:
                continue

            else:
                g[nextState] = newCost
                openSet.update(nextState, g[nextState])
                openSet_check[nextState] = 1

    temp = ''
    #For printing the H as a grid:
    '''for i in range(N):
		for j in range(N):
			if j==0:
				temp +=str(g[(i,j)])			
			else:
				temp +=','+str(g[(i,j)])
		temp += "\n"
	print temp'''

    #For writing the H onto a file
    f = open('heuristic.txt', 'w')
    temp = ''
    for i in range(N):
        temp = ''
        for j in range(N):
            if j == 0:
                temp += str(g[(i, j)])
            else:
                temp += ',' + str(g[(i, j)])
        if i == 0:
            f.write(temp)
        else:
            f.write('\n' + temp)
    f.close()
    return False
Ejemplo n.º 4
0
def getWay(start, end):
    """ Знаходить найкоротший шлях, між двома заданими вершинами графа

    @param start: початкова вершина
    @param end: кінцева вершина
    @return: список вершин шляху або порожній список, якщо шляху між вершинами не існує.
    """
    sources = {start: -1}
    distances = [inf for _ in range(n)]
    distances[start] = 0
    pq = PriorityQueue()
    pq.insert(start, 0)
    while not pq.empty():
        i = pq.extractMinimum()
        if i == end:
            break
        for j in graph[i]:
            if distances[i] + graph[i][j] < distances[j]:
                distances[j] = distances[i] + graph[i][j]
                sources[j] = i
                if j in pq:
                    pq.updatePriority(j, distances[j])
                else:
                    pq.insert(j, distances[j])
    if distances[end] == inf:
        return []
    path = [end]
    while end != start:
        end = sources[end]
        path.append(end)
    path.reverse()
    return path
 def test_dict(self):
     '''Push a dictionary'''
     pq = PriorityQueue()
     d = {'a':10, 'b':4}
     
     pq.push(0, d)
     self.assertEqual(pq.pop()[1], d)
Ejemplo n.º 6
0
    def gready_search_algorithm(self, initial_state):
        start_node = Node(initial_state, None, None, 0, initial_state.index(0))

        if start_node.goal_test().all():
            return start_node.find_solution()

        frontier = PriorityQueue()  ## List queue
        frontier.push(start_node,
                      frontier.h(start_node.state, start_node.goal_state()))
        explored = set()  ## Needs changing, change to set().
        star = "**********************************"
        print("\nInitial State ---------- Depth: {0}".format(start_node.depth))
        while not (frontier.is_empty()):
            v = frontier.pop()
            node = v[-1]
            print("--------------------------------------------------")
            if node.goal_test().all():
                print("***************GOAL STATE FOUND*******************")
                print("\n")
                print(node.display())
                return node.find_solution()

            print("Depth = {0} \n".format(node.depth))
            print("{0}".format(node.display()))
            print(star)
            explored.add(tuple(node.state))
            children = node.generate_child()
            for child in children:
                if tuple(child.state) not in explored:
                    frontier.push(child,
                                  frontier.h(child.state, child.goal_state()))
        return
Ejemplo n.º 7
0
    def singleTaskAssignment(self,
                             task: Task,
                             employeeList: [],
                             maxCapacity=1000):
        availableEmployee = employeeList
        PQ = PriorityQueue([])

        it = 0

        for employee in availableEmployee:
            matchDept = self.compareList(employee.department, task.department)
            matchSkill = self.compareList(employee.skillSet, task.skillSet)

            if employee.capacity >= maxCapacity or matchDept == 0 or matchSkill == 0:
                continue

            evaluation = self.evaluation(matchDept, matchSkill,
                                         maxCapacity - employee.capacity)

            PQ.add((-evaluation, it, employee))
            it = it + 1

        assignedEmployee = []

        for i in range(min(len(availableEmployee), task.assignedNeeded)):
            employee = PQ.pop()
            assignedEmployee.append(employee)

        return assignedEmployee
Ejemplo n.º 8
0
    def test_in_fucntionality(self):
        pq = PriorityQueue()
        assert 1 not in pq

        pq.enqueue(1)
        assert 1 in pq
        assert 2 not in pq
    def test_uselist(self):
        '''Push a list onto queue and them remove it'''
        pq = PriorityQueue()
        l = []

        pq.push(0,range(0, 10))
        self.assertEqual(pq.pop()[1], range(0, 10))
def a_star_search_visualize(app, grid, start, goal):
    frontier = PriorityQueue()
    frontier.add(start, 0)
    came_from = {}
    g_score = {start: 0}
    f_score = {start: heuristic(start, goal)}
    while not frontier.is_empty():
        current = frontier.pop()
        if current == goal:
            return reconstruct_path(came_from, current)
        for neighbour in grid.neighbours(current):
            tentative_g_score = g_score[current] + grid.distance(current, neighbour)
            if neighbour not in g_score or tentative_g_score < g_score[neighbour]:
                came_from[neighbour] = current
                g_score[neighbour] = tentative_g_score
                f_score[neighbour] = tentative_g_score + heuristic(neighbour, goal)
                if not frontier.exist(neighbour):
                    frontier.add(neighbour, f_score[neighbour])
        for item in frontier.get_queue():
            if item != goal and app.grid.get_color(item) != BLUE:
                app.grid.set_color(item, SKY_BLUE)
        if current != start:
            app.grid.set_color(current, BLUE)
        app.draw_graph(FAST)
    return []
Ejemplo n.º 11
0
    def __init__(self, initialpuzzle):
        initialtime = time.time()
        explored = []  # explored nodes,expanded and open
        node1 = node.Node(0, 0, initialpuzzle, 0)
        node1.puzzle.printPuzzle()
        self.heuristic1(node1.puzzle)
        print self.heuristic1(node1.puzzle)
        priorityQueue = PriorityQueue()

        priorityQueue.push(node1.puzzle,
                           self.heuristic1(node1.puzzle) + node1.puzzle.depth)
        print priorityQueue.isEmpty()

        while not priorityQueue.isEmpty():

            k = priorityQueue.pop()
            #k.printPuzzle()

            if k.checkPuzzle():

                print "corect"
                print str(time.time() - initialtime)
                break

            else:
                for move in k.moves:
                    aux = copy.deepcopy(k)  #this is a copy of our puzzle
                    aux.doMove(move)
                    aux.depth += 1
                    #aux.printPuzzle()
                    priorityQueue.push(aux, self.heuristic1(aux))
Ejemplo n.º 12
0
def Astar(start, goal, C, im):
    """Input: Start state, Goal State, Cost map and original map
   	Output: Bool value False after completion of the algorithm
   	This function performs the A-Star algorithm to find the shortest path to the goal
    	"""
    openSet = PriorityQueue()
    openSet.put(start, 0)
    openSet_check = {}
    openSet_check[start] = 1
    closedSet = {}
    plan = {}
    g = {}
    g[start] = 0
    f = {}
    j = 0
    f[start] = get_heuristic(start, goal)
    p = 0
    while not openSet.empty():
        currentState, fpop = openSet.get()
        if currentState == goal:
            print "Path found!"
            path = reconstruct_path(plan, currentState)
            path.reverse()
            get_totalCost(path, C)
            visualize(path, C, im)
            #for i in range(len(path)):
            #	print path[i]
            break

        closedSet[currentState] = 1
        for nextState in get_successors(currentState):
            j = j + 1
            if nextState in closedSet:
                continue

            newCost = g[currentState] + get_cost(C, nextState)
            if nextState not in openSet_check:
                plan[nextState] = currentState
                g[nextState] = newCost
                f[nextState] = g[(nextState)] + get_heuristic(
                    currentState, nextState)

                openSet.put(nextState, f[nextState])
                openSet_check[nextState] = 1
                continue

            elif newCost >= g[nextState]:
                openSet_check[nextState] = 1
                continue

            plan[nextState] = currentState
            g[nextState] = newCost
            f[nextState] = g[(nextState)] + get_heuristic(
                currentState, nextState)

            openSet.put(nextState, f[nextState])
            openSet_check[nextState] = 1

    return False
 def test_pushpop(self):
     '''Push items onto queue and then remove them'''
     pq = PriorityQueue()
     for i in range(0, 10):
         pq.push(0,i)
         
     for i in range(0, 10):
         self.assertEqual(pq.pop()[1], i)
Ejemplo n.º 14
0
    def run(self, gridMap, defStartNode=None, defEndNode=None, distanceType=PFA.DIS_TYPE_MANHATTAN):


        if not gridMap:
            return (PFA.RSLT_GRIDMAP_ERR,)

        startNode = defStartNode
        if not startNode:
            startNode = gridMap.getStartGridNode()
        if not startNode:
            return (PFA.RSLT_NO_START_NODE,)

        endNode = defEndNode
        if not endNode:
            endNode = gridMap.getEndGridNode()    
        if not endNode:
            return (PFA.RSLT_NO_END_NODE,)

        hdis = self.getDistance(startNode, endNode, distanceType)
        if hdis < 0:
            return (PFA.RSLT_DIS_INVALID,)

        self.gridMap = gridMap

        self.initPathMap(gridMap, distanceType)

        openSet = PQ()

        startPathNode = self.pMap[startNode.x][startNode.y]
        openSet.push(startPathNode)

        endPathNode = self.pMap[endNode.x][endNode.y]

        ret = (PFA.RSLT_NONE,)
        jumpPoint = []
        while not openSet.isEmpty() and ret[0] == PFA.RSLT_NONE:
            currNode = openSet.pop()
            jumpPoint.append(currNode)
            currNode.isInClose = True
            currGridNode = currNode.gridNode

            if gridMap.isEndGridNode(currGridNode.x, currGridNode.y):
                ret = (PFA.RSLT_OK, self.genValidPath(gridMap), self.genAllVisNodeSet(gridMap), jumpPoint)
                break

            for i in range(len(self.visMap)):
                for j in range(len(self.visMap[i])):
                    self.visMap[i][j] = False

            for dv in PFA.DIR_VECTOR:
                if not self.isOkPos(currGridNode, dv):
                    continue
                jumpNode = self.findJumpNode(currNode, currNode, self.getPathNode(currGridNode, dv), openSet)
                if jumpNode:
                    self.updateJumpNode(currNode, jumpNode, openSet)

        return ret
Ejemplo n.º 15
0
 def __init__(self, queue, randoms):
     self.queues = {}
     self.event_queue = PriorityQueue()
     self.clg = clg()
     self.output = OutputHandler(queue)
     self.randoms = randoms
     self.time = 0.
     self.loss = 0
     self.randoms_used = 0
Ejemplo n.º 16
0
def pg_srot(C):
    n = len(C)
    P = PriorityQueue()
    for j in range(n):
        element = C.delete(C.first())
        P.add(element, element)
    for j in range(n):
        (k, v) = P.remove_min()
        C.add_last(v)
Ejemplo n.º 17
0
class PriorityEdgeList:
    def __init__(self):
        self.edges = []
        self.priorityEdges = PriorityQueue()
        self.empty = True

    def InsertEdge(self, y, w):
        self.priorityEdges.add_task(y, w)
        self.edges.append(Graphs.Edge(y, w))
        self.empty = False
Ejemplo n.º 18
0
class PriorityEdgeList:
    def __init__(self):
        self.edges = []
        self.priorityEdges = PriorityQueue()
        self.empty = True

    def InsertEdge(self, y, w):
        self.priorityEdges.add_task(y, w)
        self.edges.append( Graphs.Edge(y,w))
        self.empty = False
Ejemplo n.º 19
0
    def findPath(self, s, t):
        # finds the maximum capacity path from s -> t in G

        PQ = PriorityQueue()

        for node in self.G.nodes():
            PQ.add(node, 0)
            self.label[node] = 0

        # increase the priority of source to infinity
        PQ.add(s, -float('inf'))
        self.label[s] = float('inf')

        while PQ.entry_finder:
            v = PQ.pop()
            for w in self.G.out_adj(v):
                if min(self.label[v], self.G.get_edge_weight(
                    (v, w))) > self.label[w]:
                    self.label[w] = min(self.label[v],
                                        self.G.get_edge_weight((v, w)))
                    PQ.add(w, -self.label[w])
                    self.edgeTo[w] = v

        self.printMaxCapacityPath(s, t)
        print("The capacity of the maximum capacity path is %d" %
              self.label[t])
Ejemplo n.º 20
0
    def findShortestPathwithFewestHops(self):
        # returns the shortest path with the fewest hops; 2 shortest paths of equal length
        # can differ in the number of hops.
        hops = {}
        PQ = PriorityQueue()
        for node in self.G.nodes():
            # add all nodes to the priority queue with infinite priority
            PQ.add(node, float('inf'))
            self.label[node] = float('inf')
            hops[node] = float('inf')

        # reduce source priority to zero
        PQ.add(self.s, 0)
        self.label[self.s] = 0
        hops[self.s] = 0

        while PQ.entry_finder:
            v = PQ.pop()  # gets the entry with the least priority
            for w in self.G.out_adj(v):
                edge_weight = self.G.get_edge_weight((v,w))
                if self.label[w] > self.label[v] + edge_weight or \
                self.label[w] == self.label[v] + edge_weight and hops[w] > hops[v] + 1:
                    self.label[w] = self.label[v] + edge_weight
                    PQ.add(w, self.label[w])
                    self.edgeTo[w] = v
                    hops[w] = hops[v] + 1
Ejemplo n.º 21
0
def get_char_freq(file_name):
    """
    gets the sorted list of character frequencies
    :param file_name: the file to parse through
    :type file_name: str
    :return: the huffman tree and char count
    """
    char_frequency = {}

    with open(file_name) as to_encode:
        cur_char = to_encode.read(1)
        while cur_char:
            if char_frequency.has_key(cur_char):
                char_frequency[cur_char] += 1
            else:
                char_frequency[cur_char] = 1
            cur_char = to_encode.read(1)

    # create the huffman list of nodes sorted by count
    nodes = PriorityQueue()

    # adds the initial nodes to the list
    for node_char, node_freq in char_frequency.iteritems():
        nodes.put(h_node(None, None, node_freq, node_char), node_freq)

    # create the tree of nodes required to get the character codes
    while nodes.count() > 1:
        # get the two smallest nodes
        h_node_a = nodes.get()
        h_node_b = nodes.get()
        freq_sum = h_node_a.frequency + h_node_b.frequency
        nodes.put(h_node(h_node_a, h_node_b, freq_sum, None), freq_sum)

    return nodes.get()
Ejemplo n.º 22
0
def dijkstra(graph, source):
	'''Apply the Dijkstra algorithm and return the a list where
	each position represents a vertice and its content represents 
	the predecessor'''

	vertices = [] #list of vertices
	Q = PriorityQueue() #priority queue

	#fills 'vertices' and 'Q', each vertex receive the distance iquals infinity
	for v in range(len(graph)):
		vertices.append(Vertex(v)) 
		Q.add_with_priority(v, vertices[v].dist)

	#the source vertex receive the distance zero
	vertices[source] = Vertex(num=source, dist=0)
	Q.decrease_priority(source, 0)

	while len(Q) != 0:
		u = Q.extract_min()

		for neighbor in get_adjacent(graph, u.num):
			alt = graph[u.num][neighbor] + u.dist
			Alt = Vertex(neighbor, alt)

			if vertices[neighbor].greater_than(Alt):
				vertices[neighbor].dist = alt
				vertices[neighbor].prev = u.num
				Q.decrease_priority(neighbor, alt)

	return [v.prev for v in vertices]
Ejemplo n.º 23
0
def primsAlgorithm(graph, start, surface):
    
    for v in graph:
        v.setStatus(0)
        v.setParent(None)
        
    pq = PriorityQueue()
    #heapq.heappush(pq, (0, start))
    pq.enQueue((0, start))
    while (not pq.isEmpty()):
        current = pq.deQueue()[1]
        current.setStatus(2)
        if(current.getParent() != None):
            graph.drawEdge(current.getParent(), current, surface, "yellow")
            time.sleep(0.5)
            #print(str(current.getParent().getId()) + "->" + str(current.getId()))
        for neighbour in current.getNeighbours():
                    if (neighbour.getStatus() == 0):        
                        neighbour.setStatus(1)
                        neighbour.setParent(current)
                        neighbour.setpqWeight(current.neighbours[neighbour])
                        #print(str(neighbour.getpqWeight()))
                        pq.enQueue((neighbour.getpqWeight(), neighbour))
                    elif (neighbour.getStatus() == 1):
                        if (neighbour.getpqWeight() > current.neighbours[neighbour]):
                            old = (neighbour.getpqWeight(), neighbour)
                            neighbour.setpqWeight(current.neighbours[neighbour])
                            pq.updatePriority(old, (neighbour.getpqWeight(), neighbour))
                            neighbour.setParent(current)    
    """
Ejemplo n.º 24
0
    def dijkstras(self, source, destination):
        priorityQueue = PriorityQueue()
        source.setDistance(0)
        unvisitedQueue = [(self.vertices[v].getDistance(),
                           self.vertices[v].getId()) for v in self.vertices
                          if self.verticesStatus[v] == "UP"]
        priorityQueue.buildPQ(unvisitedQueue)
        while len(priorityQueue) - 1:
            closestVertex = priorityQueue.deleteMinimum()
            closestVertex = self.getVertex(closestVertex[1])
            closestVertex.setVisited()
            for nextVertex in closestVertex.adjacent:
                #checking if both the vertex and the edge are UP
                if self.verticesStatus[
                        nextVertex] == "UP" and closestVertex.adjacent[
                            nextVertex][1] == "UP":
                    nextVertex = self.getVertex(nextVertex)
                    if nextVertex.visited:
                        continue
                    newDistance = closestVertex.getDistance() + float(
                        closestVertex.getWeight(
                            nextVertex.id))  #update distance
                    if newDistance < nextVertex.getDistance():
                        nextVertex.setDistance(newDistance)  #update distance
                        nextVertex.setPrevious(closestVertex)

            while len(priorityQueue) - 1:
                priorityQueue.deleteMinimum()
            unvisitedQueue = [(self.vertices[v].getDistance(),
                               self.vertices[v].getId()) for v in self.vertices
                              if not self.vertices[v].visited]
            priorityQueue.buildPQ(unvisitedQueue)
Ejemplo n.º 25
0
 def prims(self, graph, start, canvas):
     for v in graph:
         v.setStatus(0)
         v.setParent(None)
             
     pq = PriorityQueue()
     pq.enQueue((0, start))
     while (not pq.isEmpty()):
         current = pq.deQueue()[1]
         current.setStatus(2)
         if(current.getParent() != None):
             graph.drawEdge(current.getParent(), current, canvas, "yellow")
             canvas.update()
             time.sleep(0.5)
         for neighbour in current.getNeighbours():
             if (neighbour.getStatus() == 0):  
                 # Encountered a new vertex
                 neighbour.setStatus(1)
                 neighbour.setParent(current)
                 neighbour.setpqWeight(current.neighbours[neighbour])
                 pq.enQueue((neighbour.getpqWeight(), neighbour))
             elif (neighbour.getStatus() == 1):
                 if (neighbour.getpqWeight() > current.neighbours[neighbour]):
                     # Found smaller weight, update accordingly
                     old = (neighbour.getpqWeight(), neighbour)
                     neighbour.setpqWeight(current.neighbours[neighbour])
                     pq.updatePriority(old, (neighbour.getpqWeight(), neighbour))
                     neighbour.setParent(current)
Ejemplo n.º 26
0
 def algorithm_Prim(self, start_position):
     priority_queue = PriorityQueue(self.size)
     self.visited = [False] * (self.size + 1)
     self.visited[start_position] = True
     self.insert_to_priority_queue_from(start_position, priority_queue)
     while self.visited.count(True) < len(self.nodes):
         target = priority_queue.get()
         self.visited_history.append((target[1], target[0]))
         position = target[0]
         self.visited[position] = True
         self.insert_to_priority_queue_from(position, priority_queue)
     self.__show_graph__()
 def test_neg_priority(self):
     '''Negative priorities'''
     pq = PriorityQueue()
     for i in range(-5, 5):
         pq.push(i,i)
         
     for i in range(-5, 5):
         pri, item = pq.pop()
         # Priorities match
         self.assertEqual(pri, i)
         # Values match
         self.assertEqual(item, i)
 def test_priority(self):
     '''Test the priority portion of the priority queue'''
     pq = PriorityQueue()
     for i in range(0, 10):
         pq.push(i,i)
         
     for i in range(0, 10):
         pri, item = pq.pop()
         # Priorities match
         self.assertEqual(pri, i)
         # Values match
         self.assertEqual(item, i)
Ejemplo n.º 29
0
    def alternateRoute(self, num, optimal_path):
        '''To obtain a ranked list of less-than-optimal solutions, the optimal 
        solution must first calculated. This optimal solution is passed in as
        ``optimal_path``. A single edge appearing in the optimal solution is 
        removed from the graph, and the optimum solution to this new graph is 
        calculated. Each edge of the original solution is suppressed in turn
        and a new shortest-path calculated. The secondary solutions are then
        ranked and the ``num`` best sub-optimal solutions are returned. If 
        less than ``num`` solutions exist for the given graph, less than
        ``num`` solutions will be returned. The results are a list of tuples
        of form: 
        ``((cost, path), (cost2, path2), ...)``
        
        An example of finding alternate routes::
        
            search = Pathfinding()
            # find optimal route
            optimal_path = search.shortestPath("A", "E")
            # returns ["A", "C", "E"]
            cost = search.pathCost(optimal_path)
            # returns 3
            alt_paths = search.alternateRoute(2, optimal_path)
            # returns ((4, ["A", "B", "D", "E"]), (4, ["A", "B", "F", "E"]))
        '''
        
        # Store the paths by their weights in a priority queue. The paths with
        # the lowest cost will move to the top. At the end, pop() the queue
        # once for each desired alternative.
        minheap = PriorityQueue()
        
        start, goal = optimal_path[0], optimal_path[-1]
        
        # Don't remove the start or goal nodes
        for i in range(1, len(optimal_path) - 1):
            y = optimal_path[i]
            
            log.info("Look for sub-optimal solution with vertex {} removed".\
                    format(y))
            path = self.shortestPath(start, goal, [y])
            #path = self.shortestPath(start, goal)
            cost = self.pathCost(path)
            
            log.debug("Cost of path with vertex %s removed is %g" \
                                    % (y, cost))
            minheap.push(cost, path)

        alternatives = []
        for i in range(0, min(num, len(minheap))):
            cost, path = minheap.pop()
            alternatives.append((cost,path))
            log.debug("Cost of #%d sub-optimal path is %g" % (i+1, cost))
            
        return alternatives
Ejemplo n.º 30
0
    def test_lambda_function_enqueue(self):
        pq = PriorityQueue(min, lambda x: 2 * x)
        pq.enqueue(1)
        assert pq.items[0][0] == 2
        pq.enqueue(2)
        assert pq.items[0][0] == 4
        assert pq.items[1][0] == 2

        npq = PriorityQueue(min, lambda x: -x)
        npq.enqueue(1)
        npq.enqueue(2)
        assert npq.items[0][0] == -1
        assert npq.items[1][0] == -2
Ejemplo n.º 31
0
class PriorityQueueTest(unittest.TestCase):
    def setUp(self):
        self.p_queue = PriorityQueue()

    def test(self):
        elements = []
        for i in range(1000):
            x = random()
            elements.append(x)
            self.p_queue.insert(x)
        elements.sort(reverse=True)
        for elem in elements:
            self.assertEqual(elem, self.p_queue.pop())
Ejemplo n.º 32
0
 def __init__(self):
     # Initial Constructor of the Scheduler.
     self.lines = open('processes.txt', 'r').readlines()
     self.ready = PriorityQueue()
     self.all = []
     self.i = 0
     self.finished = 0
     self.program_counter = 0
     self.load_time = []
     self.load_var = 0
     self.averageT = 0
     self.averageW = 0
     self.throughput = 0
Ejemplo n.º 33
0
def Astar(start, goal, C):
    openSet = PriorityQueue()
    openSet.put(start, 0)
    openSet_check = {}
    openSet_check[start] = 1
    closedSet = {}
    plan = {}
    g = {}
    g[start] = 0
    f = {}
    j = 0
    f[start] = get_heuristic(start)
    p = 0
    while not openSet.empty():
        currentState, fpop = openSet.get()
        if currentState in goal:
            path = reconstruct_path(plan, currentState)
            path.reverse()
            get_totalCost(path, C)
            visualize(path, C)
            for i in range(len(path)):
                print path[i]
            break

        closedSet[currentState] = 1
        for nextState in get_successors(currentState):
            j = j + 1
            if nextState in closedSet:
                continue

            newCost = g[currentState] + get_cost(C, nextState)
            if nextState not in openSet_check:
                plan[nextState] = currentState
                g[nextState] = newCost
                f[nextState] = g[(nextState)] + get_heuristic(nextState)

                openSet.put(nextState, f[nextState])
                openSet_check[nextState] = 1
                continue

            elif newCost >= g[nextState]:
                openSet_check[nextState] = 1
                continue

            plan[nextState] = currentState
            g[nextState] = newCost
            f[nextState] = g[(nextState)] + get_heuristic(nextState)

            openSet.put(nextState, f[nextState])
            openSet_check[nextState] = 1
    return False
def dijkstra(start, C):
    """Input: Start state and Cost map
	Output: The cost of each cell as a dictionary
	This function performs the Dijkstra algorithm to find the cost of each cell in the map
	"""
    openSet = PriorityQueue()
    openSet_check = {}
    closedSet = {}
    g = {}
    for i in range(len(start)):
        g[start[i]] = 0
        openSet.put(start[i], 0)
        openSet_check[start[i]] = 1

    while not openSet.empty():
        currentState = openSet.get()
        closedSet[currentState] = 1
        for nextState in get_successors(currentState):
            if nextState in closedSet:
                continue
            newCost = g[currentState[0]] + get_cost(nextState)
            if nextState not in openSet_check:
                g[nextState] = newCost
                openSet.put(nextState, g[nextState])
                openSet_check[nextState] = 1
                continue

            elif newCost >= g[nextState]:
                continue

            g[nextState] = newCost
            openSet.put(nextState, g[nextState])
            openSet_check[nextState] = 1

    # This writes the cost values onto a file which is accessed by the A-star algorithm
    # for the planning part
    f = open('heuristic.txt', 'w')
    temp = ''
    for i in range(M):
        temp = ''
        for j in range(N):
            if j == 0:
                temp += str(g[(i, j)])
            else:
                temp += ',' + str(g[(i, j)])
        if i == 0:
            f.write(temp)
        else:
            f.write('\n' + temp)
    f.close()
    return g
Ejemplo n.º 35
0
def computepaths(station, network):

    paths = []
    station.durations = [float('inf') for _ in network.shapes]
    for i in range(len(network.shapes)):
        if network.shapes[i] == station.shape:
            station.durations[i] = 0
        
    G = network.graph
    start = station.idt
    n = len(network.stations)
    p = len(network.lines)

    spanningForest = [None for _ in range(n * p)]
    dejaVu = [False for _ in range(n * p)]
    U = PriorityQueue(len(G))
    closer = [None for _ in network.shapes]

    for i in range(p):
        U.push(start + n * i, 0)
    
    while U.length() != 0 and len([x for x in closer if x is None]) != 0:
        
        (u, k) = U.pop()
        if dejaVu[u]:
            continue
        else:
            
            for i in range(len(network.shapes)):
                if closer[i] is None and network.stations[u % n].shape == network.shapes[i]:
                    closer[i] = u
            dejaVu[u] = True
            for (v, w) in G[u]:
                
                if - U.priority(v) > - k + w:
                    
                    U.changePrio(v, k - w)
                    spanningForest[v] = u
    
    for i in range(len(network.shapes)):
        route = []
        goal = closer[i]
        if not goal is None:
            station.durations[i] = - U.priority(goal)
        while goal is not None and goal % n != station.idt and len(route) < n:
            route.append((goal // n, goal % n))
            goal = spanningForest[goal]
        paths.append(route)

    return paths
Ejemplo n.º 36
0
    def search(self, start, end):
        frontier = PriorityQueue()
        frontier.put(0, start)

        cost_so_far = dict()
        cost_so_far[start] = 0

        came_from = dict()
        came_from[start] = None

        while not frontier.is_empty():
            pri, current = frontier.get()

            if current == end:
                self.paths[start].update(self.reconstruct_path(end, came_from))
                break

            neighbors = [
                neighbor.end for neighbor in self.graph.neighbors(current)
            ]
            for neighbor in neighbors:
                new_cost = cost_so_far[current] + self.graph.cost(
                    current, neighbor)
                if neighbor not in cost_so_far.keys(
                ) or new_cost < cost_so_far[neighbor]:
                    cost_so_far[neighbor] = new_cost
                    came_from[neighbor] = current
                    frontier.put(new_cost, neighbor)
Ejemplo n.º 37
0
Archivo: Prim.py Proyecto: XAMEUS/AL5
def Prim(G, w, s):
	inf = float("inf")
	H = PriorityQueue()
	T = []
	s.priorite = 0
	H.add_task(s, 0)
	i = 1
	for u in G.sommets:
		u.pred = None
		if u != s :
			H.add_task(u, inf)
			u.priorite = inf
	try:
		while True:
			u = H.pop_task()
			u.couleur = "noir"
			if u.priorite != inf:
				if u.pred is not None: T.append((u.pred, u))
				for v in u.voisins:
					if v.couleur == "blanc": #v n'est pas sorti du tas
						if w[(u, v)] < v.priorite:
							v.priorite = w[(u, v)]
							H.add_task(v, v.priorite)
							v.pred = u
	except:
		pass
	return T
Ejemplo n.º 38
0
def dijkstra_search(graph, start, goal):
    frontier = PriorityQueue()
    frontier.put(start, 0)

    # different from first implementation in that it remembers
    # WHERE we came from, not just that we visited it
    came_from = {}
    cost_so_far = {}
    came_from[start] = None
    cost_so_far[start] = 0

    while not frontier.empty():
        # from front of the queue
        current = frontier.get()
        # print("Visiting ", current)

        # main difference from implementation 2
        if current == goal:
            break

        # get neighbors of current node
        # add it to back of frontier queue if not yet visited
        for next in graph.neighbors(current):
            new_cost = cost_so_far[current] + graph.cost(current, next)
            if next not in cost_so_far or new_cost < cost_so_far[next]:
                cost_so_far[next] = new_cost
                priority = new_cost
                frontier.put(next, priority)
                came_from[next] = current

    return came_from, cost_so_far
Ejemplo n.º 39
0
    def a_star(self):
        # Genera camino usando el algoritmo A*
        frontier = PriorityQueue()
        frontier.put(self.start, 0)
        came_from = {}
        cost_so_far = {}
        came_from[self.start] = None
        cost_so_far[self.start] = 0

        # comienza la busqueda
        while not frontier.empty():
            current = frontier.get()
            # termina si llega a la meta
            if current == self.goal:
                break
            # busca en sus vecinos
            for next in self.graph.neighbors(current):
                new_cost = cost_so_far[current] + self.graph.cost(
                    current, next)
                if next not in cost_so_far or new_cost < cost_so_far[next]:
                    cost_so_far[next] = new_cost
                    priority = new_cost + self.cost(self.posiciones[self.goal],
                                                    self.posiciones[next])
                    frontier.put(next, priority)
                    came_from[next] = current
        # ordena el plan
        current = self.goal
        path = [current]
        while current != self.start:
            current = came_from[current]
            path.append(current)
        # invierte el camino para empezar al inicio
        path.reverse()
        self.plan = path
Ejemplo n.º 40
0
    def a_star_search(self, start, goal):
        frontier = PriorityQueue()
        frontier.put(start, 0)
        came_from = {}
        cost_so_far = {}
        came_from[start.get_key()] = None
        cost_so_far[start.get_key()] = 0

        while not frontier.empty():
            current = frontier.get()

            if current == goal:
                break

            for point in self.graph.neighbors(current):
                move_cost = self.graph.cost(current, point)
                new_cost = cost_so_far[current.get_key()] + move_cost
                if point is None:
                    continue
                if point.get_key(
                ) not in cost_so_far or new_cost < cost_so_far[
                        point.get_key()]:
                    cost_so_far[point.get_key()] = new_cost
                    priority = new_cost + self.heuristic(goal, point)
                    frontier.put(point, priority)
                    came_from[point.get_key()] = current

        #return came_from, cost_so_far
        return came_from
Ejemplo n.º 41
0
    def dijkstraSearch(network: Network, startNodeId: int, endNodeId: int):
        if (not network.nodesExist([startNodeId, endNodeId])):
            return -1

        costs = {}
        pq = PriorityQueue()

        # Set the costs of all nodes to infinity except the start node which we give zero cost.
        costs[startNodeId] = 0
        for nodeId in network.nodeIds:
            if (nodeId != startNodeId):
                costs[nodeId] = math.inf

        # Begin by adding start node to the queue.
        pq.enqueue(startNodeId, 0)

        # Use priority queue to traverse the nodes having least cost.
        while (not pq.isEmpty()):
            shortestStep = pq.dequeue()
            currentNodeId = shortestStep.nodeId

            # Calculate the cost of travelling to each neighbor.
            for neighbor in network.adjacencies[currentNodeId]:
                cost = costs[currentNodeId] + neighbor.cost

                # If the cost of this path to the neighbor is less than another path
                # we add the neighbor node ID to the queue as a candidate to be traversed.
                if (cost < costs[neighbor.nodeId]):
                    costs[neighbor.nodeId] = cost
                    pq.enqueue(neighbor.nodeId, cost)

        return costs[endNodeId]
Ejemplo n.º 42
0
    def FindDirections(self, curState):
        pq = PriorityQueue(["dist", "changeDir"])
        pq.add({"state": curState, "prev": None, "dist": 0 + self.heuristics(curState), "changeDir": 0, "step": 0})
        cnt = 0
        while True:
            elem = pq.pop()
            #print("Dir:", elem["state"].snake.curDir, "step:", elem["step"], "cnt: ", cnt)

            ok_dirs = self._get_ok_dirs_(elem["state"])
            #print ok_dirs
            for d in ok_dirs:
                nextState = elem["state"].GetNextState(d)

                step = elem["step"] + 1
                changeDir = 0
                if d != elem["state"].snake.curDir:
                    changeDir = 1
                dist = step + self.heuristics(nextState)

                pq.add({"state": nextState, "prev": elem, "dist": dist, "changeDir":changeDir, "step": step} )

            #if elem["step"] % 10 == 0:
            #    print elem["step"]
            if pq.IsEmpty():
                print "EMPTY!!!!", elem["step"]
                if len(pq.storage) > 0:
                    elem = pq.storage.pop(0)
                    pq.add(elem)
                """
                while len(pq.storage) > 0:
                    other = pq.storage.pop()
                    print other["step"], elem["step"]
                    if abs(other["step"] - elem["step"]) < elem["step"] * 0.1:
                        break
                        """
                print elem["state"].IsAppleEaten(), elem["state"].apple.GetApplePos()
                #pq.add(other)

            cnt += 1
            if cnt >= 2000 or self._is_goal(elem["state"]) and elem["step"] > 0:
                #print("step:", elem["step"], "cnt:", cnt, "empty:", pq.IsEmpty())
                pq.clean()
                while True:
                    self.directions.append(elem["state"].snake.curDir)
                    elem = elem["prev"]
                    if elem is None:
                        break
                self.directions.pop() # remove the first direction (the state that already take a step)

                return self.directions
Ejemplo n.º 43
0
    def FindDirections(self, curState):
        self.directions = []
        pq = PriorityQueue(["dist"])
        maxDepth = 5
        pq.add({"state": curState, "dist": self.heuristics(curState), "step": 0, "prev": None})
        cnt = 0
        while not pq.IsEmpty():
            elem = pq.pop()
            state = elem["state"]
            stack = []
            stack.append({"state": state, "step": 0, "prev": elem["prev"]})

            """
            if cnt >= SCREEN_WITH + SCREEN_HEIGHT - 4 * SNAKE_WITH_HALH - 2:
                print "size of queue: ", len(pq.queue)
                cnt = 0
            """
            """
            maxSize = max(len(pq.queue) / 2, len(pq.queue) - randint(10, 20))
            reduceSize = min(maxSize, len(pq.queue) - 5)
            for i in range(reduceSize):
                pq.pop()

            """
            if len(pq.queue) > 700:
                # TODO: if we cannnot find solution for so long a time, the size of queue should
                # be reduced to a pretty small number
                for i in range(randint(0,len(pq.queue)-1)):
                    pq.pop()
                #print "size of queue: ", len(pq.queue)
                #print curState.snake.body
                #print curState.snake.GetBodyRects()
                continue

            while len(stack) > 0:
                el = stack.pop()
                stat = el["state"]

                if el["step"] >= maxDepth:
                    pq.add({"state": stat, "dist": self.heuristics(stat), "step": el["step"], "prev": el["prev"]})
                    continue

                if stat.IsAppleEaten():
                    # guess if the snake can be dead by instinct
                    stat.AddSnakeLen()
                    if self._is_possible_dead_(stat):
                        continue
                    while el is not None:
                        self.directions.append(el["state"].snake.curDir)
                        el = el["prev"]
                    self.directions.pop()
                    return

                ok_dirs = self._arange_dirs_(stat, self._get_ok_dirs_(stat))
                for d in ok_dirs:
                    nextStat = stat.GetNextState(d)
                    nextEl = {"state": nextStat, "step": el["step"]+1, "prev": el}
                    stack.append(nextEl)

        self.directions.append(Direction.Stop)
def lowerBoundImprovementReversed(source, target) :
    """
    Evolution of the normal label-setting algorithm, with a preprocessing that uses
    Dijkstra bicriteria algorithm

    @return
        number of loops
    """
    visitedNodes = __dijkstraBiCrit(target, source, 0) # safest path
    bestDanger = source.danger
    for v in visitedNodes:
        v.resetValue(True)
    __dijkstraBiCrit(target, source, 1) # shortest path
    bestDistance = source.distance

    labelQueue = PriorityQueue()
    sourceLabel = (0, 0, source, None, 0, None)
    source.labelList.append(sourceLabel)
    labelQueue.put(sourceLabel, sourceLabel[0])
    ending = False
    counter = 0
    while not labelQueue.isEmpty() :
        actualLabel = labelQueue.getMin()
        distSoFar = actualLabel[0]
        dangSoFar = actualLabel[1]
        actualNode = actualLabel[2]
        parentIndex = actualLabel[4]
        
        for nearNode, weight in actualNode.neighbors :
            distance, danger = weight
            ownIndex = len(nearNode.labelList)
            newLabel = (distSoFar + distance, dangSoFar + danger, nearNode, actualNode, ownIndex, parentIndex) # creating of a new label
            useLabel = True

            if nearNode.bestLabel[0] is not None and nearNode.bestLabel[1] is not None :    # if the best label is present, enter
                checkDistance = newLabel[0] + nearNode.bestLabel[0]
                checkDanger = newLabel[1] + nearNode.bestLabel[1]
                if checkDanger >= bestDanger and checkDistance >= bestDistance :  # if the values are negative is useless to check
                    continue #checkLabel = (newLabel[0] + checkDistance, newLabel[1] + checkDanger)
                else :
                    checkLabel = newLabel   
            else :
                checkLabel = newLabel
            
            if ending :
                if isDominated(checkLabel, target.labelList) : # if the newlabel + bestLabel is dominated is useless go on                
                    continue # restart 'for' loop with another nearNode
            
            for label in nearNode.labelList :
                if isDominated(newLabel, [label]) :
                    useLabel = False
                    break # if a value is useless (1st case) the loop - label in labelList - is interrupt, to jump some loops
            if useLabel :
                nearNode.labelList.append(newLabel)
                if nearNode != target :
                    labelQueue.put(newLabel, newLabel[0])
                else :
                    ending = True
        counter += 1
    return counter
 def shortest_path(self, target):
     """
     Uses Dijkstra's algorithm to return the shortest paths between the 
     target and all other nodes in the graph.
     """
     if not self.weighted:
         print "Graph is not weighted; redirecting to BFS"
         return self.bfs(target, min_distance=True)
     distances_pq = PriorityQueue("min")
     distances_dict = {} 
     unvisited = []
     for node in self.adj_matrix[0]:
         if node == target:
             distances_pq.enqueue(0, node)
             distances_dict[node] = 0
         elif node != False:
             distances_pq.enqueue(float('inf'), node)
             distances_dict[node] = float('inf')
         else:
             continue
         unvisited.append(node)
     while unvisited:
         min_distance, min_node = distances_pq.dequeue()
         if min_node not in unvisited:
             continue
         neighbors = self.linked(min_node)
         for neighbor in neighbors:
             neighbor_distance = min(distances_dict[neighbor], 
                                     min_distance + self.link_weight(min_node, neighbor))
             if neighbor_distance != distances_dict[neighbor]:
                distances_dict[neighbor] = neighbor_distance
                distances_pq.enqueue(neighbor_distance, neighbor)
         unvisited.remove(min_node)
     return distances_dict
Ejemplo n.º 46
0
def a_star_search(graph, start, goal):
    frontier = PriorityQueue()
    frontier.put(start, 0)

    came_from = {}
    cost_so_far = {}
    came_from[start] = None
    cost_so_far[start] = 0

    while not frontier.empty():
        current = frontier.get()

        if current == goal:
            break

        for next in graph.neighbors(current):
            new_cost = cost_so_far[current] + graph.cost(current, next)
            if next not in cost_so_far or new_cost < cost_so_far[next]:
                cost_so_far[next] = new_cost
                priority = new_cost + heuristic(
                    goal, next
                )  # reduce priority for positions further away from goal
                frontier.put(next, priority)
                came_from[next] = current

    return came_from, cost_so_far
Ejemplo n.º 47
0
    def __init__(self):
        #This allows access to specific entities
        #sEntityType:(sEntityName:entity)
        self._dEntities = {}

        #This orders the entities so that the ones with the highest draw
        #   priority will be first in the list (highest priority is 0.)
        self._pqDrawableEntities = PQ()
Ejemplo n.º 48
0
def dijkstrasAlgorithm(graph, start):
    for v in graph:
        v.setStatus(0)
        
    #start.setStatus(2)
    start.setDistance(0)
    pq = PriorityQueue()
    #heapq.heappush(pq, (0, start))
    pq.enQueue((0, start))
    while (not pq.isEmpty()):
        current = pq.deQueue()[1]
        current.setStatus(2)
        #if(current.getParent() != None):
            #  print(str(current.getParent().getId()) + "->" + str(current.getId()))
        for neighbour in current.getNeighbours():
            if (neighbour.getStatus() == 0):        
                neighbour.setStatus(1)
                neighbour.setParent(current)
                neighbour.setpqWeight(current.neighbours[neighbour])
                neighbour.setDistance(current.getDistance() + current.neighbours[neighbour])
                pq.enQueue((neighbour.getpqWeight(), neighbour))
            elif (neighbour.getStatus() == 1):
                if (neighbour.getDistance()) > (current.getDistance() + current.neighbours[neighbour]):
                    #old = (neighbour.getpqWeight(), neighbour)
                    #neighbour.setpqWeight(current.neighbours[neighbour])
                    #pq.updatePriority(old, (neighbour.getpqWeight(), neighbour))
                    neighbour.setParent(current)
                    neighbour.setDistance(current.getDistance() + current.neighbours[neighbour])
Ejemplo n.º 49
0
    def a_star_search(self, start, goal):
        frontier = PriorityQueue()
        frontier.put(start, 0)

        came_from = {}
        cost_so_far = {}

        came_from[start] = start
        cost_so_far[start] = 0

        while not frontier.empty():
            current = frontier.get()
            if current.position_x == goal.position_x and current.position_y == goal.position_y:
                break

            for next in self.neighbors(current):
                next_cell = Cell(next[0], next[1])

                if next_cell.position_x == goal.position_x and next_cell.position_y == goal.position_y:
                    next_cell = goal
                new_cost = cost_so_far[current] + self.heuristic(current, next_cell)

                if next_cell not in cost_so_far or new_cost < cost_so_far[next_cell]:
                    cost_so_far[next_cell] = new_cost
                    priority = new_cost + self.heuristic(goal, next_cell)
                    frontier.put(next_cell, priority)
                    came_from[next_cell] = current

        return came_from  # , cost_so_far
Ejemplo n.º 50
0
 def search(self, startHex, goalHex):
     startNode = HexNode(startHex, None)
     goalNode = HexNode(goalHex, None)
     frontier = PriorityQueue()
     frontier.put(startNode, 0)
     cameFrom = {}
     currCost = {}
     cameFrom[startNode] = None
     currCost[startNode] = 0
     
     while not frontier.empty():
         currNode = frontier.get()
         
         if currNode.h == goalNode.h:
             break
         
         for nextNode in self.getNeighborNodes(currNode.h):
             newCost = currCost[currNode] + self.cost(currNode, nextNode)
             if nextNode not in currCost or newCost < currCost[nextNode]:
                 currCost[nextNode] = newCost
                 priority = newCost + HexMap.heuristic(goalNode, nextNode)
                 frontier.put(nextNode, priority)
                 cameFrom[nextNode] = currNode
     
     return cameFrom, currCost
Ejemplo n.º 51
0
    def replan(self, location, heading):
        """
        :type location: Position
        :param location: The current location of the robot
        :type heading: Direction
        :param heading: The current direction the robot is pointing
        """
        open_nodes = PriorityQueue(lifo=False)
        closed_nodes = set()
        came_from = {}  # The key is the end state, the value is a tuple of g, move, and start state

        initial_state = (location, heading)
        g = 0
        h = self.heuristic.get_value(initial_state)
        f = g + h
        open_nodes.insert(f, initial_state)
        came_from[initial_state] = (g, None, None)
        current_state = initial_state
        while len(open_nodes) > 0:
            while current_state in closed_nodes:
                current_state = open_nodes.pop_min()

            closed_nodes.add(current_state)

            if self.heuristic.get_value(current_state) == 0:
                pol = self.create_policy(current_state, initial_state, came_from)
                return self.policy

            moves = self.get_possible_moves(current_state)
            for move in moves:
                new_state = self.get_move_result(current_state, move)
                if new_state in closed_nodes:
                    continue
                g = came_from[current_state][0] + self.get_cost(move)
                h = self.heuristic.get_value(new_state)
                f = g + h
                if new_state not in open_nodes:
                    open_nodes.insert(f, new_state)
                elif new_state in came_from and f >= open_nodes.get_priority(new_state):
                    continue
                came_from[new_state] = (g, move, current_state)
                open_nodes.update_priority(new_state,f)

        return "No path to goal!"
def dijkstra(aGraph,start):
	pq = PriorityQueue()
	start.setDistance(0)
	pq.buildHeap([(v.getDistance(),v) for v in aGraph])
	while not pq.isEmpty():
		currentVert = pq.delMin()
		for nextVert in currentVert.getConnections():
			newDist = currentVert.getDistance() + currentVert.getWeight(nextVert)
			if newDist < nextVert.getDistance():
				nextVert.getDistance( newDist )
				nextVert.setPred(currentVert)
				pq.decreaseKey(nextVert,newdist)
Ejemplo n.º 53
0
    def dijkstraBi(self, start, goal, exceptions=None):
        '''Bi-Directional Dijkstra's algorithm. The search begins at the
        ``start`` node and at the ``goal`` node simultaneously. The search area
        expands radially outward from both ends until the two meet in the
        middle. In most cases this reduces the number of vertices which must
        be checked by half.
        
        .. image:: dijkstra.png
        .. image:: dijkstra-bidirectional.png
        
        Search area of Dijkstra's algorithm (left) vs search area of 
        bi-directional Dijkstra's algorithm (right).
            
        .. seealso::
            :func:`aStarPath`, :func:`dijkstra`
        '''
        dist_f = {}       # dictionary of final distances
        dist_b = {}       # dictionary of final distances
        
        came_from_f = {} # dictionary of predecessors
        came_from_b = {} # dictionary of predecessors
        
        # nodes not yet found
        forward = PriorityQueue()
        backward = PriorityQueue()

        # The set of nodes already evaluated
        closedset_forward = []
        closedset_backward = []
        
        forward.push(0, start)
        backward.push(0, goal)
        
        while len(forward) + len(backward) > 0:
            if len(forward) > 0:
                done, stop = self.__dijkstraBiIter(start, goal, exceptions, 
                                        dist_f, came_from_f, forward, 
                                        closedset_forward, closedset_backward)

            if not done and len(backward) > 0:
                done, stop = self.__dijkstraBiIter(goal, start, exceptions,
                                        dist_b, came_from_b, backward, 
                                        closedset_backward, closedset_forward)
        
            if done:
                #log.debug("came_from_f: " + str(came_from_f))
                #log.debug("came_from_b: " + str(came_from_b))
                
                pathf = self.reconstructPath(came_from_f, stop)
                #log.info("PathF: %s" % pathf)
                
                pathb = self.reconstructPath(came_from_b, stop)
                pathb.reverse()
                #log.info("PathB: %s" % pathb)
                
                return pathf + pathb[1:]
        return None
def fast_marching_method(graph,start):
    
    h = 1
    
    def calculus_distance(node,graph,weights):
        neighbours = graph.get_neighbours(node);
        if 'y-1' in neighbours :
            if 'y+1' in neighbours:
                x1 = min(weights[neighbours['y-1']],weights[neighbours['y+1']]);
            else :
                x1 = weights[neighbours['y-1']];
        else :
            if 'y+1' in neighbours:
                x1 = weights[neighbours['y+1']];
        if 'x-1' in neighbours:
            if 'x+1' in neighbours:
                x2 = min(weights[neighbours['x-1']],weights[neighbours['x+1']]);
            else :
                x2 = weights[neighbours['x-1']];
        else :
            if 'x+1' in neighbours:
                x2 = weights[neighbours['x+1']];
        
        if 2*h**2-(x1-x2)**2>=0:
            return (x1+x2+(2*h**2-(x1-x2)**2)**0.5)/2
        else:
            return min(x1,x2)+h
        
    
    frontier = PriorityQueue();
    weights = graph.distances;
    
    explored = []
    
    goals = numpy.where(graph.indicator_map==2)
    goals_x = goals[0]
    goals_y = goals[1]
    for i in range(goals_x.size):
        frontier.append([0,(goals_x[i],goals_y[i])])
        weights[(goals_x[i],goals_y[i])] = 0
    
       
    while frontier:
        node = frontier.pop();
        explored.append(node[1])
        #if node[1]==start:
        #   return weights
        neighbours = graph.get_neighbours(node[1]);
        for neighbour in neighbours.itervalues():
            if neighbour not in explored and graph.indicator_map[neighbour]:
                if not neighbour in frontier:
                    frontier.append([calculus_distance(neighbour,graph,weights),neighbour])
                    weights[neighbour]=calculus_distance(neighbour,graph,weights)
                elif weights[neighbour] > calculus_distance(neighbour,graph,weights):
                    frontier[neighbour][0]=calculus_distance(neighbour,graph,weights)
                    weights[neighbour]=calculus_distance(neighbour,graph,weights)
    graph.distances = weights
Ejemplo n.º 55
0
    def __init__(self, abilities, players):
        self.gm = players[0]
        self.errorAbility = ErrorAbility()
        self.eventQueue = PriorityQueue()
        self.parser = Parser()
        self.inbox = Inbox()
        self.outbox = Outbox()

        self.players = {}
        for player in players[1:]:
            self.players[player.getName().lower()] = player

        self.abilities = {}
        for ability in abilities:
            self.abilities[ability.getName().lower()] = ability
Ejemplo n.º 56
0
    def dijkstra(self, G, start, end=None):

        D = {} # dictionary of final distances
        P = {} # dictionary of predecessors
        Q = PriorityQueue() # estimated distances of non-final vertices
        Q[start] = 0 # add zero cost

        for v in Q:
            D[v] = Q[v]

            if v == end:
                break

            for w in G.getVertex(v).adjacencies:
                vwLength = D.get(v) + G.vertexAdjacencies(v).get(w).getcost()

                if w in D:
                    if vwLength < D.get(w):
                        raise ValueError("Dijkstra: found better path to already-final vertex")
                elif w not in Q or vwLength < Q.get(w):
                    Q[w] = vwLength
                    P[w] = v

        return D, P
 def test_multiple(self):
     '''Test that two different priority queues do not interfere with
     each other'''
     pq = PriorityQueue()
     pq.push(0, 'A')
     
     pq = PriorityQueue()
     self.assertEqual(len(pq), 0)
     with self.assertRaises(IndexError):
         pq.pop()
Ejemplo n.º 58
0
    def dijkstra(self, start, goal, exceptions=None):
        '''Dijkstra's algorithm, conceived by Dutch computer scientist Edsger 
        Dijkstra in 1956 and published in 1959, is a graph search algorithm 
        that solves the single-source shortest path problem for a graph with
        nonnegative edge path costs, producing a shortest path tree.
        
        .. note::
            Unmodified, Dijkstra's algorithm searches outward in a circle from
            the start node until it reaches the goal. It is therefore slower
            than other methods like A* or Bi-directional Dijkstra's. The
            algorithm is included here for performance comparision against
            other algorithms only.
        
        .. seealso::
            :func:`aStarPath`, :func:`dijkstraBi`
        '''
        dist = {}       # dictionary of final distances
        
        came_from = {} # dictionary of predecessors
        
        # nodes not yet found
        queue = PriorityQueue()

        # The set of nodes already evaluated
        closedset = []
        
        queue.push(0, start)
        
        while len(queue) > 0:
            #log.debug("queue: " + str(queue))
            weight, x = queue.pop()
            dist[x] = weight
            if x == goal:
                #log.debug("came_from: " + str(came_from))
                path = self.reconstructPath(came_from, goal)
                #log.info("Path: %s" % path)
                return path
                        
            closedset.append(x)
            
            for y in self.neighborNodes(x):
                if y in closedset:
                    continue                
                if(exceptions is not None and y in exceptions):
                    continue

                costxy = self.timeBetween(x,y)
                
                if not dist.has_key(y) or dist[x] + costxy < dist[y]:
                    dist[y] = dist[x] + costxy
                    queue.reprioritize(dist[y], y)
                    came_from[y] = x
                    #log.debug("Update node %s's weight to %g" % (y, dist[y]))

        return None
Ejemplo n.º 59
0
    def a_star_search(self):
        self.clear_history()
        self.frontier = PriorityQueue()
        self.frontier.put(AStarNode(self.points[0], None, 0), 0)
        last_node = None

        # iterate until the frontier is empty
        while not self.frontier.empty():
            snapshot = Snapshot(list(self.visited), self.frontier.getNodes(), uses_a_star_nodes=True)
            self.search_snapshots.append(snapshot)
            current = self.frontier.get()
            if current.my_point in self.visited:
                #  Never mind, we didn't want that snapshot :)
                self.search_snapshots.remove(snapshot)
                continue
            self.visited.append(current.my_point)

            # end immediately if the goal is found
            if self.is_goal(current.my_point):
                last_node = current
                break

            # find out which point we're dealing with
            try:
                index = self.points.index(current.my_point)
            except:
                print >> sys.stderr, 'Vertex not found in points'
                return False

            # prepare qualified new neighbors to be added to frontier
            row = self.visibility_graph[index]
            index = 0
            for item in row:
                neighbor = self.points[index]
                if item == 1 and neighbor not in self.visited:
                    distance = current.cost
                    distance += self.distance(neighbor, current.my_point)   # distance so far
                    est_distance_remaining = distance + self.distance(neighbor, self.points[1])    # est. distance to go
                    self.frontier.put(AStarNode(neighbor, current, distance), est_distance_remaining)
                index += 1

        # unwind path back to start
        while not last_node == None:
            self.path.insert(0, last_node.my_point)
            last_node = last_node.parent
Ejemplo n.º 60
0
def dijkstrasAlgorithm(graph, start, surface):
    pq = PriorityQueue()
    for v in graph:
        v.setStatus(0)
        v.setDistance(float("inf"))
        #print((v.getDistance(), v))
        pq.enQueue((v.getDistance(), v))
            
        #start.setStatus(2)
    start.setDistance(0)
    pq.updatePriority((float("inf"), start), (0, start))
    #heapq.heappush(pq, (0, start))
    #pq.enQueue((0, start))
    #while (not pq.isEmpty()):
    for i in range(0, graph.order):
        current = pq.deQueue()[1]
        current.setStatus(2)
        if(current.getParent() != None):
            graph.drawEdge(current.getParent(), current, surface, "blue")
            time.sleep(0.5)            
            #if(current.getParent() != None):
                #  print(str(current.getParent().getId()) + "->" + str(current.getId()))
        for neighbour in current.getNeighbours():
            """
            if (neighbour.getStatus() == 0):        
                neighbour.setStatus(1)
                neighbour.setParent(current)
                #neighbour.setpqWeight(current.neighbours[neighbour])
                neighbour.setDistance(current.getDistance() + current.neighbours[neighbour])
                pq.enQueue((neighbour.getDistance(), neighbour))
            """
            #elif (neighbour.getStatus() == 1):
            if (neighbour.getDistance()) > (current.getDistance() + current.neighbours[neighbour]):
                old = (neighbour.getDistance(), neighbour)
                        #neighbour.setpqWeight(current.neighbours[neighbour])
                        #pq.updatePriority(old, (neighbour.getpqWeight(), neighbour))
                neighbour.setParent(current)
                neighbour.setDistance(current.getDistance() + current.neighbours[neighbour]) 
                pq.updatePriority(old, (neighbour.getDistance(), neighbour))
    
    """