Ejemplo n.º 1
0
def Q3_3():
	clear()
	A = Var("A")
	B = Var("B")
	p1 = premise(Or(Not(A), Not(B)))
	end = Not(And(A,B))
	A_B = And(A,B)
	
	return orE(p1, arrowI(assume(Not(A)), notI(arrowI(assume(A_B), notE(andEL(assumed(A_B), A), assumed(Not(A)), false()), Arrow(A_B, false())), Not(A_B)), Arrow(Not(A), Not(A_B))), arrowI(assume(Not(B)), notI(arrowI(assume(A_B), notE(andER(assumed(A_B), B), assumed(Not(B)), false()), Arrow(A_B, false())), Not(A_B)), Arrow(Not(B), Not(A_B))), end)
Ejemplo n.º 2
0
def DL2(p1):
    a = Var("a")
    b = Var("b")

    return doubleNeg(
        notI(
            arrowI(
                assume(Not(b)),
                notE(orIR(assumed(Not(b)), Or(Not(a), Not(b))), p1, false()),
                Arrow(Not(b), false())), Not(Not(b))), b)
Ejemplo n.º 3
0
def DM3():
    return forallI(
        assume(Var("a")),
        notI(
            arrowI(
                assume(parse("P(a)")),
                notE(existsI(assumed(parse("P(a)")), "a", parse("EX x. P(x)")),
                     premise(Not(parse("EX x. P(x)"))), false()),
                Arrow(parse("P(a)"), false())), Not(parse("P(a)"))),
        parse("FA x. ~P(x)"))
Ejemplo n.º 4
0
def DM2():
    return notI(
        arrowI(
            assume(parse("FA x. P(x)")),
            notE(
                forallE(assumed(parse("FA x. P(x)")), "a", parse("P(a)")),
                existsE(
                    premise(parse("EX x. ~P(x)")), "a",
                    arrowI(assume(Not(parse("P(a)"))),
                           assumed(Not(parse("P(a)"))),
                           Arrow(Not(parse("P(a)")), Not(parse("P(a)")))),
                    Not(parse("P(a)"))), false()),
            (Arrow(parse("FA x. P(x)"), false()))), Not(parse("FA x. P(x)")))
Ejemplo n.º 5
0
def DM2():
    a = Var("a")
    b = Var("b")
    prem = premise(Not(And(a, b)))  #The original premise, ~(A && B)
    d1 = premise(
        Not(Or(Not(a), Not(b)))
    )  #d1 is the phrase required to run DL1 and DL2. I ran it as a premise, but it is assumed, NOT a premise

    return doubleNeg(
        notI(
            arrowI(assume(Not(Or(Not(a), Not(b)))),
                   notE(andI(DL1(d1), DL2(d1), And(a, b)), prem, false()),
                   Arrow(Not(Or(Not(a), Not(b))), false())),
            Not(Not(Or(Not(a), Not(b))))), Or(Not(a), Not(b)))
Ejemplo n.º 6
0
def DM1():
    A = Var("a")
    B = Var("b")
    p1 = premise(Or(Not(A), Not(B)))
    end = Not(And(A, B))
    A_B = And(A, B)
    #I condensed parts of the proofs so I could substitute in things that made sense to me, otherwise I was going nuts

    return orE(
        p1,
        arrowI(
            assume(Not(A)),
            notI(
                arrowI(assume(A_B),
                       notE(andEL(assumed(A_B), A), assumed(Not(A)), false()),
                       Arrow(A_B, false())), Not(A_B)),
            Arrow(Not(A), Not(A_B))),
        arrowI(
            assume(Not(B)),
            notI(
                arrowI(assume(A_B),
                       notE(andER(assumed(A_B), B), assumed(Not(B)), false()),
                       Arrow(A_B, false())), Not(A_B)),
            Arrow(Not(B), Not(A_B))), end)
Ejemplo n.º 7
0
def DM2():
    return notI(
        arrowI(
            assume(parse("FA x. P(x)")),
            notE(
                forallE(assumed(parse("FA x. P(x)")), "c", parse("P(c)")),
                existsE(
                    premise(parse("EX x. ~P(x)")), "d",
                    arrowI(
                        assume(parse("~P(d)")),
                        FE(
                            notE(
                                forallE(assumed(parse("FA x. P(x)")), "d",
                                        parse("P(d)")),
                                assumed(parse("~P(d)")), false()),
                            parse("~P(c)")), parse("~P(d) -> ~P(c)")),
                    parse("~P(c)")), false()),
            Arrow(parse("FA x. P(x)"), false())), parse("~FA x. P(x)"))