Ejemplo n.º 1
0
def select_states(primes, 
    num_state_samples=10000, 
    seed=0):

    n = len(primes)

    if 2**n <= num_state_samples:
        print ("using entire state space")
        states = set(itertools.product([0, 1], repeat=n))

    else:
        print ("sampling", 
                num_state_samples, 
                "states")
        states = set()
        np.random.seed(seed)

        while len(states) < num_state_samples:
            state = {n: (0 if n in ["Adenosine", "Dopamine", "Enkephalin",
                    "GABA", "Glutamate", "Serotonin", "Ach"]
                    else np.random.choice([0, 1]))
                    for n in primes}
            state = STGs.state2str(state)
            states.add(state)

    states = list(states)

    return states
Ejemplo n.º 2
0
def build_STG_and_determine_attractors(
	primes, 
	states, 
	return_stg=False):
	print ("building partial STG to determine attractors for given initial conditions")

	# assume synchronous update scheme

	assert isinstance(states[0], str)

	stg = nx.DiGraph()

	attractors = []

	for i, state in enumerate(states):

		next_state = STGs.state2str(STGs.successor_synchronous(primes, state))

		while next_state not in stg:

			stg.add_edge(state, next_state)
			state = next_state
			next_state = STGs.state2str(STGs.successor_synchronous(primes, state))

		assert next_state in stg
		stg.add_edge(state, next_state) # connect new part of STG to existsing STG
				
		#cyclic attractor? use exising STG to determine attractor

		visited = [state]
		while next_state not in visited:
			visited.append(next_state)
			assert len(list(stg.neighbors(next_state))) == 1
			next_state = list(stg.neighbors(next_state))[0]

		idx = visited.index(next_state)
		attractor = visited[idx:]
		attractors.append(attractor)

	if return_stg:
		return stg, attractors
	else:
		return attractors
Ejemplo n.º 3
0
def select_states(primes, num_state_samples=10000, seed=0):

	n = len(primes)

	if 2**n <= num_state_samples:
		print ("using entire state space")
		states = set(itertools.product([0, 1], repeat=n))

	else:
		print ("sampling", 
				num_state_samples, 
				"states")
		states = set()
		np.random.seed(seed)

		while len(states) < num_state_samples:
			state = tuple(np.random.randint(2, size=n))
			states.add(state)

	states = list(map(lambda state: 
		STGs.state2str({p: s 
		for p, s in zip(primes, state)}), states))

	return states
Ejemplo n.º 4
0
def run():

    RUN_ALL = 1

    if 0 or RUN_ALL:
        print("modifications of networks")

        bnet = """
        v1, 0
        v2, 1
        v3, v1&v2&v3&v4
        v4, v3 & (v1|v2)
        """
        primes = FEX.bnet2primes(bnet)

        constants = PIs.find_constants(primes)
        PIs.create_blinkers(primes, constants)

        print(FEX.primes2bnet(primes))

    if 0 or RUN_ALL:
        print("creates basin diagrams")
        primes = repo.get_primes("xiao_wnt5a")
        diagram = AB.commitment_diagram(primes, "asynchronous")
        print(diagram.order())
        print(diagram.nodes())
        print(diagram.node["4"]["formula"])
        print(diagram.node["4"]["size"])

        primes = repo.get_primes("arellano_rootstem")
        diagram = AB.commitment_diagram(primes, "asynchronous")
        AB.diagram2image(primes, diagram, "source/figure26.pdf")

        AB.diagram2aggregate_image(primes, diagram, "source/figure27.pdf")

    if 0 or RUN_ALL:
        print("creates interaction graphs for all repository networks:")
        s = []
        for x in repo.get_all_names():
            print(x)
            primes = repo.get_primes(x)
            igraph = IGs.create_image(primes, "source/%s_igraph.pdf" % x)

            s += [x]
            s += ["-" * len(x)]
            s += [".. figure:: %s_igraph.pdf" % x]
            s += ["   :scale: 60%"]
            s += ["   :align: center"]
            s += [""]
            s += ["   Interaction graph of %s." % x]
            s += [""]
            s += [""]

        print("\n".join(s))

    if 0 or RUN_ALL:
        print("model checking with accepting states")

        bnet = [
            "x0,   !x0&x1 | x2", "x1,   !x0 | x1 | x2", "x2,   x0&!x1 | x2"
        ]
        bnet = "\n".join(bnet)
        primes = FEX.bnet2primes(bnet)
        update = "asynchronous"
        init = "INIT !x1"
        spec = "CTLSPEC EF(AG(x0_STEADY))"

        answer, accepting = MC.check_primes_with_acceptingstates(
            primes, update, init, spec)
        for x in accepting.items():
            print(x)

        prop = accepting["INITACCEPTING"]
        init = "INIT %s" % prop
        spec = "CTLSPEC EF(STEADYSTATE)"
        print(MC.check_primes(primes, update, init, spec))

        for x in STGs.list_states_referenced_by_proposition(primes, prop):
            print(x)

    if 0 or RUN_ALL:
        print("primes from Python functions")

        f1 = lambda v2, v3, v4, v5: sum([v2, v3, v4, v5]) >= 2

        def f2(v1, v2, v3):
            if f1(v2, v3, 0, 0):
                return 0
            else:
                return sum([v1, v2, v3]) % 2

        f3 = lambda v4, v5: not (v4 or not f2(v4, v4, v5))
        f4 = lambda: 1
        f5 = lambda v5: v5

        funcs = {"v1": f1, "v2": f2, "v3": f3, "v4": f4, "v5": f5}
        primes = QMC.functions2primes(funcs)

        dnf = QMC.functions2mindnf(funcs)
        print(dnf["v1"])

    if 0 or RUN_ALL:
        print("figure01.pdf - basic interaction graph")

        bnet = "\n".join(["v1, v1|v3", "v2, 1", "v3, v1&!v2 | !v1&v2"])
        primes = FEX.bnet2primes(bnet)
        igraph = IGs.primes2igraph(primes)
        print(igraph.nodes())
        print(igraph.edges())
        print(igraph.edge["v3"]["v1"]["sign"])
        print(igraph.edge["v1"]["v3"]["sign"])

        IGs.igraph2image(igraph, "source/figure01.pdf")

    if 0 or RUN_ALL:
        print("graph, node and edge attributes")

        bnet = "\n".join(["v1, v2 & (!v1 | v3)", "v2, !v3", "v3, v2 | v1"])
        primes = FEX.bnet2primes(bnet)
        igraph = IGs.primes2igraph(primes)
        igraph.graph["node"]["shape"] = "circle"
        igraph.graph["node"]["color"] = "blue"
        igraph.node["v2"]["shape"] = "rpromoter"
        igraph.node["v2"]["color"] = "black"
        igraph.edge["v3"]["v1"]["arrowhead"] = "inv"
        igraph.edge["v3"]["v1"]["color"] = "red"
        igraph.graph["splines"] = "ortho"
        igraph.graph["label"] = "Example 3: Interaction graph with attributes"
        igraph.graph["rankdir"] = "LR"
        IGs.igraph2image(igraph, "source/figure02.pdf")

    if 0 or RUN_ALL:
        print("the interaction signs style")

        funcs = {
            "v1": lambda v1, v2, v3: v1 + v2 + v3 == 1,
            "v2": lambda v1: not v1,
            "v3": lambda v2: v2
        }
        primes = QMC.functions2primes(funcs)
        igraph = IGs.primes2igraph(primes)
        IGs.add_style_interactionsigns(igraph)
        igraph.graph["label"] = "Example 4: Signed interaction graph"
        igraph.graph["rankdir"] = "LR"
        IGs.igraph2image(igraph, "source/figure03.pdf")

    if 0 or RUN_ALL:
        print("styles for inputs, outputs and constants")

        bnet = [
            "v1, v1", "v2, v2", "v3, 1", "v4, v1 | v3", "v5, v4 & v2 | v6",
            "v6, 0", "v7, !v5", "v8, v7", "v9, v5 & v7"
        ]
        bnet = "\n".join(bnet)
        primes = FEX.bnet2primes(bnet)
        igraph = IGs.primes2igraph(primes)
        IGs.add_style_inputs(igraph)
        IGs.add_style_constants(igraph)
        IGs.add_style_outputs(igraph)
        igraph.graph[
            "label"] = "Example 5: Interaction graph with styles for inputs, outputs and constants"
        IGs.igraph2image(igraph, "source/figure04.pdf")

    if 0 or RUN_ALL:
        print("the SCC style")

        bnet = [
            "v1, v1", "v2, v3 & v5", "v3, v1", "v4, v1", "v5, 1", "v6, v7",
            "v7, v6 | v4", "v8, v6", "v9, v8", "v10, v7 & v11",
            "v11, v10 | v4", "v12, v10"
        ]
        bnet = "\n".join(bnet)
        primes = FEX.bnet2primes(bnet)
        igraph = IGs.primes2igraph(primes)
        IGs.add_style_sccs(igraph)
        igraph.graph["label"] = "Example 6: Interaction graph with SCC style"
        IGs.igraph2image(igraph, "source/figure05.pdf")

        igraph.graph["label"] = "Example 7: Interaction graph with SCC style"
        IGs.igraph2image(igraph, "source/figure06.pdf")

    if 0 or RUN_ALL:
        print("the subgraph style")

        bnet = [
            "v1, v7", "v2, v1 & v6", "v3, v2 | v7", "v4, v3", "v5, v1 | v4",
            "v6, v5", "v7, v6"
        ]
        bnet = "\n".join(bnet)
        primes = FEX.bnet2primes(bnet)
        igraph = IGs.primes2igraph(primes)
        subgraphs = [(["v2", "v6"], {}),
                     (["v1", "v4"], {
                         "label": "Genes",
                         "fillcolor": "lightblue"
                     })]
        IGs.add_style_subgraphs(igraph, subgraphs)
        igraph.graph[
            "label"] = "Example 8: Interaction graph with a subgraph style"
        IGs.igraph2image(igraph, "source/figure07.pdf")

    if 0 or RUN_ALL:
        print("the activities style and animations")

        bnet = [
            "v1, v7", "v2, v1 & v6", "v3, v2 | v7", "v4, v3", "v5, v1 | v4",
            "v6, v5", "v7, v6"
        ]
        bnet = "\n".join(bnet)
        primes = FEX.bnet2primes(bnet)
        igraph = IGs.primes2igraph(primes)
        activities = {"v2": 1, "v3": 0, "v4": 0}
        IGs.add_style_activities(igraph, activities)
        igraph.graph[
            "label"] = "Example 9: Interaction graph with a activities style"
        igraph.graph["rankdir"] = "LR"

        IGs.igraph2image(igraph, "source/figure08.pdf")

    if 0 or RUN_ALL:
        print("the default style")

        bnet = [
            "v1, v1", "v2, v3 & !v5", "v3, !v1", "v4, v1", "v5, 1", "v6, v7",
            "v7, v6 & !v4 | !v6 & v4", "v8, !v6", "v9, v8", "v10, v7 & !v11",
            "v11, v10 | v4", "v12, v10"
        ]
        bnet = "\n".join(bnet)
        primes = FEX.bnet2primes(bnet)
        igraph = IGs.primes2igraph(primes)
        IGs.add_style_default(igraph)
        IGs.igraph2image(igraph, "PyBoolNet-screenshot.jpg")
        igraph.graph[
            "label"] = "Example 10: Interaction graph with default style"
        IGs.igraph2image(igraph, "source/figure09.pdf")

    if 0 or RUN_ALL:
        print("Drawing the State Transition Graph - Asynchronous")

        bnet = "\n".join(["v1, v3", "v2, v1", "v3, v2"])
        primes = FEX.bnet2primes(bnet)
        update = "asynchronous"
        stg = STGs.primes2stg(primes, "asynchronous")
        print(repr(stg))
        print(stg.nodes()[0])
        print(networkx.has_path(stg, "100", "111"))
        stg.graph["label"] = "Example 11: The STG of a positive circuit"
        stg.graph["rankdir"] = "LR"
        STGs.stg2image(stg, "source/figure10.pdf")

        init = ["000", "111"]
        stg = STGs.primes2stg(primes, update, init)
        init = ["000", {"v1": 1, "v2": 1, "v3": 1}]
        stg = STGs.primes2stg(primes, update, init)
        init = lambda x: x["v1"] >= x["v2"]
        stg = STGs.primes2stg(primes, update, init)
        init = "--1"
        stg = STGs.primes2stg(primes, update, init)
        init = {"v3": 1}
        stg = STGs.primes2stg(primes, update, init)

    if 0 or RUN_ALL:
        print("Drawing the State Transition Graph - Synchronous")

        bnet = "\n".join(["v1, !v3", "v2, v1", "v3, v2"])
        primes = FEX.bnet2primes(bnet)
        stg = STGs.primes2stg(primes, "synchronous")
        stg.graph[
            "label"] = "Example 12: The synchronous STG of a negative circuit"
        stg.graph["rankdir"] = "LR"
        STGs.add_style_tendencies(stg)
        STGs.stg2image(stg, "source/figure11.pdf")

    if 0 or RUN_ALL:
        print("path style")

        bnet = "\n".join(["x, !x|y", "y, !x&!z|x&!y&z", "z, x|!y"])
        primes = FEX.bnet2primes(bnet)
        stg = STGs.primes2stg(primes, "asynchronous")
        stg.graph["label"] = "Example 13: STG with path style"

        path = ["011", "010", "110", "100", "000"]
        STGs.add_style_path(stg, path, "red")
        STGs.stg2image(stg, "source/figure12.pdf")

    if 0 or RUN_ALL:
        print("scc style for STGs")

        bnet = "\n".join(["x, !x|y", "y, x&!y|!z", "z, x&z|!y"])
        primes = FEX.bnet2primes(bnet)
        stg = STGs.primes2stg(primes, "asynchronous")
        stg.graph["label"] = "Example 14: STG with SCC style"
        STGs.add_style_sccs(stg)
        STGs.stg2image(stg, "source/figure13.pdf")

    if 0 or RUN_ALL:
        print("min trap spaces style")

        bnet = "\n".join(["x, !x|y&z", "y, x&!y|!z", "z, z|!y"])
        primes = FEX.bnet2primes(bnet)
        stg = STGs.primes2stg(primes, "asynchronous")
        stg.graph["label"] = "Example 15: STG with min trap spaces style"
        STGs.add_style_mintrapspaces(primes, stg)
        STGs.stg2image(stg, "source/figure14.pdf")

    if 0 or RUN_ALL:
        print("STG subspaces style")

        bnet = "\n".join(["x, !x|y&z", "y, x&!y|!z", "z, z|!y"])
        primes = FEX.bnet2primes(bnet)
        stg = STGs.primes2stg(primes, "asynchronous")
        stg.graph["label"] = "Example 16: STG with subspaces style"
        sub1 = ({"x": 0}, {"label": "x is zero"})
        sub2 = {"x": 1, "y": 0}
        subspaces = [sub1, sub2]
        STGs.add_style_subspaces(primes, stg, subspaces)

        STGs.stg2image(stg, "source/figure15.pdf")

    if 0 or RUN_ALL:
        print("STG default style")

        bnet = "\n".join(["x, !x|y&z", "y, x&!y|!z", "z, z|!y"])
        primes = FEX.bnet2primes(bnet)
        stg = STGs.primes2stg(primes, "asynchronous")
        stg.graph["label"] = "Example 17: STG with default style"
        STGs.add_style_default(primes, stg)

        STGs.stg2image(stg, "source/figure16.pdf")

    if 0 or RUN_ALL:
        print("model checking 1")

        bnet = [
            "Erk,  Erk & Mek | Mek & Raf", "Mek,  Erk | Mek & Raf",
            "Raf,  !Erk | !Raf"
        ]
        bnet = "\n".join(bnet)
        primes = FEX.bnet2primes(bnet)
        stg = STGs.primes2stg(primes, "asynchronous")
        stg.graph["label"] = "Example 18: STG of the Erk-Mek-Raf network"

        STGs.stg2image(stg, "source/figure17a.pdf")

        ## description not in the manual
        ts_basic = STGs.copy(stg)
        ts_basic.graph[
            "label"] = "Example 19: Basic transition system of Erk-Mek-Raf"
        ts_auxillary = STGs.copy(stg)
        ts_auxillary.graph[
            "label"] = "Example 20: Transition system of Erk-Mek-Raf with auxillary variables"
        for x in stg.nodes():
            x_dict = STGs.state2dict(primes, x)
            ap_basic = [name for name in sorted(x_dict) if x_dict[name]]
            ap_auxillary = list(ap_basic)
            outdegree = len(list(y for y in stg.successors(x) if y != x))

            suc = STGs.successor_synchronous(primes, x_dict)
            ap_auxillary += [
                name + "_STEADY" for name in sorted(x_dict)
                if suc[name] == x_dict[name]
            ]
            if not outdegree:
                ap_auxillary += ["STEADYSTATE"]
            ap_auxillary += ["SUCCESSORS=%i" % outdegree]

            ap_basic = pairs(ap_basic)
            ts_basic.node[x]["label"] = "{" + "\\n".join(ap_basic) + "}"

            ap_auxillary = pairs(ap_auxillary)
            ts_auxillary.node[x]["label"] = "{" + "\\n".join(
                ap_auxillary) + "}"

        STGs.stg2image(ts_basic, "source/figure17b.pdf")

        print("calling pdflatex, hope its installed")
        proc = subprocess.Popen(["pdflatex", "merge_figure17.tex"],
                                stdout=subprocess.PIPE,
                                stderr=subprocess.PIPE)
        out, err = proc.communicate()

        print("calling pdfcrop, hope its installed")
        proc = subprocess.Popen(["pdfcrop", "merge_figure17.pdf"],
                                stdout=subprocess.PIPE,
                                stderr=subprocess.PIPE)
        out, err = proc.communicate()
        shutil.copyfile("merge_figure17-crop.pdf", "source/figure17.pdf")

        STGs.stg2image(ts_auxillary, "source/figure18.pdf")

    if 0 or RUN_ALL:
        print("LTL queries")

        bnet = [
            "Erk,  Erk & Mek | Mek & Raf", "Mek,  Erk | Mek & Raf",
            "Raf,  !Erk | !Raf"
        ]
        bnet = "\n".join(bnet)
        primes = FEX.bnet2primes(bnet)
        init = "INIT TRUE"
        spec = "LTLSPEC F(Raf)"
        update = "asynchronous"
        print(MC.check_primes(primes, update, init, spec))

        init = "INIT Erk & SUCCESSORS<2"
        spec = "LTLSPEC G(F(Raf) & F(!Raf))"
        answer = MC.check_primes(primes, "asynchronous", init, spec)
        print(init, spec, "is", answer)

        init = "INIT Mek"
        spec = "LTLSPEC G(count(Erk_STEADY,Mek_STEADY,Raf_STEADY)>=2)"
        answer = MC.check_primes(primes, "asynchronous", init, spec)
        print(init, spec, "is", answer)

        print("#### Counterexamples ####")
        init = "INIT TRUE"
        spec = "LTLSPEC F(Raf & F(STEADYSTATE))"
        update = "asynchronous"
        answer, counterex = MC.check_primes_with_counterexample(
            primes, update, init, spec)
        print(answer)
        if counterex:
            print(" -> ".join(STGs.state2str(x) for x in counterex))

    if 0 or RUN_ALL:
        print("counterexample path style")

        bnet = [
            "Erk,  Erk & Mek | Mek & Raf", "Mek,  Erk | Mek & Raf",
            "Raf,  !Erk | !Raf"
        ]
        bnet = "\n".join(bnet)
        primes = FEX.bnet2primes(bnet)
        update = "asynchronous"

        init = "INIT TRUE"
        spec = "LTLSPEC F(Raf & F(STEADYSTATE))"
        answer, counterex = MC.check_primes_with_counterexample(
            primes, update, init, spec)
        if counterex:
            " -> ".join(STGs.state2str(x) for x in counterex)

        stg = STGs.primes2stg(primes, update)
        STGs.add_style_path(stg, counterex, "red")
        stg.graph["label"] = "Example 19: A LTL counterexample"
        STGs.stg2image(stg, "source/figure19.pdf")

        igraph = IGs.primes2igraph(primes)
        IGs.activities2animation(igraph, counterex, "counterexample.gif")

    if 0 or RUN_ALL:
        print("CTL examples")

        bnet = [
            "GrowthFactor,  0",
            "Proliferation, GrowthFactor | Proliferation & !DNAdamage",
            "DNAdamage,     !GrowthFactor & DNAdamage"
        ]
        bnet = "\n".join(bnet)
        primes = FEX.bnet2primes(bnet)
        update = "asynchronous"

        stg = STGs.primes2stg(primes, update)
        for x in stg.nodes():
            x_dict = STGs.state2dict(primes, x)
            if x_dict["GrowthFactor"]:
                stg.node[x]["style"] = "filled"
                stg.node[x]["fillcolor"] = "gray"
        sub = ({"Proliferation": 1}, {"label": "proliferation"})
        STGs.add_style_subspaces(primes, stg, [sub])
        stg.graph["label"] = "Example 20: STG of the Proliferation network"

        STGs.stg2image(stg, "source/figure20.pdf")

        init = "INIT GrowthFactor"
        spec = "LTLSPEC F(Proliferation)"
        answer, counterex = MC.check_primes_with_counterexample(
            primes, update, init, spec)
        print(init, spec, "is", answer)
        STGs.add_style_path(stg, counterex, "red")
        stg.graph["label"] = "Example 21: Counterexample"

        STGs.stg2image(stg, "source/figure21.pdf")

        spec = "CTLSPEC EF(Proliferation)"
        answer = MC.check_primes(primes, update, init, spec)
        print(init, spec, "is", answer)

    if 0 or RUN_ALL:
        bnet = [
            "GrowthFactor,  0",
            "Proliferation, GrowthFactor | Proliferation & !DNAdamage",
            "DNAdamage,     !GrowthFactor & DNAdamage"
        ]
        bnet = "\n".join(bnet)
        primes = FEX.bnet2primes(bnet)
        update = "asynchronous"

        init = "INIT !DNAdamage & GrowthFactor"
        c1 = "Proliferation"
        c2 = "DNAdamage_STEADY"
        spec = "CTLSPEC AG(EF(AG(%s | %s)))" % (c1, c2)
        answer = MC.check_primes(primes, update, init, spec)
        print(init, spec, "is", answer)

        init = "INIT Proliferation"
        condition = "STEADYSTATE"
        spec = "CTLSPEC AG(EF(AG(%s)))" % condition
        answer = MC.check_primes(primes, update, init, spec)
        print(init, spec, "is", answer)

        init = "INIT Proliferation"
        condition = "STEADYSTATE | (!Proliferation & DNAdamage)"
        spec = "CTLSPEC AG(EF(AG(%s)))" % condition
        answer = MC.check_primes(primes, update, init, spec)
        print(init, spec, "is", answer)

        init = "INIT Proliferation"
        spec = "CTLSPEC EX(Proliferation)"
        answer, counterex = MC.check_primes_with_counterexample(
            primes, update, init, spec)
        print(init, spec, "is", answer)
        print(counterex)
        for x in counterex:
            print(STGs.state2str(x))

        for x in STGs.successors_asynchronous(primes, "101"):
            print(x)

    if 0 or RUN_ALL:
        bnet = [
            "x0,   !x0&x1 | x2", "x1,   !x0 | x1 | x2", "x2,   x0&!x1 | x2"
        ]
        bnet = "\n".join(bnet)
        primes = FEX.bnet2primes(bnet)

        stg = STGs.primes2stg(primes, "asynchronous")
        attractor1 = (["010", "110"], {"label": "Attractor1"})
        attractor2 = (["111"], {"label": "Attractor2"})
        for x in stg.nodes():
            if x[1] == "0":
                stg.node[x]["style"] = "filled"
                stg.node[x]["fillcolor"] = "gray"

        stg.graph["label"] = "Example 22: Existential queries"
        STGs.stg2image(stg, "source/figure22.pdf")

        init = "INIT !x1"
        specQ1 = "CTLSPEC  EF(AG(x0_STEADY))"
        specQ2 = "CTLSPEC !EF(AG(x0_STEADY))"
        update = "asynchronous"
        Q1 = MC.check_primes(primes, update, init, specQ1)
        print(Q1)
        Q2 = not MC.check_primes(primes, update, init, specQ2)
        print(Q2)

        notQ2, counterex = MC.check_primes_with_counterexample(
            primes, update, init, specQ2)
        state = counterex[0]
        print(STGs.state2str(state))

        print(counterex)

    if 0 or RUN_ALL:

        bnet = ["x, !x | y | z", "y, !x&z | y&!z", "z, x&y | z"]
        bnet = "\n".join(bnet)
        primes = FEX.bnet2primes(bnet)
        tspaces = TS.trap_spaces(primes, "all")
        for x in tspaces:
            print(STGs.subspace2str(primes, x))

        print(", ".join(STGs.subspace2str(primes, x) for x in tspaces))

        stg = STGs.primes2stg(primes, "asynchronous")
        STGs.add_style_subspaces(primes, stg, tspaces)

        stg.graph["label"] = "Example 23: All trap spaces"
        STGs.stg2image(stg, "source/figure23.pdf")

        mintspaces = TS.trap_spaces(primes, "min")
        print("mintspaces",
              ", ".join(STGs.subspace2str(primes, x) for x in mintspaces))
        for x in mintspaces:
            sub = (x, {"fillcolor": "salmon"})
            STGs.add_style_subspaces(primes, stg, [sub])
        maxtspaces = TS.trap_spaces(primes, "max")
        print("maxtspaces",
              ", ".join(STGs.subspace2str(primes, x) for x in maxtspaces))
        for x in maxtspaces:
            if x in mintspaces:
                sub = (x, {"fillcolor": "lightyellow"})
                STGs.add_style_subspaces(primes, stg, [sub])
            else:
                sub = (x, {"fillcolor": "lightblue"})
                STGs.add_style_subspaces(primes, stg, [sub])
        stg.graph["label"] = "Example 24: Minimal and maximal trap spaces"

        STGs.stg2image(stg, "source/figure24.pdf")

    if 0 or RUN_ALL:
        bnet = ["v1, !v1 | v3", "v2, !v1 | v2&!v3", "v3, !v2"]
        bnet = "\n".join(bnet)
        primes = FEX.bnet2primes(bnet)
        stg = STGs.primes2stg(primes, "asynchronous")
        STGs.add_style_sccs(stg)
        steady, cyclic = AD.compute_attractors_tarjan(stg)

        stg.graph[
            "label"] = "Example 25: A network with a cyclic attractor and a steady state."
        STGs.stg2image(stg, "source/figure25.pdf")

        state = AD.find_attractor_state_by_randomwalk_and_ctl(
            primes, "asynchronous")
        print(STGs.state2str(state))

        update = "asynchronous"
        mintspaces = TS.trap_spaces(primes, "min")
        for x in mintspaces:
            answer_univocal = AD.univocality(primes, update, x)
            answer_faithful = AD.faithfulness(primes, update, x)
            print("min trap space:", STGs.subspace2str(primes, x))
            print("  is univocal:", answer_univocal)
            print("  is faithful:", answer_faithful)

        answer_complete, counterex = AD.completeness_naive(
            primes, update, mintspaces)
        print("min trap spaces are complete:", answer_complete)

    if False:

        bnet = [
            "v1, !v1&!v2&v3 | !v1&v2&!v3 | v1&!v2&!v3 | v1&v2&v3",
            "v2, !v1&!v2&!v3 | !v1&v2&v3 | v1&!v2&v3 | v1&v2&!v3",
            "v3, !v1&!v2&v3 | !v1&v2&!v3 | v1&!v2&!v3 | v1&v2&v3"
        ]
        bnet = "\n".join(bnet)
        primes = FEX.bnet2primes(bnet)
        mintspaces = TS.trap_spaces(primes, "min")
        stg = STGs.primes2stg(primes, "asynchronous")
        mintspaces = TS.trap_spaces(primes, "min")
        print([STGs.subspace2str(primes, x) for x in mintspaces])

        STGs.add_style_sccs(stg)
        STGs.add_style_subspaces(primes, stg, mintspaces)

        stg.graph[
            "label"] = "Example xx: An STG whose minimal trap space '---' is not complete"
        STGs.stg2image(stg, "source/figurexx.pdf")
Ejemplo n.º 5
0
def main():

    input_nodes = ["Adenosine", "Dopamine", "Enkephalin",
                    "GABA", "Glutamate", "Serotonin", "Ach"]

    primes = PyBoolNet.FileExchange.read_primes(
        "datasets/creb/network.json")

    # primary_attractor = pd.read_csv(
    #     "datasets/creb/primary_attractor.csv",
    #     index_col=0, header=None)
    # assert primary_attractor.shape[0] == len(primes)
    # for n in primary_attractor.index:
    #     assert n in primes, n
    
    # primary_attractor = [
    #     primary_attractor[col].to_dict()
    #     for col in primary_attractor.columns
    # ]
    # primary_attractor = [STGs.state2str(state)
    #     for state in primary_attractor]
    # primary_attractor = rotate_cyclic_attractor(
    #     primary_attractor)
    # assert min(primary_attractor) == primary_attractor[0]

    merge_depths = pd.read_csv("implisig_output/creb/pos_neg/merge_depths.csv", 
        index_col=0)["0"]
    depths = sorted(set(merge_depths.values), reverse=True)

    kernels = [
        ["AC2", "AC5", "Calmodulin", "M2R", "PKA"],
        ["CREB", "CaMKI", "Calmodulin", "Galphai", "PKA"],
        ["mGluR7", "PQtypeCaCh", "cAMP"], ["mGluR7", "cAMP", "Ca2plus"],
        # ["mGluR7", "PQtypeCaCh", "cAMP", "Calmodulin"], ["mGluR7", "cAMP", "Ca2plus", "Calmodulin"],
        # ["mGluR7", "PQtypeCaCh", ], ["mGluR7",  "Ca2plus"],
        # kernel 
            # for kernel_size in [1, 2, 3]
            # for kernel in itertools.combinations(
                # ["mGluR7", "cAMP", "Ca2plus"]
        #     # ["AC2", "AC5", "Calmodulin", "M2R", "PKA"] + ["NtypeCaCh", "PKC", "Ca2plus",] + ["CaMKII"], kernel_size)
        #     ["AC5",
        #         "PKA",
        #         "Gbetagamma",
        #         "DAG",
        #         "mGluR1",
        #         "PKC",
        #         "mGluR7",
        #         "PQtypeCaCh",
        #         "PDK1",
        #         "cAMP",
        #         "CaMKII",
        #         "AC1",
        #         "PIP3",
        #         "NtypeCaCh",
        #         "Calmodulin",
        #         "Ca2plus",
        #         "AC2",
        #         "PI3K",
                # "PLCbeta"]
                # , kernel_size)
            # ["NtypeCaCh", "PKC", "Ca2plus"] + ["CaMKII", "Calmodulin"], kernel_size)
            # merge_depths.index[merge_depths>=depths[2]], kernel_size)
        # ["NtypeCaCh", "PKC", "Ca2plus"], 
        # primes
    ] #+ [ list(merge_depths.index[merge_depths>=depth]) for depth in depths]
    # ]

    states = select_states(primes, 
        num_state_samples=10000)

    for state in states:
        state = STGs.state2dict(primes, state)
        assert not any([
            state[n] for n in input_nodes])

    attractors = build_STG_and_determine_attractors(
        primes, states, return_stg=False)
    
    attractors = map(rotate_cyclic_attractor, attractors)
    attractors = list(map(tuple, attractors))
    unique_attractors = set(attractors)

    for attractor in unique_attractors:
        for state in attractor:
            state = STGs.state2dict(primes, state)
            assert not any([
                state[n] for n in input_nodes])

    print ("number of unique attractors:",
        len(unique_attractors))

    stg = STGs.primes2stg(primes, 
        Update="synchronous", 
        InitialStates=states)

    basins = dict()
    for basin in sorted(nx.weakly_connected_components(stg),
            key=len, reverse=True):
        cycles = list(nx.simple_cycles(stg.subgraph(basin)))
        assert len(cycles) == 1
        attractor = tuple(cycles[0])
        attractor = rotate_cyclic_attractor(attractor)
        assert attractor in unique_attractors
        basins.update({attractor: basin})

    primary_attractor = max(basins, 
        key=lambda k: len(basins[k]))

    # primary_attractor = pd.DataFrame([pd.Series(STGs.state2dict(primes, state))
    #     for state in primary_attractor])
    
    # primary_attractor.to_csv("CREB_primary_attractor.csv")

    # raise SystemError

    print ("primary attractor basin proportion:", 
        len(basins[primary_attractor]) / len(stg))

    df = []

    for target_state in primary_attractor:
        target_state = STGs.state2dict(primes,
            target_state)
        d = {}
        for kernel in kernels:
            print ("processing kernel", kernel,)
            assert all([n in primes for n in kernel])

            primes_modified = PyBoolNet.PrimeImplicants.create_constants(
                primes,
                {n: target_state[n] for n in kernel},
                Copy=True)

            attractors_new = build_STG_and_determine_attractors(
                primes_modified, states, return_stg=False)
            attractors_new = map(rotate_cyclic_attractor,
                attractors_new)
            attractors_new = list(map(tuple, attractors_new))
            unique_attractors_new = set(attractors_new)

            print ("number of unique attractors:", 
                len(unique_attractors_new))
            if len(unique_attractors_new) == 1:

                for unique_attractor in unique_attractors_new:
                    assert min(unique_attractor) == unique_attractor[0]
                    print ("length of obtained attractor", len(unique_attractor))
                    if len(unique_attractor) == 1:
                        print ("checking primary basin membership")

                        attr = build_STG_and_determine_attractors(primes, unique_attractor)
                        assert len(attr) == 1
                        attr = rotate_cyclic_attractor(attr[0])
                        in_primary_basin = int(all([s1==s2 
                            for s1, s2 in zip(attr, primary_attractor)]))
                        print ("in primary basin:", in_primary_basin)
                        d.update({"_".join(kernel): in_primary_basin})
                    else:
                        d.update({"_".join(kernel): 0})
            else:
                d.update({"_".join(kernel): 0})

            print ()
        df.append(pd.Series(d, name=STGs.state2str(target_state)))

    df = pd.DataFrame(df)
    df.to_csv("CREB_kernels.csv", sep=",")