Ejemplo n.º 1
0
def test_pv_reports(cleanup_project):
    PyDssProject.run_project(
        PV_REPORTS_PROJECT_PATH,
        simulation_file=SIMULATION_SETTINGS_FILENAME,
    )
    results = PyDssResults(PV_REPORTS_PROJECT_PATH)

    # This test data doesn't have changes for Capacitors or RegControls.
    capacitor_change_counts = results.read_report(
        "Capacitor State Change Counts")
    assert len(capacitor_change_counts["scenarios"]) == 2
    assert not capacitor_change_counts["scenarios"][1]["capacitors"]

    reg_control_change_counts = results.read_report(
        "RegControl Tap Number Change Counts")
    assert len(reg_control_change_counts["scenarios"]) == 2
    assert not reg_control_change_counts["scenarios"][1]["reg_controls"]

    pv_clipping = results.read_report("PV Clipping")
    assert len(pv_clipping["pv_systems"]) == 5
    for pv_system in pv_clipping["pv_systems"]:
        assert "pv_clipping" in pv_system

    pv_curtailment = results.read_report("PV Curtailment")
    assert isinstance(pv_curtailment, pd.DataFrame)
Ejemplo n.º 2
0
def run_example(example_name, scenarios):

    proc = None
    assert isinstance(example_name, str)
    assert isinstance(scenarios, list)
    base_projects_path = copy_examples_to_temp_folder(example_name)
    for S in scenarios:
        assert isinstance(S, dict)
        sim_file = S["TOML"]
        sup_file = S["file"]

        logger.info('Running scenario %s for example %s', example_name, sim_file)
        if sup_file != None:
            sup_file_path = os.path.join(base_projects_path, sup_file)
            assert os.path.exists(sup_file_path)
            dir_path = os.path.dirname(sup_file_path)
            dir_main = os.getcwd()
            try:
                os.chdir(dir_path)
                proc = subprocess.Popen([sys.executable, sup_file_path], shell=True)
            finally:
                os.chdir(dir_main)
        try:
            if sim_file:
                project_path = os.path.join(base_projects_path, example_name)
                assert os.path.exists(base_projects_path)
                PyDssProject.run_project(project_path, options=None, tar_project=False, zip_project=False,
                                         simulation_file=sim_file)
        finally:
            if proc != None:
                proc.terminate()
    return
Ejemplo n.º 3
0
def test_auto_snapshot_time_point(cleanup_project):
    PyDssProject.run_project(
        AUTO_SNAPSHOT_TIME_POINT_PROJECT_PATH,
        simulation_file=SIMULATION_SETTINGS_FILENAME,
    )
    project = PyDssProject.load_project(AUTO_SNAPSHOT_TIME_POINT_PROJECT_PATH)
    settings = project.read_scenario_time_settings("max_pv_load_ratio")
    assert str(settings["start_time"]) == "2020-01-01 11:15:00"
Ejemplo n.º 4
0
def run_project_with_custom_exports(path, scenario, sim_file, data):
    """Runs a project while overriding an export config file."""
    exports = f"{path}/Scenarios/{scenario}/ExportLists/Exports.toml"
    backup = exports + ".bk"
    shutil.copyfile(exports, backup)
    dump_data(data, exports)

    try:
        PyDssProject.run_project(path, simulation_file=sim_file)
    finally:
        os.remove(exports)
        os.rename(backup, exports)
Ejemplo n.º 5
0
def test_export_moving_averages(cleanup_project):
    # Compares the moving average storage/calculation with a rolling average
    # computed on dataset with every time point.
    path = CUSTOM_EXPORTS_PROJECT_PATH
    sim_file = SIMULATION_SETTINGS_FILENAME
    circuit = "Circuit.heco19021"
    window_size = 10
    PyDssProject.run_project(path, simulation_file=sim_file)

    # This DataFrame will have values at every time point.
    df1 = _get_dataframe(path,
                         "Circuits",
                         "LineLosses",
                         circuit,
                         real_only=True)
    assert len(df1) == 96
    df1_rm = df1.rolling(window_size).mean()

    data = {
        "Circuits": {
            "LineLosses": {
                "store_values_type": "moving_average",
                "window_size": window_size,
            },
        }
    }
    run_project_with_custom_exports(path, "scenario1", sim_file, data)
    results = PyDssResults(path)
    assert len(results.scenarios) == 1
    scenario = results.scenarios[0]

    # This DataFrame will have moving averages.
    df2 = _get_dataframe(path,
                         "Circuits",
                         "LineLossesAvg",
                         circuit,
                         real_only=True)
    assert len(df2) == 96

    for val1, val2 in zip(df1_rm.iloc[:, 0].values, df2.iloc[:, 0].values):
        if np.isnan(val1):
            assert np.isnan(val2)
        else:
            assert round(val2, 5) == round(val1, 5)
Ejemplo n.º 6
0
def run_example(example_name, scenarios):

    proc = None
    assert isinstance(example_name, str)
    assert isinstance(scenarios, list)
    base_projects_path = copy_examples_to_temp_folder(example_name)
    for S in scenarios:
        assert isinstance(S, dict)
        sim_file = S["TOML"]
        sup_file = S["file"]

        print(f'Running scenario {example_name} for example {sim_file}')
        if sup_file != None:
            sup_file_path = os.path.join(base_projects_path, sup_file)
            assert os.path.exists(sup_file_path)
            dir_path = os.path.dirname(sup_file_path)
            dir_main = os.getcwd()
            try:
                os.chdir(dir_path)
                print(dir_path)
                print(f"Running {sup_file_path} in a subprocess")
                print(sys.executable)
                proc = subprocess.Popen([sys.executable, sup_file_path],
                                        shell=True)
            finally:
                os.chdir(dir_main)
        try:
            if sim_file:
                project_path = os.path.join(base_projects_path, example_name)
                assert os.path.exists(base_projects_path)
                PyDssProject.run_project(project_path,
                                         options=None,
                                         tar_project=False,
                                         zip_project=False,
                                         simulation_file=sim_file)
        finally:
            print("Run complete")

            if proc != None:
                proc.terminate()
    return


#test_external_interfaces_example()
Ejemplo n.º 7
0
def test_pv_reports_per_element_per_time_point(cleanup_project):
    # Generates reports from data stored at every time point and then
    # use those to compare with the in-memory metrics.
    PyDssProject.run_project(
        PV_REPORTS_PROJECT_STORE_ALL_PATH,
        simulation_file=SIMULATION_SETTINGS_FILENAME,
    )

    baseline_thermal = SimulationThermalMetricsModel(**load_data(
        Path(PV_REPORTS_PROJECT_STORE_ALL_PATH) / "Reports" /
        "thermal_metrics.json"))
    baseline_voltage = SimulationVoltageMetricsModel(**load_data(
        Path(PV_REPORTS_PROJECT_STORE_ALL_PATH) / "Reports" /
        "voltage_metrics.json"))
    baseline_feeder_losses = SimulationFeederLossesMetricsModel(**load_data(
        Path(PV_REPORTS_PROJECT_STORE_ALL_PATH) / "Reports" /
        "feeder_losses.json"))

    granularities = [x for x in ReportGranularity]
    for granularity in granularities:
        settings = load_data(BASE_FILENAME)
        settings["Reports"]["Granularity"] = granularity.value
        dump_data(settings, TEST_FILENAME)
        try:
            PyDssProject.run_project(
                PV_REPORTS_PROJECT_PATH,
                simulation_file=TEST_SIM_BASE_NAME,
            )
            if granularity == ReportGranularity.PER_ELEMENT_PER_TIME_POINT:
                verify_skip_night()
                assert verify_thermal_metrics(baseline_thermal)
                assert verify_voltage_metrics(baseline_voltage)
                assert verify_feeder_losses(baseline_feeder_losses)
            verify_pv_reports(granularity)
            verify_feeder_head_metrics()
        finally:
            os.remove(TEST_FILENAME)
            for artifact in ARTIFACTS:
                if os.path.exists(artifact):
                    os.remove(artifact)
Ejemplo n.º 8
0
def test_export_moving_averages(cleanup_project):
    # Compares the moving average storage/calculation with a rolling average
    # computed on dataset with every time point.
    path = CUSTOM_EXPORTS_PROJECT_PATH
    sim_file = SIMULATION_SETTINGS_FILENAME
    circuit = "Circuit.heco19021"
    window_size = 10
    PyDssProject.run_project(path, simulation_file=sim_file)

    # This DataFrame will have values at every time point.
    df1 = _get_dataframe(path, "Circuits", "LineLosses", circuit)
    assert len(df1) == 96
    df1_rm = df1.rolling(window_size).mean()

    data = {
        "Circuits": {
            "LineLosses": {
                "store_values_type": "moving_average",
                "window_size": window_size,
            },
        }
    }
    run_project_with_custom_exports(path, "scenario1", sim_file, data)
    results = PyDssResults(path)
    assert len(results.scenarios) == 1
    scenario = results.scenarios[0]

    # This DataFrame will have moving averages.
    df2 = _get_dataframe(path, "Circuits", "LineLossesAvg", circuit)
    assert len(df2) == 9

    df1_index = window_size - 1
    for df2_index in range(len(df2)):
        val1 = round(df1_rm.iloc[df1_index, 0], 5)
        val2 = round(df2.iloc[df2_index, 0], 5)
        assert val1 == val2
        df1_index += window_size
Ejemplo n.º 9
0
def test_custom_exports(cleanup_project):
    all_node_voltages = _get_all_node_voltages()

    PyDssProject.run_project(
        CUSTOM_EXPORTS_PROJECT_PATH,
        simulation_file=SIMULATION_SETTINGS_FILENAME,
    )
    results = PyDssResults(CUSTOM_EXPORTS_PROJECT_PATH)
    assert len(results.scenarios) == 1
    scenario = results.scenarios[0]

    # Property stored at all time points.
    df = scenario.get_full_dataframe("Buses", "puVmagAngle")
    assert isinstance(df, pd.DataFrame)
    assert len(df) == 96

    # Property stored with a moving average.
    df = scenario.get_dataframe("Buses", "DistanceAvg", "t9")
    assert isinstance(df, pd.DataFrame)
    assert len(df) == int(96)
    #assert len(df) == int(96 / 5)
    for val in df.iloc[9:, 0]:
        assert round(val, 3) == 0.082

    # TODO DT: these values are no longer correct. What should they be?
    # Filtered value on custom function.
    #df = scenario.get_dataframe("Lines", "LoadingPercent", "Line.sl_22")
    #assert len(df) == 14

    #df = scenario.get_dataframe("Lines", "LoadingPercentAvg", "Line.sl_22")
    # This was computed from raw data.
    #assert len(df) == 9
    # TODO incorrect after more decimal points
    #assert round(df.iloc[:, 0].values[8], 2) == 22.79

    # Subset of names. VoltagesMagAng has specific names, CurrentsMagAng has regex
    for name in ("Line.pvl_110", "Line.pvl_111", "Line.pvl_112",
                 "Line.pvl_113"):
        properties = scenario.list_element_properties("Lines",
                                                      element_name=name)
        assert "VoltagesMagAng" in properties
        assert "CurrentsMagAng" in properties

    properties = scenario.list_element_properties("Lines",
                                                  element_name="Line.SL_14")
    assert "VoltagesMagAng" not in properties
    assert "CurrentsMagAng" not in properties

    # TODO: This metric no longer stores voltages in a dataframe.
    # That functionality could be recovered in PyDSS/metrics.py or we could implement this with
    # a different export property.
    #node_names = scenario.list_element_names("Nodes", "VoltageMetric")
    #dfs = scenario.get_filtered_dataframes("Nodes", "VoltageMetric")
    #assert len(node_names) == len(dfs)
    #assert sorted(node_names) == sorted(dfs.keys())
    #for i, node_name in enumerate(node_names):
    #    column = node_name + "__Voltage"
    #    df = dfs[node_name]
    #    # TODO: Slight rounding errors make this intermittent.
    #    #expected = all_node_voltages[column]
    #    #expected = expected[(expected < 1.02) | (expected > 1.04)]
    #    #assert len(df[column]) == len(expected)
    #    #assert_series_equal(df[column], expected, check_names=False)
    #    df2 = scenario.get_dataframe("Nodes", "VoltageMetric", node_name)
    #    assert_series_equal(df[column], df2[column], check_names=False)

    ## Two types of sums are stored.
    normal_amps_sum = scenario.get_element_property_value(
        "Lines", "NormalAmpsSum", "Line.pvl_110")
    assert normal_amps_sum == 96 * 65.0
    scenario.get_element_property_value("Lines", "CurrentsSum", "Line.pvl_110")
    scenario.get_element_property_value("Circuits", "LossesSum",
                                        "Circuit.heco19021")

    sums_json = os.path.join(CUSTOM_EXPORTS_PROJECT_PATH, "Exports",
                             "scenario1", "element_property_values.json")
    assert os.path.exists(sums_json)
    data = load_data(sums_json)
    assert data

    pv_profiles = scenario.read_pv_profiles()
    assert pv_profiles["pv_systems"]
    for info in pv_profiles["pv_systems"]:
        assert isinstance(info["name"], str)
        assert isinstance(info["irradiance"], float)
        assert isinstance(info["pmpp"], float)
        assert isinstance(info["load_shape_profile"], str)
        assert isinstance(info["load_shape_pmult_sum"], float)
Ejemplo n.º 10
0
def test_pv_powers_by_customer_type(cleanup_project):
    """Verify that PVSystem power output values collected by all variations match."""
    path = CUSTOM_EXPORTS_PROJECT_PATH
    PyDssProject.run_project(path,
                             simulation_file=SIMULATION_SETTINGS_FILENAME)
    com_pv_systems = set(["pvgnem_mpx000635970", "pvgnem_mpx000460267"])
    res_pv_systems = set(
        ["pvgnem_mpx000594341", "pvgui_mpx000637601", "pvgui_mpx000460267"])

    # Collect power for every PVSystem at every time point.
    df = _get_full_dataframe(path, "PVSystems", "Powers")
    com_cols, res_cols = _get_customer_type_columns(df, com_pv_systems,
                                                    res_pv_systems)
    com_sum1 = df[com_cols].sum().sum()
    res_sum1 = df[res_cols].sum().sum()
    total_sum1 = df.sum().sum()
    assert total_sum1 == com_sum1 + res_sum1

    # Collect a running sum for all PVSystem power output.
    data = {
        "PVSystems": {
            "Powers": {
                "store_values_type": "sum",
                "sum_elements": True,
            },
        }
    }
    run_project_with_custom_exports(path, "scenario1",
                                    SIMULATION_SETTINGS_FILENAME, data)
    total_sum2 = sum(
        _get_summed_element_total(path, "PVSystems", "PowersSum").values())
    assert math.isclose(total_sum1.real, total_sum2.real) and math.isclose(
        total_sum1.imag, total_sum2.imag)

    # Collect power for PVSystems aggregated by customer type at every time point.
    data = {
        "PVSystems": {
            "Powers": {
                "store_values_type":
                "all",
                "sum_groups": [{
                    "name": "com",
                    "elements": list(com_pv_systems),
                }, {
                    "name": "res",
                    "elements": list(res_pv_systems),
                }],
            },
        }
    }
    run_project_with_custom_exports(path, "scenario1",
                                    SIMULATION_SETTINGS_FILENAME, data)
    com_sum3 = _get_summed_element_dataframe(path,
                                             "PVSystems",
                                             "Powers",
                                             group="com").sum().sum()
    res_sum3 = _get_summed_element_dataframe(path,
                                             "PVSystems",
                                             "Powers",
                                             group="res").sum().sum()
    assert math.isclose(com_sum1.real, com_sum3.real) and math.isclose(
        com_sum1.imag, com_sum3.imag)
    assert math.isclose(res_sum1.real, res_sum3.real) and math.isclose(
        res_sum1.imag, res_sum3.imag)

    # Collect a running sum for all PVSystems by customer type.
    data = {
        "PVSystems": {
            "Powers": {
                "store_values_type":
                "sum",
                "sum_groups": [{
                    "name": "com",
                    "elements": list(com_pv_systems),
                }, {
                    "name": "res",
                    "elements": list(res_pv_systems),
                }],
            },
        }
    }
    run_project_with_custom_exports(path, "scenario1",
                                    SIMULATION_SETTINGS_FILENAME, data)
    com_sum4 = sum(
        _get_summed_element_total(path, "PVSystems", "PowersSum",
                                  group="com").values())
    res_sum4 = sum(
        _get_summed_element_total(path, "PVSystems", "PowersSum",
                                  group="res").values())
    assert math.isclose(com_sum1.real, com_sum4.real) and math.isclose(
        com_sum1.imag, com_sum4.imag)
    assert math.isclose(res_sum1.real, res_sum4.real) and math.isclose(
        res_sum1.imag, res_sum4.imag)
Ejemplo n.º 11
0
def run_test_project_by_property(tar_project, zip_project):
    project = PyDssProject.load_project(RUN_PROJECT_PATH)
    PyDssProject.run_project(
        RUN_PROJECT_PATH,
        tar_project=tar_project,
        zip_project=zip_project,
        simulation_file=SIMULATION_SETTINGS_FILENAME,
    )
    results = PyDssResults(RUN_PROJECT_PATH)
    assert len(results.scenarios) == 1
    assert results._hdf_store.attrs["version"] == DATA_FORMAT_VERSION
    scenario = results.scenarios[0]
    assert isinstance(scenario, PyDssScenarioResults)
    elem_classes = scenario.list_element_classes()
    expected_elem_classes = list(EXPECTED_ELEM_CLASSES_PROPERTIES.keys())
    expected_elem_classes.sort()
    assert elem_classes == expected_elem_classes
    for elem_class in elem_classes:
        expected_properties = EXPECTED_ELEM_CLASSES_PROPERTIES[elem_class]
        expected_properties.sort()
        properties = scenario.list_element_properties(elem_class)
        assert properties == expected_properties
        for prop in properties:
            element_names = scenario.list_element_names(elem_class, prop)
            for name in element_names:
                df = scenario.get_dataframe(elem_class, prop, name)
                assert isinstance(df, pd.DataFrame)
                assert len(df) == 96
            for name, df in scenario.iterate_dataframes(elem_class, prop):
                assert name in element_names
                assert isinstance(df, pd.DataFrame)

    # Test with an option.
    assert scenario.list_element_property_options(
        "Lines", "Currents") == ["phase_terminal"]
    df = scenario.get_dataframe("Lines",
                                "Currents",
                                "Line.sw0",
                                phase_terminal="A1")
    assert isinstance(df, pd.DataFrame)
    assert len(df) == 96
    assert len(df.columns) == 1
    step = datetime.timedelta(
        seconds=project.simulation_config["Project"]["Step resolution (sec)"])
    assert df.index[1] - df.index[0] == step

    df = scenario.get_dataframe("Lines",
                                "CurrentsMagAng",
                                "Line.sw0",
                                phase_terminal="A1",
                                mag_ang="mag")
    assert isinstance(df, pd.DataFrame)
    assert len(df) == 96
    assert len(df.columns) == 1

    df = scenario.get_dataframe("Lines",
                                "CurrentsMagAng",
                                "Line.sw0",
                                phase_terminal=None,
                                mag_ang="ang")
    assert isinstance(df, pd.DataFrame)
    assert len(df.columns) == 2
    assert len(df) == 96

    regex = re.compile(r"[ABCN]1")
    df = scenario.get_dataframe("Lines",
                                "Currents",
                                "Line.sw0",
                                phase_terminal=regex)
    assert isinstance(df, pd.DataFrame)
    assert len(df.columns) == 1
    assert len(df) == 96

    option_values = scenario.get_option_values("Lines", "Currents", "Line.sw0")
    assert option_values == ["A1", "A2"]

    prop = "Currents"
    full_df = scenario.get_full_dataframe("Lines", prop)
    assert len(full_df.columns) >= len(
        scenario.list_element_names("Lines", prop))
    for column in full_df.columns:
        assert "Unnamed" not in column
    assert len(full_df) == 96

    element_info_files = scenario.list_element_info_files()
    assert element_info_files
    for filename in element_info_files:
        df = scenario.read_element_info_file(filename)
        assert isinstance(df, pd.DataFrame)

    # Test the shortcut.
    df = scenario.read_element_info_file("PVSystems")
    assert isinstance(df, pd.DataFrame)

    cap_changes = scenario.read_capacitor_changes()
Ejemplo n.º 12
0
def test_custom_exports(cleanup_project):
    PyDssProject.run_project(
        CUSTOM_EXPORTS_PROJECT_PATH,
        simulation_file=SIMULATION_SETTINGS_FILENAME,
    )
    results = PyDssResults(CUSTOM_EXPORTS_PROJECT_PATH)
    assert len(results.scenarios) == 1
    scenario = results.scenarios[0]

    # Property stored at all time points.
    df = scenario.get_full_dataframe("Buses", "puVmagAngle")
    assert isinstance(df, pd.DataFrame)
    assert len(df) == 96

    # Property stored with a moving average.
    df = scenario.get_dataframe("Buses", "DistanceAvg", "t9")
    assert isinstance(df, pd.DataFrame)
    assert len(df) == int(96 / 5)
    for i, row in df.iterrows():
        assert round(row["t9__DistanceAvg"], 3) == 0.082

    transformers = scenario.list_element_names("Transformers")
    df = scenario.get_dataframe("Transformers", "CurrentsAvg", transformers[0])
    assert len(df) < 96

    df = scenario.get_dataframe("Lines", "LoadingPercentAvg", "Line.sl_22")
    assert len(df) == 2

    # Filtered value on custom function.
    df = scenario.get_dataframe("Lines", "LoadingPercent", "Line.sl_22")
    assert len(df) == 17

    # Subset of names. VoltagesMagAng has specific names, CurrentsMagAng has regex
    for name in ("Line.pvl_110", "Line.pvl_111", "Line.pvl_112",
                 "Line.pvl_113"):
        properties = scenario.list_element_properties("Lines",
                                                      element_name=name)
        assert "VoltagesMagAng" in properties
        assert "CurrentsMagAng" in properties

    properties = scenario.list_element_properties("Lines",
                                                  element_name="Line.SL_14")
    assert "VoltagesMagAng" not in properties
    assert "CurrentsMagAng" not in properties

    # Two types of sums are stored.
    normal_amps_sum = scenario.get_element_property_number(
        "Lines", "NormalAmpsSum", "Line.pvl_110")
    assert normal_amps_sum == 96 * 65.0
    scenario.get_element_property_number("Lines", "CurrentsSum",
                                         "Line.pvl_110")
    scenario.get_element_property_number("Circuits", "LossesSum",
                                         "Circuit.heco19021")

    sums_json = os.path.join(CUSTOM_EXPORTS_PROJECT_PATH, "Exports",
                             "scenario1", "element_property_numbers.json")
    assert os.path.exists(sums_json)
    data = load_data(sums_json)
    assert data

    pv_profiles = scenario.read_pv_profiles()
    assert pv_profiles["pv_systems"]
    for info in pv_profiles["pv_systems"]:
        assert isinstance(info["name"], str)
        assert isinstance(info["irradiance"], float)
        assert isinstance(info["pmpp"], float)
        assert isinstance(info["load_shape_profile"], str)
        assert isinstance(info["load_shape_pmult_sum"], float)