Ejemplo n.º 1
0
    def testRabiInteractionFrame(self):
        '''
        Test Rabi oscillations after moving into an interaction frame that is different to the pulsing frame and with an irrational timestep for good measure.
        '''
        
        #Setup the system
        self.systemParams.subSystems[0] = SCQubit(2,5e9, 'Q1')
        self.systemParams.create_full_Ham()
        
        #Setup the pulseSequences
        pulseSeqs = []
        for pulseLength in self.pulseLengths:
        
            tmpPulseSeq = PulseSequence()
            tmpPulseSeq.add_control_line(freq=-5.0e9, phase=0)
            tmpPulseSeq.controlAmps = self.rabiFreq*np.array([[1]], dtype=np.float64)
            tmpPulseSeq.timeSteps = np.array([pulseLength])
            tmpPulseSeq.maxTimeStep = pi/2*1e-10
            tmpPulseSeq.H_int = Hamiltonian(np.array([[0,0], [0, 5.005e9]], dtype = np.complex128))
            
            pulseSeqs.append(tmpPulseSeq)
            
        results = simulate_sequence_stack(pulseSeqs, self.systemParams, self.rhoIn, simType='unitary')[0]
        expectedResults = np.cos(2*pi*self.rabiFreq*self.pulseLengths)
        if plotResults:
            plt.figure()
            plt.plot(self.pulseLengths,results)
            plt.plot(self.pulseLengths, expectedResults, color='r', linestyle='--', linewidth=2)
            plt.title('10MHz Rabi Oscillations in Interaction Frame')
            plt.xlabel('Pulse Length')
            plt.ylabel(r'$\sigma_z$')
            plt.legend(('Simulated Results', '10MHz Cosine'))
            plt.show()

        np.testing.assert_allclose(results, expectedResults , atol = 1e-4)
Ejemplo n.º 2
0
    def testTwoPhoton(self):
        '''
        Test spectroscopy and the two photon transition from the ground to the second excited state.
        '''

        freqSweep = 1e9 * np.linspace(4.9, 5.1, 1000)
        rabiFreq = 1e6

        #Setup the pulseSequences as a series of 10us low-power pulses
        pulseSeqs = []
        for freq in freqSweep:
            tmpPulseSeq = PulseSequence()
            tmpPulseSeq.add_control_line(freq=freq, phase=0)
            tmpPulseSeq.controlAmps = np.array([[rabiFreq]], dtype=np.float64)
            tmpPulseSeq.timeSteps = np.array([10e-6])
            tmpPulseSeq.maxTimeStep = np.Inf
            tmpPulseSeq.H_int = Hamiltonian(
                np.diag(freq * np.arange(3, dtype=np.complex128)))

            pulseSeqs.append(tmpPulseSeq)

        results = simulate_sequence_stack(pulseSeqs,
                                          self.systemParams,
                                          self.rhoIn,
                                          simType='lindblad')[0]

        if plotResults:
            plt.figure()
            plt.plot(freqSweep / 1e9, results)
            plt.xlabel('Frequency')
            plt.ylabel(r'$\sigma_z$')
            plt.title('Qutrit Spectroscopy')
            plt.show()
Ejemplo n.º 3
0
    def testTwoPhoton(self):
        
        '''
        Test spectroscopy and the two photon transition from the ground to the second excited state.
        '''
        
        freqSweep = 1e9*np.linspace(4.9, 5.1, 1000)
        rabiFreq = 1e6
        
        #Setup the pulseSequences as a series of 10us low-power pulses
        pulseSeqs = []
        for freq in freqSweep:
            tmpPulseSeq = PulseSequence()
            tmpPulseSeq.add_control_line(freq=freq, phase=0)
            tmpPulseSeq.controlAmps = np.array([[rabiFreq]], dtype=np.float64)
            tmpPulseSeq.timeSteps = np.array([10e-6])
            tmpPulseSeq.maxTimeStep = np.Inf
            tmpPulseSeq.H_int = Hamiltonian(np.diag(freq*np.arange(3, dtype=np.complex128)))
            
            pulseSeqs.append(tmpPulseSeq)
        
        results = simulate_sequence_stack(pulseSeqs, self.systemParams, self.rhoIn, simType='lindblad')[0]

        if plotResults:        
            plt.figure()
            plt.plot(freqSweep/1e9,results)
            plt.xlabel('Frequency')
            plt.ylabel(r'$\sigma_z$')
            plt.title('Qutrit Spectroscopy')
            plt.show()
Ejemplo n.º 4
0
    def testRabiRotatingFrame(self):
        '''
        Test Rabi oscillations in the rotating frame, i.e. with zero drift Hamiltonian drive frequency of zero.
        '''
        
        #Setup the pulseSequences
        pulseSeqs = []
        for pulseLength in self.pulseLengths:
            tmpPulseSeq = PulseSequence()
            tmpPulseSeq.add_control_line(freq=0e9, phase=0)
            tmpPulseSeq.controlAmps = self.rabiFreq*np.array([[1]], dtype=np.float64)
            tmpPulseSeq.timeSteps = np.array([pulseLength])
            tmpPulseSeq.maxTimeStep = pulseLength
            tmpPulseSeq.H_int = None
            
            pulseSeqs.append(tmpPulseSeq)
        
        results = simulate_sequence_stack(pulseSeqs, self.systemParams, self.rhoIn, simType='unitary')[0]
        expectedResults = np.cos(2*pi*self.rabiFreq*self.pulseLengths)
        if plotResults:
            plt.figure()
            plt.plot(self.pulseLengths,results)
            plt.plot(self.pulseLengths, expectedResults, color='r', linestyle='--', linewidth=2)
            plt.title('10MHz Rabi Oscillations in Rotating Frame')
            plt.xlabel('Pulse Length')
            plt.ylabel(r'$\sigma_z$')
            plt.legend(('Simulated Results', '10MHz Cosine'))
            plt.show()

        np.testing.assert_allclose(results, expectedResults , atol = 1e-4)
Ejemplo n.º 5
0
 def testT1Recovery(self):
     '''
     Test a simple T1 recovery without any pulses.  Start in the first excited state and watch recovery down to ground state.
     '''
     self.systemParams.dissipators = [Dissipator(self.qubit.T1Dissipator)]
     
     #Just setup a series of delays
     delays = np.linspace(0,5e-6,40)
     pulseSeqs = []
     for tmpDelay in delays:
         tmpPulseSeq = PulseSequence()
         tmpPulseSeq.add_control_line()
         tmpPulseSeq.controlAmps = np.array([[0]])
         tmpPulseSeq.timeSteps = np.array([tmpDelay])
         tmpPulseSeq.maxTimeStep = tmpDelay
         tmpPulseSeq.H_int = None
         
         pulseSeqs.append(tmpPulseSeq)
     
     results = simulate_sequence_stack(pulseSeqs, self.systemParams, np.array([[0,0],[0,1]], dtype=np.complex128), simType='lindblad')[0]
     expectedResults = 1-2*np.exp(-delays/self.qubit.T1)
     if plotResults:
         plt.figure()
         plt.plot(1e6*delays,results)
         plt.plot(1e6*delays, expectedResults, color='r', linestyle='--', linewidth=2)
         plt.xlabel(r'Recovery Time ($\mu$s)')
         plt.ylabel(r'Expectation Value of $\sigma_z$')
         plt.title(r'$T_1$ Recovery to the Ground State')
         plt.legend(('Simulated Results', 'Exponential T1 Recovery'))
         plt.show()
     
     np.testing.assert_allclose(results, expectedResults, atol=1e-4)
Ejemplo n.º 6
0
def sim_setup_cython(Hnat, controlHams, controlFields, controlFreqs):
    systemParams = SystemParams()
    systemParams.Hnat = Hamiltonian(Hnat)
    pulseSeq = PulseSequence()
    pulseSeq.controlAmps = controlFields
    for ct in range(len(controlHams)):
        systemParams.add_control_ham(inphase=Hamiltonian(controlHams[ct]))
        pulseSeq.add_control_line(freq = controlFreqs[ct], phase=0, controlType='sinusoidal')
    for ct in range(np.int(np.log2(Hnat.shape[0]))):
        systemParams.add_sub_system(SCQubit(2,0e9, name='Q1', T1=1e-6))
    pulseSeq.timeSteps = 0.01*np.ones(controlFields.shape[1])
    pulseSeq.maxTimeStep = 1e6
    
    return systemParams, pulseSeq
Ejemplo n.º 7
0
    def testZZGate(self):
        '''Test whether the ZZ interaction performs as expected'''

        #Take the bare Hamiltonian as the interaction Hamiltonian
        H_int = Hamiltonian(self.systemParams.Hnat.matrix)

        #First add a 2MHz ZZ interaction and add it to the system
        self.systemParams.add_interaction('Q1', 'Q2', 'ZZ', 2e6)
        self.systemParams.create_full_Ham()

        #Setup the pulseSequences
        delays = np.linspace(0, 4e-6, 100)
        pulseSeqs = []
        for delay in delays:
            tmpPulseSeq = PulseSequence()
            tmpPulseSeq.add_control_line(freq=-5.0e9, phase=0)
            tmpPulseSeq.add_control_line(freq=-6.0e9, phase=0)
            tmpPulseSeq.controlAmps = self.rabiFreq * np.array(
                [[1, 0], [0, 0]], dtype=np.float64)
            tmpPulseSeq.timeSteps = np.array([25e-9, delay])
            tmpPulseSeq.maxTimeStep = np.Inf
            tmpPulseSeq.H_int = H_int

            pulseSeqs.append(tmpPulseSeq)

        self.systemParams.measurement = np.kron(self.Q1.pauliX, self.Q2.pauliZ)
        resultsXZ = simulate_sequence_stack(pulseSeqs,
                                            self.systemParams,
                                            self.rhoIn,
                                            simType='unitary')[0]
        self.systemParams.measurement = np.kron(self.Q1.pauliY, self.Q2.pauliZ)
        resultsYZ = simulate_sequence_stack(pulseSeqs,
                                            self.systemParams,
                                            self.rhoIn,
                                            simType='unitary')[0]

        if plotResults:
            plt.figure()
            plt.plot(delays * 1e6, resultsXZ)
            plt.plot(delays * 1e6, resultsYZ, 'g')
            plt.legend(('XZ', 'YZ'))
            plt.xlabel('Coupling Time')
            plt.ylabel('Operator Expectation Value')
            plt.title('ZZ Coupling Evolution After a X90 on Q1')
            plt.show()
Ejemplo n.º 8
0
    def testRabiInteractionFrame(self):
        '''
        Test Rabi oscillations after moving into an interaction frame that is different to the pulsing frame and with an irrational timestep for good measure.
        '''

        #Setup the system
        self.systemParams.subSystems[0] = SCQubit(2, 5e9, 'Q1')
        self.systemParams.create_full_Ham()

        #Setup the pulseSequences
        pulseSeqs = []
        for pulseLength in self.pulseLengths:

            tmpPulseSeq = PulseSequence()
            tmpPulseSeq.add_control_line(freq=-5.0e9, phase=0)
            tmpPulseSeq.controlAmps = self.rabiFreq * np.array(
                [[1]], dtype=np.float64)
            tmpPulseSeq.timeSteps = np.array([pulseLength])
            tmpPulseSeq.maxTimeStep = pi / 2 * 1e-10
            tmpPulseSeq.H_int = Hamiltonian(
                np.array([[0, 0], [0, 5.005e9]], dtype=np.complex128))

            pulseSeqs.append(tmpPulseSeq)

        results = simulate_sequence_stack(pulseSeqs,
                                          self.systemParams,
                                          self.rhoIn,
                                          simType='unitary')[0]
        expectedResults = np.cos(2 * pi * self.rabiFreq * self.pulseLengths)
        if plotResults:
            plt.figure()
            plt.plot(self.pulseLengths, results)
            plt.plot(self.pulseLengths,
                     expectedResults,
                     color='r',
                     linestyle='--',
                     linewidth=2)
            plt.title('10MHz Rabi Oscillations in Interaction Frame')
            plt.xlabel('Pulse Length')
            plt.ylabel(r'$\sigma_z$')
            plt.legend(('Simulated Results', '10MHz Cosine'))
            plt.show()

        np.testing.assert_allclose(results, expectedResults, atol=1e-4)
Ejemplo n.º 9
0
    def testT1Recovery(self):
        '''
        Test a simple T1 recovery without any pulses.  Start in the first excited state and watch recovery down to ground state.
        '''
        self.systemParams.dissipators = [Dissipator(self.qubit.T1Dissipator)]

        #Just setup a series of delays
        delays = np.linspace(0, 5e-6, 40)
        pulseSeqs = []
        for tmpDelay in delays:
            tmpPulseSeq = PulseSequence()
            tmpPulseSeq.add_control_line()
            tmpPulseSeq.controlAmps = np.array([[0]])
            tmpPulseSeq.timeSteps = np.array([tmpDelay])
            tmpPulseSeq.maxTimeStep = tmpDelay
            tmpPulseSeq.H_int = None

            pulseSeqs.append(tmpPulseSeq)

        results = simulate_sequence_stack(pulseSeqs,
                                          self.systemParams,
                                          np.array([[0, 0], [0, 1]],
                                                   dtype=np.complex128),
                                          simType='lindblad')[0]
        expectedResults = 1 - 2 * np.exp(-delays / self.qubit.T1)
        if plotResults:
            plt.figure()
            plt.plot(1e6 * delays, results)
            plt.plot(1e6 * delays,
                     expectedResults,
                     color='r',
                     linestyle='--',
                     linewidth=2)
            plt.xlabel(r'Recovery Time ($\mu$s)')
            plt.ylabel(r'Expectation Value of $\sigma_z$')
            plt.title(r'$T_1$ Recovery to the Ground State')
            plt.legend(('Simulated Results', 'Exponential T1 Recovery'))
            plt.show()

        np.testing.assert_allclose(results, expectedResults, atol=1e-4)
Ejemplo n.º 10
0
    def testRabiRotatingFrame(self):
        '''
        Test Rabi oscillations in the rotating frame, i.e. with zero drift Hamiltonian drive frequency of zero.
        '''

        #Setup the pulseSequences
        pulseSeqs = []
        for pulseLength in self.pulseLengths:
            tmpPulseSeq = PulseSequence()
            tmpPulseSeq.add_control_line(freq=0e9, phase=0)
            tmpPulseSeq.controlAmps = self.rabiFreq * np.array(
                [[1]], dtype=np.float64)
            tmpPulseSeq.timeSteps = np.array([pulseLength])
            tmpPulseSeq.maxTimeStep = pulseLength
            tmpPulseSeq.H_int = None

            pulseSeqs.append(tmpPulseSeq)

        results = simulate_sequence_stack(pulseSeqs,
                                          self.systemParams,
                                          self.rhoIn,
                                          simType='unitary')[0]
        expectedResults = np.cos(2 * pi * self.rabiFreq * self.pulseLengths)
        if plotResults:
            plt.figure()
            plt.plot(self.pulseLengths, results)
            plt.plot(self.pulseLengths,
                     expectedResults,
                     color='r',
                     linestyle='--',
                     linewidth=2)
            plt.title('10MHz Rabi Oscillations in Rotating Frame')
            plt.xlabel('Pulse Length')
            plt.ylabel(r'$\sigma_z$')
            plt.legend(('Simulated Results', '10MHz Cosine'))
            plt.show()

        np.testing.assert_allclose(results, expectedResults, atol=1e-4)
Ejemplo n.º 11
0
    def testZZGate(self):
        '''Test whether the ZZ interaction performs as expected'''
        
        #Take the bare Hamiltonian as the interaction Hamiltonian
        H_int = Hamiltonian(self.systemParams.Hnat.matrix)
        
        #First add a 2MHz ZZ interaction and add it to the system
        self.systemParams.add_interaction('Q1', 'Q2', 'ZZ', 2e6)
        self.systemParams.create_full_Ham()
        
        #Setup the pulseSequences
        delays = np.linspace(0,4e-6,100)
        pulseSeqs = []
        for delay in delays:
            tmpPulseSeq = PulseSequence()
            tmpPulseSeq.add_control_line(freq=-5.0e9, phase=0)
            tmpPulseSeq.add_control_line(freq=-6.0e9, phase=0)
            tmpPulseSeq.controlAmps = self.rabiFreq*np.array([[1, 0], [0,0]], dtype=np.float64)
            tmpPulseSeq.timeSteps = np.array([25e-9, delay])
            tmpPulseSeq.maxTimeStep = np.Inf
            tmpPulseSeq.H_int = H_int
 
            pulseSeqs.append(tmpPulseSeq)
        
        self.systemParams.measurement = np.kron(self.Q1.pauliX, self.Q2.pauliZ)
        resultsXZ = simulate_sequence_stack(pulseSeqs, self.systemParams, self.rhoIn, simType='unitary')[0]
        self.systemParams.measurement = np.kron(self.Q1.pauliY, self.Q2.pauliZ)
        resultsYZ = simulate_sequence_stack(pulseSeqs, self.systemParams, self.rhoIn, simType='unitary')[0]

        if plotResults:
            plt.figure()
            plt.plot(delays*1e6, resultsXZ)
            plt.plot(delays*1e6, resultsYZ, 'g')
            plt.legend(('XZ','YZ'))
            plt.xlabel('Coupling Time')
            plt.ylabel('Operator Expectation Value')
            plt.title('ZZ Coupling Evolution After a X90 on Q1')
            plt.show()
CRGaussOnBlock[4] = halfGauss[-1::-1]

CRGaussOffBlock =  np.zeros((2*numChannels,numPoints));
CRGaussOffBlock[4] = halfGauss

CRBlock = np.array([0,0,0,0,1,0]).reshape(2*numChannels,1)
CRBlock *= CRAmp;

baseSeq = PulseSequence()
baseSeq.add_control_line(freq=-drive1Freq, phase=0)
baseSeq.add_control_line(freq=-drive1Freq, phase=-pi/2)
baseSeq.add_control_line(freq=-drive2Freq, phase=0)
baseSeq.add_control_line(freq=-drive2Freq, phase=-pi/2)
baseSeq.add_control_line(freq=-drive1Freq, phase=0)
baseSeq.add_control_line(freq=-drive1Freq, phase=-pi/2)
baseSeq.maxTimeStep = timeStep/4
baseSeq.H_int = Hamiltonian(systemParams.expand_operator('Q1', drive1Freq*Q1.numberOp) + systemParams.expand_operator('Q2', drive2Freq*Q2.numberOp))


'''
#Look at the all XY set of experiments


pulseSeqs = []

#Nothing
tmpPulseSeq = deepcopy(baseSeq)
tmpPulseSeq.controlAmps = np.zeros((4,1))
tmpPulseSeq.timeSteps = timeStep*np.ones(tmpPulseSeq.controlAmps.shape[1])
pulseSeqs.append(tmpPulseSeq)
Ejemplo n.º 13
0
    #Setup the pulseSequences to calibrate the optimal control pulse
    pulseSeqs = []

    nutFreqs = np.linspace(0, 100e6, 50)
    for nutFreq in nutFreqs:
        tmpPulseSeq = PulseSequence()
        tmpPulseSeq.add_control_line(freq=-drive1Freq, initialPhase=0)
        tmpPulseSeq.add_control_line(freq=-drive1Freq, initialPhase=-pi / 2)
        tmpPulseSeq.add_control_line(freq=-drive2Freq, initialPhase=0)
        tmpPulseSeq.add_control_line(freq=-drive2Freq, initialPhase=-pi / 2)
        #        tmpPulseSeq.controlAmps = np.hstack((Q2PiBlock, nutFreq*jayPulseBlock, Q2PiBlock))
        tmpPulseSeq.controlAmps = nutFreq * jayPulseBlock
        tmpPulseSeq.timeSteps = timeStep * np.ones(
            tmpPulseSeq.controlAmps.shape[1])
        tmpPulseSeq.maxTimeStep = timeStep / 4
        tmpPulseSeq.H_int = Hamiltonian(
            systemParams.expand_operator('Q1', drive1Freq * Q1.numberOp) +
            systemParams.expand_operator('Q2', drive2Freq * Q2.numberOp))
        pulseSeqs.append(tmpPulseSeq)

    results = simulate_sequence_stack(pulseSeqs,
                                      systemParams,
                                      rhoIn,
                                      simType='unitary')

    #Calibrates to 9.51MHz as expected
    Q1Cal = 0.5 / (np.sum(gaussPulse) * timeStep)
    bufferPts = 2
    Q1PiPulse = np.zeros((systemParams.numControlHams, numPoints))
    Q1PiPulse[0] = Q1Cal * gaussPulse
Ejemplo n.º 14
0
    
    #Setup the pulseSequences to calibrate the optimal control pulse
    pulseSeqs = []
    
    nutFreqs = np.linspace(0,100e6,50)
    for nutFreq in nutFreqs:
        tmpPulseSeq = PulseSequence()
        tmpPulseSeq.add_control_line(freq=-drive1Freq, initialPhase=0)
        tmpPulseSeq.add_control_line(freq=-drive1Freq, initialPhase=-pi/2)
        tmpPulseSeq.add_control_line(freq=-drive2Freq, initialPhase=0)
        tmpPulseSeq.add_control_line(freq=-drive2Freq, initialPhase=-pi/2)
#        tmpPulseSeq.controlAmps = np.hstack((Q2PiBlock, nutFreq*jayPulseBlock, Q2PiBlock))
        tmpPulseSeq.controlAmps = nutFreq*jayPulseBlock
        tmpPulseSeq.timeSteps = timeStep*np.ones(tmpPulseSeq.controlAmps.shape[1])
        tmpPulseSeq.maxTimeStep = timeStep/4
        tmpPulseSeq.H_int = Hamiltonian(systemParams.expand_operator('Q1', drive1Freq*Q1.numberOp) + systemParams.expand_operator('Q2', drive2Freq*Q2.numberOp))
        pulseSeqs.append(tmpPulseSeq)

    results = simulate_sequence_stack(pulseSeqs, systemParams, rhoIn, simType='unitary')

    
    #Calibrates to 9.51MHz as expected
    Q1Cal = 0.5/(np.sum(gaussPulse)*timeStep)
    bufferPts = 2
    Q1PiPulse = np.zeros((systemParams.numControlHams,numPoints))
    Q1PiPulse[0] = Q1Cal*gaussPulse
    Q1PiBlock = np.hstack((np.zeros((systemParams.numControlHams,bufferPts)), Q1PiPulse, np.zeros((systemParams.numControlHams,bufferPts))))
    Q1Pi2Block = np.hstack((np.zeros((systemParams.numControlHams,bufferPts)), 0.5*Q1PiPulse, np.zeros((systemParams.numControlHams,bufferPts))))
    Q1TimePts = timeStep*np.ones(Q1PiBlock.shape[1])