Ejemplo n.º 1
0
def runCapture(config,
               duration=None,
               video_file=None,
               nodetect=False,
               detect_end=False,
               upload_manager=None):
    """ Run capture and compression for the given time.given

    Arguments:
        config: [config object] Configuration read from the .config file

    Keyword arguments:
        duration: [float] Time in seconds to capture. None by default.
        video_file: [str] Path to the video file, if it was given as the video source. None by default.
        nodetect: [bool] If True, detection will not be performed. False by defualt.
        detect_end: [bool] If True, detection will be performed at the end of the night, when capture 
            finishes. False by default.
        upload_manager: [UploadManager object] A handle to the UploadManager, which handles uploading files to
            the central server. None by default.

    """

    global STOP_CAPTURE

    # Create a directory for captured files
    night_data_dir_name = str(
        config.stationID) + '_' + datetime.datetime.utcnow().strftime(
            '%Y%m%d_%H%M%S_%f')

    # Full path to the data directory
    night_data_dir = os.path.join(os.path.abspath(config.data_dir),
                                  config.captured_dir, night_data_dir_name)

    # Make a directory for the night
    mkdirP(night_data_dir)

    log.info('Data directory: ' + night_data_dir)

    # Load the default flat field image if it is available
    flat_struct = None

    if config.use_flat:

        # Check if the flat exists
        if os.path.exists(os.path.join(os.getcwd(), config.flat_file)):
            flat_struct = Image.loadFlat(os.getcwd(), config.flat_file)

            log.info('Loaded flat field image: ' +
                     os.path.join(os.getcwd(), config.flat_file))

    # Get the platepar file
    platepar, platepar_path, platepar_fmt = getPlatepar(config)

    log.info('Initializing frame buffers...')
    ### For some reason, the RPi 3 does not like memory chunks which size is the multipier of its L2
    ### cache size (512 kB). When such a memory chunk is provided, the compression becomes 10x slower
    ### then usual. We are applying a dirty fix here where we just add an extra image row and column
    ### if such a memory chunk will be created. The compression is performed, and the image is cropped
    ### back to its original dimensions.
    array_pad = 0

    # Check if the image dimensions are divisible by RPi3 L2 cache size and add padding
    if (256 * config.width * config.height) % (512 * 1024) == 0:
        array_pad = 1

    # Init arrays for parallel compression on 2 cores
    sharedArrayBase = multiprocessing.Array(
        ctypes.c_uint8,
        256 * (config.width + array_pad) * (config.height + array_pad))
    sharedArray = np.ctypeslib.as_array(sharedArrayBase.get_obj())
    sharedArray = sharedArray.reshape(256, (config.height + array_pad),
                                      (config.width + array_pad))
    startTime = multiprocessing.Value('d', 0.0)

    sharedArrayBase2 = multiprocessing.Array(
        ctypes.c_uint8,
        256 * (config.width + array_pad) * (config.height + array_pad))
    sharedArray2 = np.ctypeslib.as_array(sharedArrayBase2.get_obj())
    sharedArray2 = sharedArray2.reshape(256, (config.height + array_pad),
                                        (config.width + array_pad))
    startTime2 = multiprocessing.Value('d', 0.0)

    log.info('Initializing frame buffers done!')

    # Check if the detection should be performed or not
    if nodetect:
        detector = None

    else:

        if detect_end:

            # Delay detection until the end of the night
            delay_detection = duration

        else:
            # Delay the detection for 2 minutes after capture start
            delay_detection = 120

        # Initialize the detector
        detector = QueuedPool(detectStarsAndMeteors,
                              cores=1,
                              log=log,
                              delay_start=delay_detection)
        detector.startPool()

    # Initialize buffered capture
    bc = BufferedCapture(sharedArray,
                         startTime,
                         sharedArray2,
                         startTime2,
                         config,
                         video_file=video_file)

    # Initialize the live image viewer
    live_view = LiveViewer(window_name='Maxpixel')

    # Initialize compression
    compressor = Compressor(night_data_dir,
                            sharedArray,
                            startTime,
                            sharedArray2,
                            startTime2,
                            config,
                            detector=detector,
                            live_view=live_view,
                            flat_struct=flat_struct)

    # Start buffered capture
    bc.startCapture()

    # Start the compression
    compressor.start()

    # Capture until Ctrl+C is pressed
    wait(duration)

    # If capture was manually stopped, end capture
    if STOP_CAPTURE:
        log.info('Ending capture...')

    # Stop the capture
    log.debug('Stopping capture...')
    bc.stopCapture()
    log.debug('Capture stopped')

    dropped_frames = bc.dropped_frames
    log.info('Total number of dropped frames: ' + str(dropped_frames))

    # Stop the compressor
    log.debug('Stopping compression...')
    detector, live_view = compressor.stop()
    log.debug('Compression stopped')

    # Stop the live viewer
    log.debug('Stopping live viewer...')
    live_view.stop()
    del live_view
    log.debug('Live view stopped')

    # Init data lists
    star_list = []
    meteor_list = []
    ff_detected = []

    # If detection should be performed
    if not nodetect:

        log.info('Finishing up the detection, ' +
                 str(detector.input_queue.qsize()) + ' files to process...')

        # Reset the Ctrl+C to KeyboardInterrupt
        resetSIGINT()

        try:

            # If there are some more files to process, process them on more cores
            if detector.input_queue.qsize() > 0:

                # Let the detector use all cores, but leave 1 free
                available_cores = multiprocessing.cpu_count() - 1

                if available_cores > 1:

                    log.info('Running the detection on {:d} cores...'.format(
                        available_cores))

                    # Start the detector
                    detector.updateCoreNumber(cores=available_cores)

            log.info('Waiting for the detection to finish...')

            # Wait for the detector to finish and close it
            detector.closePool()

            log.info('Detection finished!')

        except KeyboardInterrupt:

            log.info('Ctrl + C pressed, exiting...')

            if upload_manager is not None:

                # Stop the upload manager
                if upload_manager.is_alive():
                    log.debug('Closing upload manager...')
                    upload_manager.stop()
                    del upload_manager

            # Terminate the detector
            if detector is not None:
                del detector

            sys.exit()

        # Set the Ctrl+C back to 'soft' program kill
        setSIGINT()

        ### SAVE DETECTIONS TO FILE

        log.info('Collecting results...')

        # Get the detection results from the queue
        detection_results = detector.getResults()

        # Remove all 'None' results, which were errors
        detection_results = [
            res for res in detection_results if res is not None
        ]

        # Count the number of detected meteors
        meteors_num = 0
        for _, _, meteor_data in detection_results:
            for meteor in meteor_data:
                meteors_num += 1

        log.info('TOTAL: ' + str(meteors_num) + ' detected meteors.')

        # Save the detections to a file
        for ff_name, star_data, meteor_data in detection_results:

            x2, y2, background, intensity = star_data

            # Skip if no stars were found
            if not x2:
                continue

            # Construct the table of the star parameters
            star_data = zip(x2, y2, background, intensity)

            # Add star info to the star list
            star_list.append([ff_name, star_data])

            # Handle the detected meteors
            meteor_No = 1
            for meteor in meteor_data:

                rho, theta, centroids = meteor

                # Append to the results list
                meteor_list.append([ff_name, meteor_No, rho, theta, centroids])
                meteor_No += 1

            # Add the FF file to the archive list if a meteor was detected on it
            if meteor_data:
                ff_detected.append(ff_name)

        # Generate the name for the CALSTARS file
        calstars_name = 'CALSTARS_' + "{:s}".format(str(config.stationID)) + '_' \
            + os.path.basename(night_data_dir) + '.txt'

        # Write detected stars to the CALSTARS file
        CALSTARS.writeCALSTARS(star_list, night_data_dir, calstars_name, config.stationID, config.height, \
            config.width)

        # Generate FTPdetectinfo file name
        ftpdetectinfo_name = 'FTPdetectinfo_' + os.path.basename(
            night_data_dir) + '.txt'

        # Write FTPdetectinfo file
        FTPdetectinfo.writeFTPdetectinfo(meteor_list, night_data_dir, ftpdetectinfo_name, night_data_dir, \
            config.stationID, config.fps)

        # Get the platepar file
        platepar, platepar_path, platepar_fmt = getPlatepar(config)

        # Run calibration check and auto astrometry refinement
        if platepar is not None:

            # Read in the CALSTARS file
            calstars_list = CALSTARS.readCALSTARS(night_data_dir,
                                                  calstars_name)

            # Run astrometry check and refinement
            platepar, fit_status = autoCheckFit(config, platepar,
                                                calstars_list)

            # If the fit was sucessful, apply the astrometry to detected meteors
            if fit_status:

                log.info('Astrometric calibration SUCCESSFUL!')

                # Save the refined platepar to the night directory and as default
                platepar.write(os.path.join(night_data_dir,
                                            config.platepar_name),
                               fmt=platepar_fmt)
                platepar.write(platepar_path, fmt=platepar_fmt)

            else:
                log.info(
                    'Astrometric calibration FAILED!, Using old platepar for calibration...'
                )

            # Calculate astrometry for meteor detections
            applyAstrometryFTPdetectinfo(night_data_dir, ftpdetectinfo_name,
                                         platepar_path)

    log.info('Plotting field sums...')

    # Plot field sums to a graph
    plotFieldsums(night_data_dir, config)

    # Archive all fieldsums to one archive
    archiveFieldsums(night_data_dir)

    # List for any extra files which will be copied to the night archive directory. Full paths have to be
    #   given
    extra_files = []

    log.info('Making a flat...')

    # Make a new flat field
    flat_img = makeFlat(night_data_dir, config)

    # If making flat was sucessfull, save it
    if flat_img is not None:

        # Save the flat in the root directory, to keep the operational flat updated
        scipy.misc.imsave(config.flat_file, flat_img)
        flat_path = os.path.join(os.getcwd(), config.flat_file)
        log.info('Flat saved to: ' + flat_path)

        # Copy the flat to the night's directory as well
        extra_files.append(flat_path)

    else:
        log.info('Making flat image FAILED!')

    ### Add extra files to archive

    # Add the platepar to the archive if it exists
    if os.path.exists(platepar_path):
        extra_files.append(platepar_path)

    # Add the config file to the archive too
    extra_files.append(os.path.join(os.getcwd(), '.config'))

    ### ###

    night_archive_dir = os.path.join(os.path.abspath(config.data_dir),
                                     config.archived_dir, night_data_dir_name)

    log.info('Archiving detections to ' + night_archive_dir)

    # Archive the detections
    archive_name = archiveDetections(night_data_dir, night_archive_dir, ff_detected, config, \
        extra_files=extra_files)

    # Put the archive up for upload
    if upload_manager is not None:
        log.info('Adding file on upload list: ' + archive_name)
        upload_manager.addFiles([archive_name])

    # If capture was manually stopped, end program
    if STOP_CAPTURE:

        log.info('Ending program')

        # Stop the upload manager
        if upload_manager is not None:
            if upload_manager.is_alive():
                upload_manager.stop()
                log.info('Closing upload manager...')

        sys.exit()
Ejemplo n.º 2
0

    # Check if there are any file in the directory
    if(len(ff_list) == None):
        print("No files found!")
        sys.exit()


    # Try loading a flat field image
    flat_struct = None

    if config.use_flat:
        
        # Check if there is flat in the data directory
        if os.path.exists(os.path.join(ff_dir, config.flat_file)):
            flat_struct = Image.loadFlat(ff_dir, config.flat_file)

        # Try loading the default flat
        elif os.path.exists(config.flat_file):
            flat_struct = Image.loadFlat(os.getcwd(), config.flat_file)


    # Initialize the detector
    detector = QueuedPool(detectStarsAndMeteors, cores=-1, log=log)

    # Give detector jobs
    for ff_name in ff_list:
        detector.addJob([ff_dir, ff_name, config, flat_struct])


    # Start the detection
Ejemplo n.º 3
0
def loadImageCalibration(dir_path, config, dtype=None, byteswap=False):
    """ Load the mask, dark and flat. 
    
    Arguments:
        dir_path: [str] Path to the directory with calibration.
        config: [ConfigStruct]

    Keyword arguments:
        dtype: [object] Numpy array dtype for the image. None by default, if which case it will be determined
            from the input image.
        byteswap: [bool] If the dark and flat should be byteswapped. False by default, and should be True for
            UWO PNGs.

    Return:
        mask, dark, flat_struct: [tuple of ndarrays]
    """

    mask_path = None
    mask = None

    # Try loading the mask
    if os.path.exists(os.path.join(dir_path, config.mask_file)):
        mask_path = os.path.join(dir_path, config.mask_file)

    # Try loading the default mask
    elif os.path.exists(config.mask_file):
        mask_path = os.path.abspath(config.mask_file)

    # Load the mask if given
    if mask_path:
        mask = MaskImage.loadMask(mask_path)

    if mask is not None:
        print('Loaded mask:', mask_path)
        log.info('Loaded mask: {:s}'.format(mask_path))

    # Try loading the dark frame
    dark = None
    if config.use_dark:

        dark_path = None

        # Check if dark is in the data directory
        if os.path.exists(os.path.join(dir_path, config.dark_file)):
            dark_path = os.path.join(dir_path, config.dark_file)

        # Try loading the default dark
        elif os.path.exists(config.dark_file):
            dark_path = os.path.abspath(config.dark_file)

        if dark_path is not None:

            # Load the dark
            dark = Image.loadDark(*os.path.split(dark_path),
                                  dtype=dtype,
                                  byteswap=byteswap)

        if dark is not None:
            print('Loaded dark:', dark_path)
            log.info('Loaded dark: {:s}'.format(dark_path))

    # Try loading a flat field image
    flat_struct = None
    if config.use_flat:

        flat_path = None

        # Check if there is flat in the data directory
        if os.path.exists(os.path.join(dir_path, config.flat_file)):
            flat_path = os.path.join(dir_path, config.flat_file)

        # Try loading the default flat
        elif os.path.exists(config.flat_file):
            flat_path = os.path.abspath(config.flat_file)

        if flat_path is not None:

            # Load the flat
            flat_struct = Image.loadFlat(*os.path.split(flat_path),
                                         dtype=dtype,
                                         byteswap=byteswap)

        if flat_struct is not None:
            print('Loaded flat:', flat_path)
            log.info('Loaded flat: {:s}'.format(flat_path))

    return mask, dark, flat_struct
Ejemplo n.º 4
0
def loadImageCalibration(dir_path, config, dtype=None, byteswap=False):
    """ Load the mask, dark and flat. 
    
    Arguments:
        dir_path: [str] Path to the directory with calibration.
        config: [ConfigStruct]

    Keyword arguments:
        dtype: [object] Numpy array dtype for the image. None by default, if which case it will be determined
            from the input image.
        byteswap: [bool] If the dark and flat should be byteswapped. False by default, and should be True for
            UWO PNGs.

    Return:
        mask, dark, flat_struct: [tuple of ndarrays]
    """

    mask_path = None
    mask = None

    # Try loading the mask
    if os.path.exists(os.path.join(dir_path, config.mask_file)):
        mask_path = os.path.join(dir_path, config.mask_file)

    # Try loading the default mask
    elif os.path.exists(config.mask_file):
        mask_path = os.path.abspath(config.mask_file)

    # Load the mask if given
    if mask_path:
        mask = MaskImage.loadMask(mask_path)

    if mask is not None:
        print('Loaded mask:', mask_path)
        log.info('Loaded mask: {:s}'.format(mask_path))




    # Try loading the dark frame
    dark = None
    if config.use_dark:

        dark_path = None

        # Check if dark is in the data directory
        if os.path.exists(os.path.join(dir_path, config.dark_file)):
            dark_path = os.path.join(dir_path, config.dark_file)

        # Try loading the default dark
        elif os.path.exists(config.dark_file):
            dark_path = os.path.abspath(config.dark_file)

        if dark_path is not None:

            # Load the dark
            dark = Image.loadDark(*os.path.split(dark_path), dtype=dtype, byteswap=byteswap)

        if dark is not None:
            print('Loaded dark:', dark_path)
            log.info('Loaded dark: {:s}'.format(dark_path))



    # Try loading a flat field image
    flat_struct = None
    if config.use_flat:

        flat_path = None
        
        # Check if there is flat in the data directory
        if os.path.exists(os.path.join(dir_path, config.flat_file)):
            flat_path = os.path.join(dir_path, config.flat_file)
            
        # Try loading the default flat
        elif os.path.exists(config.flat_file):
            flat_path = os.path.abspath(config.flat_file)

        if flat_path is not None:
            
            # Load the flat
            flat_struct = Image.loadFlat(*os.path.split(flat_path), dtype=dtype, byteswap=byteswap)


        if flat_struct is not None:
            print('Loaded flat:', flat_path)
            log.info('Loaded flat: {:s}'.format(flat_path))



    return mask, dark, flat_struct
Ejemplo n.º 5
0
    # Get paths to every FF bin file in a directory
    ff_list = [ff for ff in os.listdir(dir_path) if FFfile.validFFName(ff)]

    # Check if there are any file in the directory
    if (len(ff_list) == None):
        print("No files found!")
        sys.exit()

    # Try loading a flat field image
    flat_struct = None

    if config.use_flat:

        # Check if there is flat in the data directory
        if os.path.exists(os.path.join(dir_path, config.flat_file)):
            flat_struct = Image.loadFlat(dir_path, config.flat_file)

        # Try loading the default flat
        elif os.path.exists(config.flat_file):
            flat_struct = Image.loadFlat(os.getcwd(), config.flat_file)

    # Init results list
    results_list = []

    # Open a file for results
    results_path = os.path.abspath(dir_path) + os.sep
    results_name = results_path.split(os.sep)[-2]
    results_file = open(results_path + results_name + '_results.txt', 'w')

    total_meteors = 0
Ejemplo n.º 6
0
    # Check if there are any file in the directory
    if(len(ff_list) == None):
        print("No files found!")
        sys.exit()



    # Try loading a flat field image
    flat_struct = None

    if config.use_flat:
        
        # Check if there is flat in the data directory
        if os.path.exists(os.path.join(ff_dir, config.flat_file)):
            flat_struct = Image.loadFlat(ff_dir, config.flat_file)

        # Try loading the default flat
        elif os.path.exists(config.flat_file):
            flat_struct = Image.loadFlat(os.getcwd(), config.flat_file)


    

    extraction_list = []

    # Go through all files in the directory and add them to the detection list
    for ff_name in sorted(ff_list):

        # Check if the given file is a valid FF file
        if not FFfile.validFFName(ff_name):