Ejemplo n.º 1
0
def main():

    # setting for reduced DS to be used on the output of makeSubset.C

    inputfile_name = "small.root"
    tree_name = "upsTree"

    # settings for full dataset (long processing time for unbinned lh)
    #inputfile_name = "/data1/chibdata/collision/v2/2012_AllData_v2.root"
    #tree_name = "rootuple/upsTree"

    print "Opening file"
    inputfile = TFile.Open(inputfile_name, "READ")
    print "Importing tree"
    tree = TTree()
    inputfile.GetObject(tree_name, tree)

    mass = RooRealVar("ups_mass", "ups_mass", 7, 11)
    y = RooRealVar("ups_rapidity", "ups_rapidity", -3, 3)
    pt = RooRealVar("ups_pt", "ups_pt", 0, 100)

    print "Assigning dataset"
    dataArgSet = RooArgSet(mass, y, pt)

    dataSet = RooDataSet("yds", "Y data set", tree, dataArgSet)

    cuts=  "abs(ups_rapidity) < 1.25"+\
           "&& ups_pt>9.5"\

    reduced_ds = dataSet.reduce(RooFit.Cut(cuts))

    print "Performing likelihood analysis"
    dofit(reduced_ds, "Y3S")
Ejemplo n.º 2
0
def get_dataset(varargset, ftree, cut='', wt='', scale=1):
    """Return a dataset.

    Return a dataset from the ntuple `ftree'. Apply a selection cut
    using the `cutVar' variable and the selection `cut'.

    """

    from rplot.fixes import ROOT
    from rplot.tselect import Tsplice
    splice = Tsplice(ftree)
    splice.make_splice('sel', cut)
    from ROOT import RooDataSet, RooFit, RooFormulaVar, RooArgList
    tmpdst = RooDataSet('tmpdataset', '', varargset, RooFit.Import(ftree))
    if wt:
        wtvar = RooFormulaVar('wt', '{}*@0'.format(scale),
                              RooArgList(varargset[wt]))
        wtvar = tmpdst.addColumn(wtvar)
        varargset.remove(varargset[wt])
        varargset.add(wtvar)
        dst = RooDataSet('dataset', 'Dataset', varargset,
                         RooFit.Import(tmpdst), RooFit.WeightVar(wtvar))
        varargset.remove(wtvar)
        dst = dst.reduce(varargset)
    return dst
Ejemplo n.º 3
0
def get_dataset(varargset, ftree, cut="", wt="", scale=1):
    """Return a dataset.

    Return a dataset from the ntuple `ftree'. Apply a selection cut
    using the `cutVar' variable and the selection `cut'.

    """

    from rplot.fixes import ROOT
    from rplot.tselect import Tsplice

    splice = Tsplice(ftree)
    splice.make_splice("sel", cut)
    from ROOT import RooDataSet, RooFit, RooFormulaVar, RooArgList

    tmpdst = RooDataSet("tmpdataset", "", varargset, RooFit.Import(ftree))
    if wt:
        wtvar = RooFormulaVar("wt", "{}*@0".format(scale), RooArgList(varargset[wt]))
        wtvar = tmpdst.addColumn(wtvar)
        varargset.remove(varargset[wt])
        varargset.add(wtvar)
        dst = RooDataSet("dataset", "Dataset", varargset, RooFit.Import(tmpdst), RooFit.WeightVar(wtvar))
        varargset.remove(wtvar)
        dst = dst.reduce(varargset)
    return dst
Ejemplo n.º 4
0
def main():
    inputfile_name = "/data1/chibdata/collision/v2/2012_AllData_v2.root"

    chibTree_name = "rootuple/chibTree"
    print "Opening file"
    inputfile = TFile.Open(inputfile_name, "READ")
    print "Importing tree"
    tree = TTree()
    inputfile.GetObject(chibTree_name, tree)

    invm1S = RooRealVar("invm1S", "invm1S", 9.5, 11.5)
    invm2S = RooRealVar("invm2S", "invm2S", 9.5, 20.0)
    invm3S = RooRealVar("invm3S", "invm3S", 9.5, 20.0)
    dimuon_mass = RooRealVar("dimuon_mass", "dimuon_mass", 8.0, 12.0)
    dimuon_rapidity = RooRealVar("dimuon_rapidity", "dimuon_rapidity", -5.0,
                                 5.0)
    dimuon_pt = RooRealVar("dimuon_pt", "dimuon_pt", 0.0, 100.0)
    photon_eta = RooRealVar("photon_eta", "photon_eta", -5.0, 5.0)
    photon_pt = RooRealVar("photon_pt", "photon_pt", 0.0, 100.0)
    ctpv = RooRealVar("ctpv", "ctpv", -5.0, 5.0)
    ctpv_error = RooRealVar("ctpv_err", "ctpv_err", -5.0, 5.0)
    pi0_abs_mass = RooRealVar("pi0_abs_mass", "pi0_abs_mass", 0.0, 2.0)
    Y1S_nsigma = RooRealVar("Y1S_nsigma", "Y1S_nsigma", 0.0, 30.0)
    Y2S_nsigma = RooRealVar("Y2S_nsigma", "Y2S_nsigma", 0.0, 30.0)
    Y3S_nsigma = RooRealVar("Y3S_nsigma", "Y3S_nsigma", 0.0, 35.0)
    conv_vertex = RooRealVar("conv_vertex", "conv_vertex", 0.0, 70.0)
    dz = RooRealVar("dz", "dz", -50.0, 50.0)

    print "Assigning argset"
    dataArgSet = RooArgSet(invm1S, invm2S, invm3S, dimuon_mass,
                           dimuon_rapidity, dimuon_pt, photon_eta, photon_pt,
                           ctpv)
    dataArgSet.add(ctpv_error)
    dataArgSet.add(pi0_abs_mass)
    dataArgSet.add(Y1S_nsigma)
    dataArgSet.add(Y2S_nsigma)
    dataArgSet.add(Y3S_nsigma)
    dataArgSet.add(conv_vertex)
    dataArgSet.add(dz)

    print "Creating DataSet"
    dataSet = RooDataSet("chibds", "Chib RooDataSet", tree, dataArgSet)

    # Selection
    cuts = "photon_pt > 0.0" +                   \
           "&&dimuon_pt > 9.5"                   \
           "&& abs(photon_eta) < 1.4" +          \
           "&& abs(dimuon_rapidity) < 1.25 " +   \
           "&& Y3S_nsigma < 2.5 " +              \
           "&& abs(dz) < 0.1"

    rds_cutted = dataSet.reduce(RooFit.Cut(cuts))

    dofit(rds_cutted, "Chib_fit_2012_3S")
Ejemplo n.º 5
0
def main() :
    inputfile_name = "/data1/chibdata/collision/v2/2012_AllData_v2.root"

    chibTree_name = "rootuple/chibTree"
    print "Opening file"
    inputfile = TFile.Open(inputfile_name,"READ")
    print "Importing tree"
    tree = TTree()
    inputfile.GetObject(chibTree_name, tree)

    invm1S = RooRealVar("invm1S", "invm1S", 9.5, 11.5)
    invm2S = RooRealVar("invm2S", "invm2S", 9.5, 20.0)
    invm3S = RooRealVar("invm3S", "invm3S", 9.5, 20.0)
    dimuon_mass = RooRealVar("dimuon_mass","dimuon_mass", 8.0, 12.0)
    dimuon_rapidity = RooRealVar("dimuon_rapidity", "dimuon_rapidity", -5.0, 5.0)
    dimuon_pt = RooRealVar("dimuon_pt","dimuon_pt", 0.0, 100.0)
    photon_eta = RooRealVar("photon_eta","photon_eta", -5.0, 5.0)
    photon_pt = RooRealVar("photon_pt","photon_pt", 0.0, 100.0)
    ctpv = RooRealVar("ctpv","ctpv", -5.0, 5.0)
    ctpv_error = RooRealVar("ctpv_err","ctpv_err", -5.0, 5.0)
    pi0_abs_mass = RooRealVar("pi0_abs_mass","pi0_abs_mass", 0.0, 2.0)
    Y1S_nsigma = RooRealVar("Y1S_nsigma","Y1S_nsigma",0.0,30.0)
    Y2S_nsigma = RooRealVar("Y2S_nsigma","Y2S_nsigma",0.0,30.0)
    Y3S_nsigma = RooRealVar("Y3S_nsigma","Y3S_nsigma",0.0,35.0)
    conv_vertex = RooRealVar("conv_vertex", "conv_vertex", 0.0, 70.0)
    dz = RooRealVar("dz","dz", -50.0, 50.0)


    print "Assigning argset"
    dataArgSet = RooArgSet(invm1S, invm2S, invm3S, dimuon_mass, dimuon_rapidity, dimuon_pt, photon_eta, photon_pt, ctpv)
    dataArgSet.add( ctpv_error )
    dataArgSet.add( pi0_abs_mass )
    dataArgSet.add( Y1S_nsigma )
    dataArgSet.add( Y2S_nsigma )
    dataArgSet.add( Y3S_nsigma )
    dataArgSet.add( conv_vertex )
    dataArgSet.add( dz )

    print "Creating DataSet"
    dataSet = RooDataSet("chibds","Chib RooDataSet", tree, dataArgSet)


    # Selection
    cuts = "photon_pt > 0.0" +                   \
           "&&dimuon_pt > 9.5"                   \
           "&& abs(photon_eta) < 1.4" +          \
           "&& abs(dimuon_rapidity) < 1.25 " +   \
           "&& Y3S_nsigma < 2.5 " +              \
           "&& abs(dz) < 0.1"

    rds_cutted = dataSet.reduce( RooFit.Cut(cuts) )

    dofit(rds_cutted, "Chib_fit_2012_3S")
Ejemplo n.º 6
0
def get_dataset(varargset, ftree, cut='', cutVars=[], *cmdArgs):
    """Return a dataset.

    Return a dataset from the ntuple `ftree'. Apply a selection cut
    using the `cutVar' variable and the selection `cut'.

    """

    varargsetclone = varargset.clone('varargsetclone')
    for cvar in cutVars:
        varargsetclone.add(cvar) # Add selVar to apply cut

    tmpdataset = RooDataSet('dataset', 'Dataset', varargsetclone,
                            RooFit.Import(ftree), RooFit.Cut(cut), *cmdArgs)
    dataset = tmpdataset.reduce(varargset)
    del tmpdataset
    return dataset
Ejemplo n.º 7
0
obs=w.set("obs_1d")
uncVZ = w.var("uncVZ")
uncVZ.setBins(1000)
gauss_params = gauss_pdf.getParameters(obs)
gaussexp_params = gaussexp_pdf.getParameters(obs)

for i in range(1,n_massbins):
#for i in range(0,totalH.GetXaxis().GetNbins()-binning+2,binning):
    print i
    centermass=yieldhist.GetXaxis().GetBinCenter(i)
    massrange=2.5*(massres_a*centermass + massres_b)
    lowedge = centermass-massrange/2.0
    highedge = centermass+massrange/2.0
    name="Radiative vertex Z, mass [{}, {}] GeV".format(lowedge,highedge)
    #dataset = RooDataSet("data","data",events,w.set("myVars"),"abs(uncM-{0})<{1}".format(centermass,massrange/2))
    dataInRange = dataset.reduce(obs,"abs(uncM-{0})<{1}".format(centermass,massrange/2))
    if dataInRange.sumEntries()<100:
        continue

    frame=uncVZ.frame()
    frame.SetTitle(name)

    binnedData = dataInRange.binnedClone()
    binnedData.plotOn(frame)
    mean = binnedData.mean(uncVZ)
    sigma = binnedData.sigma(uncVZ)
    print "before gaussian fit: mean={0}, sigma={1}".format(mean,sigma)
    uncVZ.setRange("fitRange",mean-3*sigma,mean+3*sigma)
    gauss_params.setRealValue("mean",mean)
    gauss_params.setRealValue("sigma",sigma)
    #gauss_params.printLatex()
Ejemplo n.º 8
0
pdfConfig['timeEffHistFiles'].getSettings( [ ( 'runPeriod', 'p2012' ) ] )['file'] = timeEffFile2012
pdfConfig['anglesEffType'] = 'basisSig6'
pdfConfig['angEffMomsFiles'] = dataPath + 'angEffNominalRew_5thOrder.par'
pdfConfig['signalData'] = dataSetAsymW
pdfConfig['readFromWS'] = True

from P2VV.Parameterizations.FullPDFs import Bs2Jpsiphi_PdfBuilder as PdfBuilder
pdfBuild = PdfBuilder( **pdfConfig )
pdf = pdfBuild.pdf()
pdfConfig.readParametersFromFile( filePath = parFilePath )
pdfConfig.setParametersInPdf(pdf)

# create projection data sets
projSet = [ obs for obs in pdf.ConditionalObservables() ] + [ cat for cat in pdf.indexCat().inputCatList() ]
projSet = RooArgSet( obsSet.find( var.GetName() ) for var in projSet )
projDataSets = dict(  plus  = dataSetAsymW.reduce( Name = 'asymDataWPlus',  SelectVars = projSet, Cut = 'asymCat==+1' )
                    , minus = dataSetAsymW.reduce( Name = 'asymDataWMinus', SelectVars = projSet, Cut = 'asymCat==-1' )
                   )
print 'pdfAsymmetry: projection data sets:'
projDataSets['plus'].Print()
projDataSets['minus'].Print()

# create time ranges for time bins
rangeNames = dict( )
timePoints = dict( )
lastBin = False
if not timeBins : timeBins = range(8)
if not periods : periods = range( int( ws['time'].getMax() / oscPeriod - binOffset / float(numTimeBinsTot) ) + 1 )
for per in periods :
    for bin in timeBins :
        timeLo = ( float(per) + ( float(bin) + binOffset ) / float(numTimeBinsTot) ) * oscPeriod
Ejemplo n.º 9
0
def make_fit():

    adc_bin = 12  #18 for low-m gg, 24 for jpsi
    adc_min = 0.  #10.
    adc_max = 400.
    #adc_max = 1200

    ptmax = 0.18
    #mmin = 1.6
    #mmin = 2.1
    #mmax = 2.6
    #mmin = 1.5
    #mmax = 5.
    mmin = 2.9
    mmax = 3.2
    #mmin = 3.4
    #mmax = 4.6

    #east/west projections and 2D plot
    ew = 1
    p2d = 2  #  0: single projection by 'ew',  1: 2D plot,  2: both projections

    #plot colors
    model_col = rt.kMagenta
    model_col = rt.kBlue

    out = open("out.txt", "w")
    lmg = 6
    ut.log_results(out, "in " + infile, lmg)
    strlog = "adc_bin " + str(adc_bin) + " adc_min " + str(
        adc_min) + " adc_max " + str(adc_max)
    strlog += " ptmax " + str(ptmax) + " mmin " + str(mmin) + " mmax " + str(
        mmax)
    ut.log_results(out, strlog, lmg)

    #adc distributions
    adc_east = RooRealVar("jZDCUnAttEast", "ZDC ADC east", adc_min, adc_max)
    adc_west = RooRealVar("jZDCUnAttWest", "ZDC ADC west", adc_min, adc_max)
    #kinematics variables
    m = RooRealVar("jRecM", "e^{+}e^{-} mass (GeV)", 0., 10.)
    y = RooRealVar("jRecY", "rapidity", -1., 1.)
    pT = RooRealVar("jRecPt", "pT", 0., 10.)

    #adc distributions
    #adc_east = RooRealVar("zdce", "ZDC ADC east", adc_min, adc_max)
    #adc_west = RooRealVar("zdcw", "ZDC ADC west", adc_min, adc_max)
    #kinematics variables
    #m = RooRealVar("mee", "e^{+}e^{-} mass (GeV)", 0., 10.)
    #y = RooRealVar("rapee", "rapidity", -1., 1.)
    #pT = RooRealVar("ptpair", "pT", 0., 10.)

    strsel = "jRecPt<{0:.3f} && jRecM>{1:.3f} && jRecM<{2:.3f}".format(
        ptmax, mmin, mmax)
    #strsel = "ptpair<{0:.3f} && mee>{1:.3f} && mee<{2:.3f}".format(ptmax, mmin, mmax)
    data_all = RooDataSet("data", "data", tree,
                          RooArgSet(adc_east, adc_west, m, y, pT))
    print "All input:", data_all.numEntries()
    data = data_all.reduce(strsel)
    print "Sel input:", data.numEntries()

    model = Model2D(adc_east, adc_west)

    r1 = model.model.fitTo(data, rf.Save())

    ut.log_results(out, ut.log_fit_result(r1), lmg)
    ut.log_results(out, "Fit parameters:\n", lmg)
    out.write(ut.log_fit_parameters(r1, lmg + 2) + "\n")
    #out.write(ut.table_fit_parameters(r1))

    #print ut.table_fit_parameters(r1)

    #create the plot
    if p2d != 2: can = ut.box_canvas()

    nbins, adc_max = ut.get_nbins(adc_bin, adc_min, adc_max)
    adc_east.setMax(adc_max)
    adc_west.setMax(adc_max)
    frame_east = adc_east.frame(rf.Bins(nbins), rf.Title(""))
    frame_west = adc_west.frame(rf.Bins(nbins), rf.Title(""))

    data.plotOn(frame_east, rf.Name("data"))
    model.model.plotOn(frame_east, rf.Precision(1e-6), rf.Name("model"),
                       rf.LineColor(model_col))

    data.plotOn(frame_west, rf.Name("data"))
    model.model.plotOn(frame_west, rf.Precision(1e-6), rf.Name("model"),
                       rf.LineColor(model_col))

    #reduced chi^2 in east and west projections
    ut.log_results(out, "chi2/ndf:\n", lmg)
    ut.log_results(
        out,
        "  East chi2/ndf: " + str(frame_east.chiSquare("model", "data", 16)),
        lmg)
    ut.log_results(
        out,
        "  West chi2/ndf: " + str(frame_west.chiSquare("model", "data", 16)),
        lmg)
    ut.log_results(out, "", 0)

    ytit = "Events / ({0:.0f} ADC units)".format(adc_bin)
    frame_east.SetYTitle(ytit)
    frame_west.SetYTitle(ytit)
    frame_east.SetTitle("")
    frame_west.SetTitle("")

    frame = [frame_east, frame_west]
    if p2d == 0: plot_projection(frame[ew], ew)

    plot_pdf = PlotPdf(model, adc_east, adc_west)
    if p2d == 1: plot_2d(plot_pdf)

    if p2d == 2:
        frame2 = ut.prepare_TH1D("frame2", adc_bin, adc_min,
                                 2. * adc_max + 4.1 * adc_bin)
        plot_proj_both(frame2, frame_east, frame_west, adc_bin, adc_min,
                       adc_max, ptmax, mmin, mmax)

    lhead = ["east ZDC", "west ZDC"]
    if p2d == 1:
        leg = ut.prepare_leg(0.003, 0.9, 0.3, 0.1, 0.035)
    else:
        leg = ut.prepare_leg(0.66, 0.8, 0.32, 0.13, 0.03)
    if p2d == 0: leg.AddEntry(None, "#bf{Projection to " + lhead[ew] + "}", "")
    leg.SetMargin(0.05)
    leg.AddEntry(None,
                 "#bf{#it{p}_{T} < " + "{0:.2f}".format(ptmax) + " GeV/c}", "")
    mmin_fmt = "{0:.1f}".format(mmin)
    mmax_fmt = "{0:.1f}".format(mmax)
    leg.AddEntry(
        None, "#bf{" + mmin_fmt + " < #it{m}_{e^{+}e^{-}} < " + mmax_fmt +
        " GeV/c^{2}}", "")
    leg.Draw("same")

    pleg = ut.prepare_leg(0.99, 0.87, -0.4, 0.11, 0.035)
    pleg.SetFillStyle(1001)
    #pleg.AddEntry(None, "STAR Preliminary", "")
    pleg.AddEntry(None, "AuAu@200 GeV", "")
    pleg.AddEntry(None, "UPC sample", "")
    #pleg.Draw("same")

    #ut.print_pad(gPad)

    #b3d = TBuffer3D(0)
    #b3d = None
    #gPad.GetViewer3D().OpenComposite(b3d)
    #print b3d

    #print "All input: ", data.numEntries()
    #print "All input: 858"
    #all input data
    nall = float(tree.Draw("", strsel))
    print "All input: ", nall
    n_1n1n = float(model.num_1n1n.getVal())
    print "1n1n events: ", n_1n1n
    ratio_1n1n = n_1n1n / nall
    sigma_ratio_1n1n = ratio_1n1n * TMath.Sqrt(
        (nall - n_1n1n) / (nall * n_1n1n))
    print "Ratio 1n1n / all: ", ratio_1n1n, "+/-", sigma_ratio_1n1n
    ut.log_results(out, "Fraction of 1n1n events:\n", lmg)
    ut.log_results(out, "All input: " + str(nall), lmg)
    ut.log_results(out, "1n1n events: " + str(model.num_1n1n.getVal()), lmg)
    ratio_str = "Ratio 1n1n / all: " + str(ratio_1n1n) + " +/- " + str(
        sigma_ratio_1n1n)
    ut.log_results(out, ratio_str, lmg)

    if p2d != 2:
        #ut.print_pad(gPad)
        ut.invert_col(gPad)
        can.SaveAs("01fig.pdf")

    if interactive == True: start_interactive()
Ejemplo n.º 10
0
    #c.Print(remainder[0]+".pdf","Title:mass_{0}".format(mass))

    num_pairs = gDirectory.Get("mass").GetEntries()*scale_factor
    radfrac = radfracFile.Get("radfrac").GetFunction("pol3").Eval(mass)
    num_rad = radfrac*num_pairs
    ap_yield= 3*math.pi/(2*(1/137.0))*num_rad*(mass/deltaM)
    print "{0} pairs, {1} radfrac, {2} rad, {3} A'".format(num_pairs,radfrac,num_rad,ap_yield)


    breakz = tailsFile.Get("breakz").GetFunction("pol3").Eval(mass)
    length = tailsFile.Get("length").GetFunction("pol3").Eval(mass)

    c.cd(2)
    gPad.SetLogy()
    frame=uncVZ.frame()
    dataInRange = dataset.reduce(obs,"abs({0}-{1})<{2}/2*({3}+{4}*uncVZ)".format(massVar,mass,masscut_nsigma,mres_p0,mres_p1))
    binnedData = dataInRange.binnedClone()
    binnedData.plotOn(frame)
    mean = binnedData.mean(uncVZ)
    sigma = binnedData.sigma(uncVZ)
    uncVZ.setRange("fitRange",mean-2*sigma,mean+2*sigma)
    gauss_params.setRealValue("mean",mean)
    gauss_params.setRealValue("sigma",sigma)
    gauss_pdf.fitTo(binnedData,RooFit.Range("fitRange"),RooFit.PrintLevel(-1))
    mean= gauss_params.getRealValue("mean")
    sigma= gauss_params.getRealValue("sigma")
    gaussexp_params.setRealValue("gauss_mean",mean)
    gaussexp_params.setRealValue("gauss_sigma",sigma)
    gaussexp_params.setRealValue("exp_breakpoint",breakz)
    gaussexp_params.setRealValue("exp_length",length)
    w.var("gauss_mean").setConstant(True)
Ejemplo n.º 11
0
def buildDataAndCategories(ws,options,args):
    #Get the input data
    inputData = TChain(options.treeName,'The input data')
    for arg in args:
        print 'Adding data from: ',arg
        inputData.Add(arg)

    foldname = ''
    phirange = [0,90]
    
    if not options.folded:
        foldname=''
        phirange = [-180,180]
    
    #variables necessary for j/psi mass,lifetime,polarization fit
    jPsiMass      = RooRealVar('JpsiMass','M [GeV]',2.7,3.5)
    jPsiRap       = RooRealVar('JpsiRap','#nu',-2.3,2.3)
    jPsiPt        = RooRealVar("JpsiPt","pT [GeV]",0,40);
    jPsicTau      = RooRealVar('Jpsict','l_{J/#psi} [mm]',-1,2.5)
    jPsicTauError = RooRealVar('JpsictErr','Error on l_{J/#psi} [mm]',0,2)
    jPsiVprob     = RooRealVar('JpsiVprob','',.01,1)
    jPsiHXcosth   = None
    jPsiHXphi     = None

    jPsicTau.setBins(10000,"cache")
        
    if options.fitFrame is not None:
        jPsiHXcosth   = RooRealVar('costh_'+options.fitFrame+foldname,'cos(#theta)_{'+options.fitFrame+'}',-1,1)
        jPsiHXphi     = RooRealVar('phi_'+options.fitFrame+foldname,'#phi_{'+options.fitFrame+'}',phirange[0],phirange[1])
    else:
        jPsiHXcosth   = RooRealVar('costh_CS'+foldname,'cos(#theta)_{CS}',-1,1)
        jPsiHXphi     = RooRealVar('phi_CS'+foldname,'#phi_{CS}',phirange[0],phirange[1])
    
    #vars needed for on the fly calc of polarization variables
    jPsimuPosPx = RooRealVar('muPosPx','+ Muon P_{x} [GeV]',0)
    jPsimuPosPy = RooRealVar('muPosPy','+ Muon P_{y} [GeV]',0)
    jPsimuPosPz = RooRealVar('muPosPz','+ Muon P_{z} [GeV]',0)
    jPsimuNegPx = RooRealVar('muNegPx','- Muon P_{x} [GeV]',0)
    jPsimuNegPy = RooRealVar('muNegPy','- Muon P_{y} [GeV]',0)
    jPsimuNegPz = RooRealVar('muNegPz','- Muon P_{z} [GeV]',0)

    #create RooArgSet for eventual dataset creation
    dataVars = RooArgSet(jPsiMass,jPsiRap,jPsiPt,
                         jPsicTau,jPsicTauError,
                         jPsimuPosPx,jPsimuPosPy,jPsimuPosPz)
    
    #add trigger requirement if specified
    if options.triggerName:
        trigger = RooRealVar(options.triggerName,'Passes Trigger',0.5,1.5)
        dataVars.add(trigger)

    dataVars.add(jPsiVprob)
    dataVars.add(jPsimuNegPx)
    dataVars.add(jPsimuNegPy)
    dataVars.add(jPsimuNegPz)
    dataVars.add(jPsiHXcosth)
    dataVars.add(jPsiHXphi)
    
    
    redVars = RooArgSet(jPsiMass,jPsiRap,jPsiPt,
                        jPsicTau,jPsicTauError)
    redVars.add(jPsiHXcosth)
    redVars.add(jPsiHXphi)
    fitVars = redVars.Clone()    

    ### HERE IS WHERE THE BIT FOR CALCULATING POLARIZATION VARS GOES

    ctauStates = RooCategory('ctauRegion','Cut Region in lifetime')
    ctauStates.defineType('prompt',0)
    ctauStates.defineType('nonPrompt',1)

    massStates = RooCategory('massRegion','Cut Region in mass')
    massStates.defineType('signal',1)
    massStates.defineType('separation',0)
    massStates.defineType('leftMassSideBand',-2)
    massStates.defineType('rightMassSideBand',-1)

    states = RooCategory('mlRegion','Cut Region in mass')
    states.defineType('nonPromptSignal',2)
    states.defineType('promptSignal',1)
    states.defineType('separation',0)
    states.defineType('leftMassSideBand',-2)
    states.defineType('rightMassSideBand',-1)


    #define corresponding ranges in roorealvars
    #mass is a little tricky since the sidebands change definitions in each rap bin
    #define the names here and change as we do the fits
    #jPsiMass.setRange('NormalizationRangeFormlfit_promptSignal',2.7,3.5)
    #jPsiMass.setRange('NormalizationRangeFormlfit_nonPromptSignal',2.7,3.5)
    #jPsiMass.setRange('NormalizationRangeFormlfit_leftMassSideBand',2.7,3.1)
    #jPsiMass.setRange('NormalizationRangeFormlfit_rightMassSideBand',3.1,3.5)

    #want the prompt fit only done in prompt region
    #non-prompt only in non-prompt region
    #background over entire cTau range
    #jPsicTau.setRange('NormalizationRangeFormlfit_promptSignal',-1,.1)
    #jPsicTau.setRange('NormalizationRangeFormlfit_nonPromptSignal',.1,2.5)
    #jPsicTau.setRange('NormalizationRangeFormlfit_leftMassSideBand',-1,2.5)
    #jPsicTau.setRange('NormalizationRangeFormlfit_rightMassSideBand',-1,2.5)

    #redVars.add(ctauStates)
    #redVars.add(massStates)
    #redVars.add(states)
    fitVars.add(ctauStates)
    fitVars.add(massStates)
    fitVars.add(states)
    
    fullData = RooDataSet('fullData','The Full Data From the Input ROOT Trees',
                          dataVars,
                          ROOT.RooFit.Import(inputData))    

    for rap_bin in range(1,len(jpsi.pTRange)):
        yMin  = jpsi.rapForPTRange[rap_bin-1][0]
        yMax  = jpsi.rapForPTRange[rap_bin-1][-1]
        for pt_bin in range(len(jpsi.pTRange[rap_bin])):

            ptMin = jpsi.pTRange[rap_bin][pt_bin][0]
            ptMax = jpsi.pTRange[rap_bin][pt_bin][-1]               

            sigMaxMass = jpsi.polMassJpsi[rap_bin] + jpsi.nSigMass*jpsi.sigmaMassJpsi[rap_bin]
            sigMinMass = jpsi.polMassJpsi[rap_bin] - jpsi.nSigMass*jpsi.sigmaMassJpsi[rap_bin]

            sbHighMass = jpsi.polMassJpsi[rap_bin] + jpsi.nSigBkgHigh*jpsi.sigmaMassJpsi[rap_bin]
            sbLowMass  = jpsi.polMassJpsi[rap_bin] - jpsi.nSigBkgLow*jpsi.sigmaMassJpsi[rap_bin]

            ctauNonPrompt = .1
            
            massFun = RooFormulaVar('massRegion','Function that returns the mass state.',
                                     '('+jPsiMass.GetName()+' < '+str(sigMaxMass)+' && '+jPsiMass.GetName()+' > '+str(sigMinMass)+
                                     ') - ('+jPsiMass.GetName()+' > '+str(sbHighMass)+')'+
                                     '-2*('+jPsiMass.GetName()+' < '+str(sbLowMass)+')',
                                     RooArgList(jPsiMass,jPsicTau))
            
            ctauFun = RooFormulaVar('ctauRegion','Function that returns the ctau state.',
                                     '('+jPsicTau.GetName()+' > '+str(ctauNonPrompt)+')',
                                     RooArgList(jPsiMass,jPsicTau))

            mlFun = RooFormulaVar('mlRegion','Function that returns the mass and lifetime state.',
                                  '('+jPsiMass.GetName()+' < '+str(sigMaxMass)+' && '+jPsiMass.GetName()+' > '+str(sigMinMass)+
                                  ') + ('+jPsiMass.GetName()+' < '+str(sigMaxMass)+' && '+jPsiMass.GetName()+' > '+
                                  str(sigMinMass)+' && '+jPsicTau.GetName()+' > '+str(ctauNonPrompt)+
                                  ') - ('+jPsiMass.GetName()+' > '+str(sbHighMass)+')'+
                                  '-2*('+jPsiMass.GetName()+' < '+str(sbLowMass)+')',
                                  RooArgList(jPsiMass,jPsicTau))
            

            cutStringPt = '('+jPsiPt.GetName()+' > '+str(ptMin)+' && '+jPsiPt.GetName()+' < '+str(ptMax)+')'
            cutStringY  = '( abs('+jPsiRap.GetName()+') > '+str(yMin)+' && abs('+jPsiRap.GetName()+') < '+str(yMax)+')'
            #cutStringM1 = '('+jPsiMass.GetName()+' < '+str(sigMinMass)+' && '+jPsiMass.GetName()+' > '+str(sbLowMass)+')'
            #cutStringM2 = '('+jPsiMass.GetName()+' < '+str(sbHighMass)+' && '+jPsiMass.GetName()+' > '+str(sigMaxMass)+')'
            #cutStringMT = '!('+cutStringM1+' || '+cutStringM2+')'
            cutString   = cutStringPt+' && '+cutStringY #+' && '+cutStringMT

            print cutString

            #get the reduced dataset we'll do the fit on
            binData = fullData.reduce(ROOT.RooFit.SelectVars(redVars),
                                      ROOT.RooFit.Cut(cutString),
                                      ROOT.RooFit.Name('data_rap'+str(rap_bin)+'_pt'+str(pt_bin+1)),
                                      ROOT.RooFit.Title('Data For Fitting'))

            binDataWithCategory = RooDataSet('data_rap'+str(rap_bin)+'_pt'+str(pt_bin+1),
                                             'Data For Fitting',
                                             fitVars)
            #categorize
            binData.addColumn(ctauStates)
            binData.addColumn(massStates)
            binData.addColumn(states)
            for ev in range(binData.numEntries()):
                args = binData.get(ev)
                                
                jPsiMass.setVal(args.find(jPsiMass.GetName()).getVal())
                jPsiRap.setVal(args.find(jPsiRap.GetName()).getVal())
                jPsiPt.setVal(args.find(jPsiPt.GetName()).getVal())
                jPsicTau.setVal(args.find(jPsicTau.GetName()).getVal())                    
                jPsicTauError.setVal(args.find(jPsicTauError.GetName()).getVal())
            
                jPsiHXcosth.setVal(args.find(jPsiHXcosth.GetName()).getVal())
                jPsiHXphi.setVal(args.find(jPsiHXphi.GetName()).getVal())

                massStates.setIndex(int(massFun.getVal()))
                ctauStates.setIndex(int(ctauFun.getVal()))
                states.setIndex(int(mlFun.getVal()))
                
                binDataWithCategory.add(fitVars)
            

            getattr(ws,'import')(binDataWithCategory)
Ejemplo n.º 12
0
def prepare_truth_models(ws,cat,mass,channel,turnon,truth):    
    if channel in study_inputs:
        bkg_data = RooDataSet("bkgdata_%s"%(channel),
                              "M_{ll#gamma} with Errors",
                              ws.set("observables_weight"),
                              "weight")
        
        for k,file in enumerate(study_inputs[channel]):
            f_in = TFile.Open(file,"READ")
            gDirectory.cd(pwd)
            n_events = f_in.Get("eventCount").GetBinContent(1)
            tree = f_in.Get("selected_zg").CloneTree()
            tree.SetName("tree_%s_%i"%(channel,k))
            f_in.Close()            
            
            d_in = RooDataSet("temp",
                              "M_{ll#gamma} with Errors",
                              tree,
                              ws.set("observables"))
            norm = RooConstVar("norm","norm",n_events)
            weight = RooFormulaVar("weight",
                                   "weight",
                                   "1.3*@0*@1/@2", #1.3 gives 19.6/fb
                                   RooArgList(ws.var("puWeight"),
                                              ws.var("procWeight"),
                                              norm)
                                   )
            d_in.addColumn(weight)
            d_in_weight = RooDataSet("temp_weight",
                                     "M_{ll#gamma} with Errors",
                                     d_in,
                                     ws.set("observables_weight"),
                                     '','weight')
            bkg_data.append(d_in_weight)
            
        # split off data for each category, create the
        # toy dataset truth models
        data = bkg_data.reduce("Mz + Mzg > 185 && r94cat == %i"%cat)
        getattr(ws,'import')(data,
                             RooFit.Rename('bkgdata_%s_%i'%(channel,
                                                            cat)))
        nevts = data.sumEntries('Mzg > %f && Mzg < %f'%(mass-1.5,mass+1.5))
        #for sigm turn on we want erf truth
        if turnon == 'sigm' and truth == 'exp': 
            #make RooDecay 'truth' model with erf turn on
            ws.factory(
                'RooGaussModel::MzgResoShape_exp_erf_%s_cat%i(Mzg,'\
                'bias_exp_erf_%s_cat%i[120,90,150],sigma_exp_erf_%s_cat%i[1,0.01,10])'%(
                channel,cat,
                channel,cat,
                channel,cat)
                )
            ws.factory(
                'RooDecay::MzgTruthModelBase_exp_erf_%s_cat%i(Mzg,'\
                'tau_erf_%s_cat%i[25,0,50],MzgResoShape_exp_erf_%s_cat%i,'
                'RooDecay::SingleSided)'%(channel,cat,
                                          channel,cat,
                                          channel,cat)
                )            
            ws.factory(
                'RooExtendPdf::MzgTruthModel_exp_erf_%s_cat%i('\
                'MzgTruthModelBase_exp_erf_%s_cat%i,'\
                'norm_truth_exp_%s_cat%i[%f,%f,%f],"ROI")'%(channel,cat,
                                                            channel,cat,
                                                            channel,cat,
                                                            nevts,
                                                            0.25*nevts,1.75*nevts)
                )
            ws.pdf('MzgTruthModel_exp_erf_%s_cat%i'%(channel,cat)).fitTo(
                ws.data('bkgdata_%s_%i'%(channel,cat)),
                RooFit.Minimizer('Minuit2','scan'),
                RooFit.SumW2Error(False)
                )
            ws.pdf('MzgTruthModel_exp_erf_%s_cat%i'%(channel,cat)).fitTo(
                ws.data('bkgdata_%s_%i'%(channel,cat)),
                RooFit.Minimizer('Minuit','simplex'),
                RooFit.SumW2Error(False)
                )
            ws.pdf('MzgTruthModel_exp_erf_%s_cat%i'%(channel,cat)).fitTo(
                ws.data('bkgdata_%s_%i'%(channel,cat)),
                RooFit.SumW2Error(True)
                )
        if turnon == 'sigm' and truth == 'pow':
            #make power-law truth model with erf turn on
            ws.factory('EXPR::MzgTruthModelShape_pow_erf_%s_cat%i('\
                       '"1e-20 + (@0 > @1)*((@0)^(-@2))",'\
                       '{Mzg,step_pow_erf_%s_cat%i[105,100,130],'\
                       'pow_%s_cat%i[2,0,10]})'\
                       %(channel,cat,
                         channel,cat,
                         channel,cat))
            ws.factory(
                'RooGaussModel::MzgResoShape_pow_erf_%s_cat%i(Mzg,'\
                'bias_pow_erf_%s_cat%i[0],sigma_pow_erf_%s_cat%i[1,0.01,10])'%(
                channel,cat,
                channel,cat,
                channel,cat)
                )
            ws.factory('FCONV::MzgTruthModelBase_pow_erf_%s_cat%i(Mzg,'\
                       'MzgTruthModelShape_pow_erf_%s_cat%i,'\
                       'MzgResoShape_pow_erf_%s_cat%i)'%(channel,cat,
                                                         channel,cat,
                                                         channel,cat))
            ws.factory(
                'RooExtendPdf::MzgTruthModel_pow_erf_%s_cat%i('\
                'MzgTruthModelBase_pow_erf_%s_cat%i,'\
                'norm_truth_pow_erf_%s_cat%i[%f,%f,%f],"ROI")'%(channel,cat,
                                                                channel,cat,
                                                                channel,cat,
                                                                nevts,
                                                                0.25*nevts,1.75*nevts)
                )
            ws.pdf('MzgTruthModel_pow_erf_%s_cat%i'%(channel,cat)).fitTo(
                ws.data('bkgdata_%s_%i'%(channel,cat)),
                RooFit.Minimizer('Minuit2','scan'),
                RooFit.SumW2Error(False)
                )
            ws.pdf('MzgTruthModel_pow_erf_%s_cat%i'%(channel,cat)).fitTo(
                ws.data('bkgdata_%s_%i'%(channel,cat)),
                RooFit.Minimizer('Minuit','simplex'),
                RooFit.SumW2Error(False)
                )
            ws.pdf('MzgTruthModel_pow_erf_%s_cat%i'%(channel,cat)).fitTo(
                ws.data('bkgdata_%s_%i'%(channel,cat)),
                RooFit.SumW2Error(True)
                )
            
        #for erf fitting turn on we want sigmoid truth
        if turnon == 'erf' and truth == 'exp':
            #build exponential convoluted with sigmoid turn-on
            ws.factory('RooStepExponential::MzgTruthModelShape_exp_sigm_%s_cat%i'\
                       '(Mzg,tau_sigm_%s_cat%i[-0.05,-10,0],'\
                       'step_exp_sigm_%s_cat%i[110,100,130])'%(channel,cat,
                         channel,cat,
                         channel,cat))        
            ws.factory(
                'RooLogistics::MzgResoShape_exp_sigm_%s_cat%i(%s)'%(
                channel,cat,
                ','.join(['Mzg',
                          'bias_exp_sigm_%s_cat%i[0]'%(channel,cat),
                          'sigma_exp_sigm_%s_cat%i[5,0.01,20]'%(channel,cat)])
                )
                )
            ws.factory('FCONV::MzgTruthModelBase_exp_sigm_%s_cat%i(Mzg,'\
                       'MzgTruthModelShape_exp_sigm_%s_cat%i,'\
                       'MzgResoShape_exp_sigm_%s_cat%i)'%(channel,cat,
                                                          channel,cat,
                                                          channel,cat))
            ws.factory(
                'RooExtendPdf::MzgTruthModel_exp_sigm_%s_cat%i('\
                'MzgTruthModelBase_exp_sigm_%s_cat%i,'\
                'norm_truth_exp_sigm_%s_cat%i[%f,%f,%f],"ROI")'%(channel,cat,
                                                                 channel,cat,
                                                                 channel,cat,
                                                                 nevts,
                                                                 0.25*nevts,1.75*nevts)
                )
            ws.pdf('MzgTruthModel_exp_sigm_%s_cat%i'%(channel,cat)).fitTo(
                ws.data('bkgdata_%s_%i'%(channel,cat)),
                RooFit.Minimizer('Minuit2','scan'),
                RooFit.SumW2Error(False)
                )
            ws.pdf('MzgTruthModel_exp_sigm_%s_cat%i'%(channel,cat)).fitTo(
                ws.data('bkgdata_%s_%i'%(channel,cat)),
                RooFit.Minimizer('Minuit','simplex'),
                RooFit.SumW2Error(False)
                )
            ws.pdf('MzgTruthModel_exp_sigm_%s_cat%i'%(channel,cat)).fitTo(
                ws.data('bkgdata_%s_%i'%(channel,cat)),
                RooFit.SumW2Error(True)
                )
        if turnon == 'erf' and truth == 'pow':
            #build power-law convoluted with sigmoid turn-on
            ws.factory('EXPR::MzgTruthModelShape_pow_sigm_%s_cat%i('\
                       '"1e-20 + (@0 > @1)*((@0)^(-@2))",'\
                       '{Mzg,step_pow_sigm_%s_cat%i[105,100,130],'\
                       'pow_sigm_%s_cat%i[2,0,10]})'\
                       %(channel,cat,
                         channel,cat,
                         channel,cat))        
            ws.factory(
                'RooLogistics::MzgResoShape_pow_sigm_%s_cat%i(%s)'%(
                channel,cat,
                ','.join(['Mzg',
                          'bias_pow_sigm_%s_cat%i[0]'%(channel,cat),
                          'sigma_pow_sigm_%s_cat%i[5,0.01,20]'%(channel,cat)])
                )
                )
            ws.factory('FCONV::MzgTruthModelBase_pow_sigm_%s_cat%i(Mzg,'\
                       'MzgTruthModelShape_pow_sigm_%s_cat%i,'\
                       'MzgResoShape_pow_sigm_%s_cat%i)'%(channel,cat,
                                                          channel,cat,
                                                          channel,cat))
            ws.factory(
                'RooExtendPdf::MzgTruthModel_pow_sigm_%s_cat%i('\
                'MzgTruthModelBase_pow_sigm_%s_cat%i,'\
                'norm_truth_pow_sigm_%s_cat%i[%f,%f,%f],"ROI")'%(channel,cat,
                                                                 channel,cat,
                                                                 channel,cat,
                                                                 nevts,
                                                                 0.25*nevts,1.75*nevts)
                )
            ws.pdf('MzgTruthModel_pow_sigm_%s_cat%i'%(channel,cat)).fitTo(
                ws.data('bkgdata_%s_%i'%(channel,cat)),
                RooFit.Minimizer('Minuit2','scan'),
                RooFit.SumW2Error(False)
                )
            ws.pdf('MzgTruthModel_pow_sigm_%s_cat%i'%(channel,cat)).fitTo(
                ws.data('bkgdata_%s_%i'%(channel,cat)),
                RooFit.Minimizer('Minuit','simplex'),
                RooFit.SumW2Error(False)
                )
            ws.pdf('MzgTruthModel_pow_sigm_%s_cat%i'%(channel,cat)).fitTo(
                ws.data('bkgdata_%s_%i'%(channel,cat)),
                RooFit.SumW2Error(True)
                )        
Ejemplo n.º 13
0
def pdf_logPt2_prelim():

    #PDF fit to log_10(pT^2) for preliminary figure

    #tree_in = tree_incoh
    tree_in = tree

    #ptbin = 0.04
    ptbin = 0.12
    ptmin = -5.
    ptmax = 1.

    mmin = 2.8
    mmax = 3.2

    #fitran = [-5., 1.]
    fitran = [-0.9, 0.1]

    binned = False

    #gamma-gamma 131 evt for pT<0.18

    #input data
    pT = RooRealVar("jRecPt", "pT", 0, 10)
    m = RooRealVar("jRecM", "mass", 0, 10)
    dataIN = RooDataSet("data", "data", tree_in, RooArgSet(pT, m))
    strsel = "jRecM>{0:.3f} && jRecM<{1:.3f}".format(mmin, mmax)
    data = dataIN.reduce(strsel)
    #x is RooRealVar for log(Pt2)
    draw = "TMath::Log10(jRecPt*jRecPt)"
    draw_func = RooFormulaVar(
        "x", "Dielectron log_{10}( #it{p}_{T}^{2} ) ((GeV/c)^{2})", draw,
        RooArgList(pT))
    x = data.addColumn(draw_func)
    x.setRange("fitran", fitran[0], fitran[1])

    #binned data
    nbins, ptmax = ut.get_nbins(ptbin, ptmin, ptmax)
    hPt = TH1D("hPt", "hPt", nbins, ptmin, ptmax)
    hPtCoh = ut.prepare_TH1D("hPtCoh", ptbin, ptmin, ptmax)
    hPtCoh.SetLineWidth(2)
    #fill in binned data
    tree_in.Draw(draw + " >> hPt", strsel)
    tree_coh.Draw(draw + " >> hPtCoh", strsel)
    dataH = RooDataHist("dataH", "dataH", RooArgList(x), hPt)

    #range for plot
    x.setMin(ptmin)
    x.setMax(ptmax)
    x.setRange("plotran", ptmin, ptmax)

    #create the pdf
    b = RooRealVar("b", "b", 5., 0., 10.)
    pdf_func = "log(10.)*pow(10.,x)*exp(-b*pow(10.,x))"
    pdf_logPt2 = RooGenericPdf("pdf_logPt2", pdf_func, RooArgList(x, b))

    #make the fit
    if binned == True:
        r1 = pdf_logPt2.fitTo(dataH, rf.Range("fitran"), rf.Save())
    else:
        r1 = pdf_logPt2.fitTo(data, rf.Range("fitran"), rf.Save())

    #calculate norm to number of events
    xset = RooArgSet(x)
    ipdf = pdf_logPt2.createIntegral(xset, rf.NormSet(xset),
                                     rf.Range("fitran"))
    print "PDF integral:", ipdf.getVal()
    if binned == True:
        nevt = tree_incoh.Draw(
            "", strsel + " && " + draw + ">{0:.3f}".format(fitran[0]) +
            " && " + draw + "<{1:.3f}".format(fitran[0], fitran[1]))
    else:
        nevt = data.sumEntries("x", "fitran")

    print "nevt:", nevt
    pdf_logPt2.setNormRange("fitran")
    print "PDF norm:", pdf_logPt2.getNorm(RooArgSet(x))

    #a = nevt/ipdf.getVal()
    a = nevt / pdf_logPt2.getNorm(RooArgSet(x))
    print "a =", a

    #gamma-gamma contribution
    hPtGG = ut.prepare_TH1D("hPtGG", ptbin, ptmin, ptmax)
    tree_gg.Draw(draw + " >> hPtGG", strsel)
    #ut.norm_to_data(hPtGG, hPt, rt.kGreen, -5., -2.9)
    ut.norm_to_num(hPtGG, 131., rt.kGreen + 1)

    print "Int GG:", hPtGG.Integral()

    #sum of all contributions
    hSum = ut.prepare_TH1D("hSum", ptbin, ptmin, ptmax)
    hSum.SetLineWidth(3)
    #add ggel to the sum
    hSum.Add(hPtGG)
    #add incoherent contribution
    func_logPt2 = TF1("pdf_logPt2",
                      "[0]*log(10.)*pow(10.,x)*exp(-[1]*pow(10.,x))", -10.,
                      10.)
    func_logPt2.SetParameters(a, b.getVal())
    hInc = ut.prepare_TH1D("hInc", ptbin, ptmin, ptmax)
    ut.fill_h1_tf(hInc, func_logPt2)
    hSum.Add(hInc)
    #add coherent contribution
    ut.norm_to_data(hPtCoh, hPt, rt.kBlue, -5., -2.2)  # norm for coh
    hSum.Add(hPtCoh)
    #set to draw as a lines
    ut.line_h1(hSum, rt.kBlack)

    #create canvas frame
    can = ut.box_canvas()
    ut.set_margin_lbtr(gPad, 0.11, 0.1, 0.01, 0.01)

    frame = x.frame(rf.Bins(nbins), rf.Title(""))
    frame.SetTitle("")

    frame.SetYTitle("J/#psi candidates / ({0:.3f}".format(ptbin) +
                    " (GeV/c)^{2})")

    frame.GetXaxis().SetTitleOffset(1.2)
    frame.GetYaxis().SetTitleOffset(1.6)

    print "Int data:", hPt.Integral()

    #plot the data
    if binned == True:
        dataH.plotOn(frame, rf.Name("data"))
    else:
        data.plotOn(frame, rf.Name("data"))

    pdf_logPt2.plotOn(frame, rf.Range("fitran"), rf.LineColor(rt.kRed),
                      rf.Name("pdf_logPt2"))
    pdf_logPt2.plotOn(frame, rf.Range("plotran"), rf.LineColor(rt.kRed),
                      rf.Name("pdf_logPt2_full"), rf.LineStyle(rt.kDashed))

    frame.Draw()

    leg = ut.prepare_leg(0.61, 0.77, 0.16, 0.19, 0.03)
    #ut.add_leg_mass(leg, mmin, mmax)
    hx = ut.prepare_TH1D("hx", 1, 0, 1)
    hx.Draw("same")
    ln = ut.col_lin(rt.kRed, 2)
    leg.AddEntry(hx, "Data", "p")
    leg.AddEntry(hSum, "Sum", "l")
    leg.AddEntry(hPtCoh, "Coherent J/#psi", "l")
    leg.AddEntry(ln, "Incoherent parametrization", "l")
    leg.AddEntry(hPtGG, "#gamma#gamma#rightarrow e^{+}e^{-}", "l")
    #leg.AddEntry(ln, "ln(10)*#it{A}*10^{log_{10}#it{p}_{T}^{2}}exp(-#it{b}10^{log_{10}#it{p}_{T}^{2}})", "l")
    leg.Draw("same")

    l0 = ut.cut_line(fitran[0], 0.9, frame)
    l1 = ut.cut_line(fitran[1], 0.9, frame)
    #l0.Draw()
    #l1.Draw()

    pleg = ut.prepare_leg(0.12, 0.75, 0.14, 0.22, 0.03)
    pleg.AddEntry(None, "#bf{|#kern[0.3]{#it{y}}| < 1}", "")
    ut.add_leg_mass(pleg, mmin, mmax)
    pleg.AddEntry(None, "STAR Preliminary", "")
    pleg.AddEntry(None, "AuAu@200 GeV", "")
    pleg.AddEntry(None, "UPC sample", "")
    pleg.Draw("same")

    desc = pdesc(frame, 0.14, 0.9, 0.057)
    desc.set_text_size(0.03)
    desc.itemD("#chi^{2}/ndf", frame.chiSquare("pdf_logPt2", "data", 2), -1,
               rt.kRed)
    desc.itemD("#it{A}", a, -1, rt.kRed)
    desc.itemR("#it{b}", b, rt.kRed)
    #desc.draw()

    #put the sum
    hSum.Draw("same")

    frame.Draw("same")

    #put gamma-gamma and coherent J/psi
    hPtGG.Draw("same")
    hPtCoh.Draw("same")

    #ut.invert_col(rt.gPad)
    can.SaveAs("01fig.pdf")
Ejemplo n.º 14
0
        (x, eval(x))
        for x in ["ymin", "ymax", "ptmax", "binned", "fitran[0]", "fitran[1]"]
    ]
    strlog = ut.make_log_string(loglist1, loglist2)
    ut.log_results(out, strlog + "\n")

    #unbinned and binned input data
    nbins, mmax = ut.get_nbins(mbin, mmin, mmax)
    strsel = "jRecY>{0:.3f} && jRecY<{1:.3f} && jRecPt<{2:.3f}".format(
        ymin, ymax, ptmax)
    #unbinned data
    m.setMin(mmin)
    m.setMax(mmax)
    m.setRange("fitran", fitran[0], fitran[1])
    dataIN = RooDataSet("data", "data", tree, RooArgSet(m, y, pT))
    data = dataIN.reduce(strsel)
    #binned data
    hMass = TH1D("hMass", "hMass", nbins, mmin, mmax)
    tree.Draw("jRecM >> hMass", strsel)
    dataH = RooDataHist("dataH", "dataH", RooArgList(m), hMass)

    #make the fit
    if binned == True:
        r1 = cb.fitTo(dataH, rf.Range("fitran"), rf.Save())
    else:
        r1 = cb.fitTo(data, rf.Range("fitran"), rf.Save())

    #log fit results
    ut.log_results(out, ut.log_fit_result(r1))
    ut.log_results(out, "Alpha and n in 3-digits:")
    ut.log_results(
Ejemplo n.º 15
0
mmtt_pt = RooRealVar("xPt", "xPt", 0.0, ptmax)

lxysig = RooRealVar("xL", "l(xy) sign.;l(xy) sign.", 0.0, 1000.0)

massvars = RooArgSet(tt_mass, mm_mass, mmtt_mass)
ptvars = RooArgSet(tt_pt, mm_pt, mmtt_pt)
kinvars = RooArgSet(massvars, ptvars)
extravars = RooArgSet(lxysig)

theData = RooDataSet("theData", "theData", theTree,
                     RooArgSet(kinvars, extravars))

c = TCanvas("canvas", "canvas", 1200, 800)

if args.nonprompt:
    theData = theData.reduce("xL > 3.0")
    region = "_nprompt_"
if args.prompt:
    theData = theData.reduce("xL < 1.5")
    region = "_promt_"

if args.ptcuts is not None:
    theData = theData.reduce("trigp_pT > " + str(args.ptcuts))
    theData = theData.reduce("trign_pT > " + str(args.ptcuts))
    cuts += "P_t_" + str(args.ptcuts) + "_"
#### #### Plotting variables
#### TrakTrak Data

if args.noplot:

    print("TrakTrak data plotting . . .")
Ejemplo n.º 16
0
thevars.add(l2_mvaId)
thevars.add(cos2D)
thevars.add(l_xy_sig)
thevars.add(svprob)

fulldata = RooDataSet('fulldata', 'fulldata', tree, RooArgSet(thevars))

theBMassfunc = RooFormulaVar("theBMass", "theBMass", "@0", RooArgList(bMass))
theBMass = fulldata.addColumn(theBMassfunc)
theBMass.setRange(lowRange, highRange)
thevars.add(theBMass)

cut = ''

print cut
data = fulldata.reduce(thevars, cut)

## mass model
mean = RooRealVar("mass", "mean", B0Mass_, 5, 5.5, "GeV")
sigma = RooRealVar("sigma", "sigma", 9.0e-2, 1.0e-4, 1.0, "GeV")
alpha = RooRealVar("alpha", "alpha", 1.0, 0.0, 1.0e+4)
n = RooRealVar("n", "n", 5, 1, 100)
signalCB = RooCBShape("signalCB", "signal cb", theBMass, mean, sigma, alpha, n)

sigma2 = RooRealVar("sigma2", "sigma2", 9.0e-3, 1.0e-5, 1.0, "GeV")
alpha2 = RooRealVar("alpha2", "alpha2", 1.0, 0.0, 1.0e+4)
n2 = RooRealVar("n2", "n2", 5, 1, 100)
signalCB2 = RooCBShape("signalCB2", "signal cb 2", theBMass, mean, sigma2,
                       alpha2, n2)
f1 = RooRealVar("f1", "f1", 0.5, 0., 1.)
Ejemplo n.º 17
0
                                  RooArgSet(masspLbTk, LbTkPt))
    loadDatasetnLbTk = RooDataSet('loadData16nLbTk', 'loadData16', innLbTk,
                                  RooArgSet(massnLbTk, LbTkPt))

    #tktkMassCut='tktkMass>1.100&&tktkMass<1.120'
    tktkMassCut = 'tktkMass>1.105&&tktkMass<1.125'
    #tktkMassCut='tktkMass>1.110&&tktkMass<1.120'
    for ptRange in ptRegion:
        rName = ptRange[2]
        pLbL0Num = 0
        nLbL0Num = 0
        pLbTkNum = 0
        nLbTkNum = 0
        if checkpLbL0:
            binData = loadDatasetpLbL0.reduce(
                tktkMassCut +
                '&&lbl0Pt>{0}.&&lbl0Pt<{1}.'.format(ptRange[0], ptRange[1]))
            pLbL0Num = binData.sumEntries()
        if checknLbL0:
            binData = loadDatasetnLbL0.reduce(
                tktkMassCut +
                '&&lbl0Pt>{0}.&&lbl0Pt<{1}.'.format(ptRange[0], ptRange[1]))
            nLbL0Num = binData.sumEntries()
        if checkpLbTk:
            binData = loadDatasetpLbTk.reduce(
                'lbtkPt>{0}.&&lbtkPt<{1}.'.format(ptRange[0], ptRange[1]))
            pLbTkNum = binData.sumEntries()
        if checknLbTk:
            binData = loadDatasetnLbTk.reduce(
                'lbtkPt>{0}.&&lbtkPt<{1}.'.format(ptRange[0], ptRange[1]))
            nLbTkNum = binData.sumEntries()
Ejemplo n.º 18
0
dstree.Project('sPlot_B0_hist','xM','nSig_sw');


# In[ ]:


sPlot_B0_hist.Draw('e0');
cD.SaveAs('sPlot_B0_hist.eps')


# In[ ]:


sys.exit()

xdataPrompt = (alldata.reduce('xM<4.8')).reduce('xM>4.0').reduce("xL<2.0")


# In[ ]:


massmin = 1.020-0.03
massmax = 1.020+0.03
phimean = 1.020
xdataPrompt.numEntries()


# In[ ]:


a0 = RooRealVar("a0","a0",0.001,-1.,1.)
Ejemplo n.º 19
0
    bsMass=RooRealVar('bsMass', 'bsMass', 4., 8., "GeV")
    bdMass=RooRealVar('bdMass', 'bdMass', 3.5, 8., "GeV")
    bdbarMass=RooRealVar('bdbarMass', 'bdbarMass', 3.5, 8., "GeV")

    phiMass=RooRealVar('phiMass', 'phiMass', 0.5, 3., "GeV")
    kstarMass=RooRealVar('kstarMass', 'kstarMass', 0.5, 3., "GeV")
    kstarbarMass=RooRealVar('kstarbarMass', 'kstarbarMass', 0.5, 3., "GeV")


    tktkPt=RooRealVar('tktkPt', 'tktkPt', 0.,  160., "GeV/c")

    fitMC=RooDataSet()
    fitdata=RooDataSet('2016Data', 'RunB', ntuple, RooArgSet(lbtkMass,bsMass,bdMass,bdbarMass,phiMass,kstarMass,kstarbarMass,tktkPt))


    subdataset=fitdata.reduce( RooFit.Cut("tktkPt>20.&&lbtkMass>5.45&&lbtkMass<5.8") )
    canv=TCanvas('c1', 'c1', 1600,1000)
    canv.SetFillColor(4000)
    canv.SetFillStyle(4000)
    lbtkmassFrame=lbtkMass.frame(RooFit.Range(5.,6.))
    bsmassFrame=bsMass.frame(RooFit.Range(5.,6.))
    bdmassFrame=bdMass.frame(RooFit.Range(5.,6.))
    bdbarmassFrame=bdbarMass.frame(RooFit.Range(5.,6.))

    fitdata.plotOn(lbtkmassFrame, RooFit.Cut("tktkPt>20."))
    subdataset.plotOn(bsmassFrame)
    subdataset.plotOn(bdmassFrame)
    subdataset.plotOn(bdbarmassFrame)

    lbtkmassFrame.Draw()
    canv.SaveAs('h_checkPlot_lbtkMass_tktkPtB20.eps')
Ejemplo n.º 20
0
	massAp = (massApmax - massApmin)/float(nApMass - 1) * i + massApmin
	massApArr.append(massAp)
	massVarr = []
	massApres = 0.01
	for j in range(0,nVMass):
		#massV = (massVmax - massVmin)/float(nVMass - 1) * j + massVmin
		massV = 0.6*massAp
		massVarr.append(massV)
		massPiarr = []
		massVres = massresfile.Get("mres_l1_p0").GetFunction("pol1").Eval(massV)
		#zcut = 10.
		breakz = tailsfile.Get("breakz").GetFunction("pol3").Eval(massV)
		length = tailsfile.Get("length").GetFunction("pol3").Eval(massV)

		frame = uncVZ.frame()
		dataInRange = dataset.reduce(obs,"abs({0}-{1})<{2}/2*({3}+{4}*uncVZ)".format("uncM",massV,masscut_nsigma,massVres,0))
		binnedData = dataInRange.binnedClone()
		binnedData.plotOn(frame)
		mean = binnedData.mean(uncVZ)
		sigma = binnedData.sigma(uncVZ)
		uncVZ.setRange("fitRange",mean-2*sigma,mean+2*sigma)
		gauss_params.setRealValue("mean",mean)
		gauss_params.setRealValue("sigma",sigma)
		gauss_pdf.fitTo(binnedData,RooFit.Range("fitRange"),RooFit.PrintLevel(-1))
		mean = gauss_params.getRealValue("mean")
		sigma = gauss_params.getRealValue("sigma")
		gaussexp_params.setRealValue("gauss_mean",mean)
		gaussexp_params.setRealValue("gauss_sigma",sigma)
		gaussexp_params.setRealValue("exp_breakpoint",breakz)
		gaussexp_params.setRealValue("exp_length",length)
		w.var("gauss_mean").setConstant(True)
Ejemplo n.º 21
0
masskk.setBins(int(200))
massmumu = RooRealVar("mumuM", "mumuM", 2.5, 3.5)

# In[9]:

alldata = RooDataSet("alldata", "alldata", xTuple,
                     RooArgSet(masskk, mass, lxy, hlt,
                               massmumu))  #,cutFormula)

# In[10]:

alldata.numEntries()

# In[ ]:

xdataPrompt = (alldata.reduce('xM>5.15')).reduce('xM<5.55').reduce(
    "xL>=3.0").reduce("kkM<1.035").reduce("kkM>1.005")
xdataPrompt.numEntries()

B_c = RooRealVar("B_c", "B_c ", 0.3, -20, 100)
B_b = RooRealVar("B_b", "B_b ", 0.3, -20, 100)

S1 = RooRealVar("S1", "Signal", 30000, 1, 900000)
S2 = RooRealVar("S2", "Signal", 30000, 1, 900000)
B = RooRealVar("B", "B", 50000, 1, 900000000)

mean = RooRealVar("mean", "mean of gaussian", 5.38, 5.31, 5.41)
sigma1 = RooRealVar("sigma1", "width of gaussian1", 0.002, 0.0005, 0.05)
sigma2 = RooRealVar("sigma2", "width of gaussian2", 0.004, 0.004, 0.01)

pdfS1 = RooGaussian("pdfS1", "gaus", mass, mean, sigma1)
Ejemplo n.º 22
0
def buildDataAndCategories(ws, options, args):
    #Get the input data
    inputData = TChain(options.treeName, 'The input data')
    for arg in args:
        print 'Adding data from: ', arg
        inputData.Add(arg)

    foldname = ''
    phirange = [0, 90]

    if not options.folded:
        foldname = ''
        phirange = [-180, 180]

    #variables necessary for j/psi mass,lifetime,polarization fit
    jPsiMass = RooRealVar('JpsiMass', 'M [GeV]', 2.7, 3.5)
    jPsiRap = RooRealVar('JpsiRap', '#nu', -2.3, 2.3)
    jPsiPt = RooRealVar("JpsiPt", "pT [GeV]", 0, 40)
    jPsicTau = RooRealVar('Jpsict', 'l_{J/#psi} [mm]', -1, 2.5)
    jPsicTauError = RooRealVar('JpsictErr', 'Error on l_{J/#psi} [mm]', 0, 2)
    jPsiVprob = RooRealVar('JpsiVprob', '', .01, 1)
    jPsiHXcosth = None
    jPsiHXphi = None

    jPsicTau.setBins(10000, "cache")

    if options.fitFrame is not None:
        jPsiHXcosth = RooRealVar('costh_' + options.fitFrame + foldname,
                                 'cos(#theta)_{' + options.fitFrame + '}', -1,
                                 1)
        jPsiHXphi = RooRealVar('phi_' + options.fitFrame + foldname,
                               '#phi_{' + options.fitFrame + '}', phirange[0],
                               phirange[1])
    else:
        jPsiHXcosth = RooRealVar('costh_CS' + foldname, 'cos(#theta)_{CS}', -1,
                                 1)
        jPsiHXphi = RooRealVar('phi_CS' + foldname, '#phi_{CS}', phirange[0],
                               phirange[1])

    #vars needed for on the fly calc of polarization variables
    jPsimuPosPx = RooRealVar('muPosPx', '+ Muon P_{x} [GeV]', 0)
    jPsimuPosPy = RooRealVar('muPosPy', '+ Muon P_{y} [GeV]', 0)
    jPsimuPosPz = RooRealVar('muPosPz', '+ Muon P_{z} [GeV]', 0)
    jPsimuNegPx = RooRealVar('muNegPx', '- Muon P_{x} [GeV]', 0)
    jPsimuNegPy = RooRealVar('muNegPy', '- Muon P_{y} [GeV]', 0)
    jPsimuNegPz = RooRealVar('muNegPz', '- Muon P_{z} [GeV]', 0)

    #create RooArgSet for eventual dataset creation
    dataVars = RooArgSet(jPsiMass, jPsiRap, jPsiPt, jPsicTau, jPsicTauError,
                         jPsimuPosPx, jPsimuPosPy, jPsimuPosPz)

    #add trigger requirement if specified
    if options.triggerName:
        trigger = RooRealVar(options.triggerName, 'Passes Trigger', 0.5, 1.5)
        dataVars.add(trigger)

    dataVars.add(jPsiVprob)
    dataVars.add(jPsimuNegPx)
    dataVars.add(jPsimuNegPy)
    dataVars.add(jPsimuNegPz)
    dataVars.add(jPsiHXcosth)
    dataVars.add(jPsiHXphi)

    redVars = RooArgSet(jPsiMass, jPsiRap, jPsiPt, jPsicTau, jPsicTauError)
    redVars.add(jPsiHXcosth)
    redVars.add(jPsiHXphi)
    fitVars = redVars.Clone()

    ### HERE IS WHERE THE BIT FOR CALCULATING POLARIZATION VARS GOES

    ctauStates = RooCategory('ctauRegion', 'Cut Region in lifetime')
    ctauStates.defineType('prompt', 0)
    ctauStates.defineType('nonPrompt', 1)

    massStates = RooCategory('massRegion', 'Cut Region in mass')
    massStates.defineType('signal', 1)
    massStates.defineType('separation', 0)
    massStates.defineType('leftMassSideBand', -2)
    massStates.defineType('rightMassSideBand', -1)

    states = RooCategory('mlRegion', 'Cut Region in mass')
    states.defineType('nonPromptSignal', 2)
    states.defineType('promptSignal', 1)
    states.defineType('separation', 0)
    states.defineType('leftMassSideBand', -2)
    states.defineType('rightMassSideBand', -1)

    #define corresponding ranges in roorealvars
    #mass is a little tricky since the sidebands change definitions in each rap bin
    #define the names here and change as we do the fits
    #jPsiMass.setRange('NormalizationRangeFormlfit_promptSignal',2.7,3.5)
    #jPsiMass.setRange('NormalizationRangeFormlfit_nonPromptSignal',2.7,3.5)
    #jPsiMass.setRange('NormalizationRangeFormlfit_leftMassSideBand',2.7,3.1)
    #jPsiMass.setRange('NormalizationRangeFormlfit_rightMassSideBand',3.1,3.5)

    #want the prompt fit only done in prompt region
    #non-prompt only in non-prompt region
    #background over entire cTau range
    #jPsicTau.setRange('NormalizationRangeFormlfit_promptSignal',-1,.1)
    #jPsicTau.setRange('NormalizationRangeFormlfit_nonPromptSignal',.1,2.5)
    #jPsicTau.setRange('NormalizationRangeFormlfit_leftMassSideBand',-1,2.5)
    #jPsicTau.setRange('NormalizationRangeFormlfit_rightMassSideBand',-1,2.5)

    #redVars.add(ctauStates)
    #redVars.add(massStates)
    #redVars.add(states)
    fitVars.add(ctauStates)
    fitVars.add(massStates)
    fitVars.add(states)

    fullData = RooDataSet('fullData',
                          'The Full Data From the Input ROOT Trees', dataVars,
                          ROOT.RooFit.Import(inputData))

    for rap_bin in range(1, len(jpsi.pTRange)):
        yMin = jpsi.rapForPTRange[rap_bin - 1][0]
        yMax = jpsi.rapForPTRange[rap_bin - 1][-1]
        for pt_bin in range(len(jpsi.pTRange[rap_bin])):

            ptMin = jpsi.pTRange[rap_bin][pt_bin][0]
            ptMax = jpsi.pTRange[rap_bin][pt_bin][-1]

            sigMaxMass = jpsi.polMassJpsi[
                rap_bin] + jpsi.nSigMass * jpsi.sigmaMassJpsi[rap_bin]
            sigMinMass = jpsi.polMassJpsi[
                rap_bin] - jpsi.nSigMass * jpsi.sigmaMassJpsi[rap_bin]

            sbHighMass = jpsi.polMassJpsi[
                rap_bin] + jpsi.nSigBkgHigh * jpsi.sigmaMassJpsi[rap_bin]
            sbLowMass = jpsi.polMassJpsi[
                rap_bin] - jpsi.nSigBkgLow * jpsi.sigmaMassJpsi[rap_bin]

            ctauNonPrompt = .1

            massFun = RooFormulaVar(
                'massRegion', 'Function that returns the mass state.',
                '(' + jPsiMass.GetName() + ' < ' + str(sigMaxMass) + ' && ' +
                jPsiMass.GetName() + ' > ' + str(sigMinMass) + ') - (' +
                jPsiMass.GetName() + ' > ' + str(sbHighMass) + ')' + '-2*(' +
                jPsiMass.GetName() + ' < ' + str(sbLowMass) + ')',
                RooArgList(jPsiMass, jPsicTau))

            ctauFun = RooFormulaVar(
                'ctauRegion', 'Function that returns the ctau state.',
                '(' + jPsicTau.GetName() + ' > ' + str(ctauNonPrompt) + ')',
                RooArgList(jPsiMass, jPsicTau))

            mlFun = RooFormulaVar(
                'mlRegion',
                'Function that returns the mass and lifetime state.',
                '(' + jPsiMass.GetName() + ' < ' + str(sigMaxMass) + ' && ' +
                jPsiMass.GetName() + ' > ' + str(sigMinMass) + ') + (' +
                jPsiMass.GetName() + ' < ' + str(sigMaxMass) + ' && ' +
                jPsiMass.GetName() + ' > ' + str(sigMinMass) + ' && ' +
                jPsicTau.GetName() + ' > ' + str(ctauNonPrompt) + ') - (' +
                jPsiMass.GetName() + ' > ' + str(sbHighMass) + ')' + '-2*(' +
                jPsiMass.GetName() + ' < ' + str(sbLowMass) + ')',
                RooArgList(jPsiMass, jPsicTau))

            cutStringPt = '(' + jPsiPt.GetName() + ' > ' + str(
                ptMin) + ' && ' + jPsiPt.GetName() + ' < ' + str(ptMax) + ')'
            cutStringY = '( abs(' + jPsiRap.GetName() + ') > ' + str(
                yMin) + ' && abs(' + jPsiRap.GetName() + ') < ' + str(
                    yMax) + ')'
            #cutStringM1 = '('+jPsiMass.GetName()+' < '+str(sigMinMass)+' && '+jPsiMass.GetName()+' > '+str(sbLowMass)+')'
            #cutStringM2 = '('+jPsiMass.GetName()+' < '+str(sbHighMass)+' && '+jPsiMass.GetName()+' > '+str(sigMaxMass)+')'
            #cutStringMT = '!('+cutStringM1+' || '+cutStringM2+')'
            cutString = cutStringPt + ' && ' + cutStringY  #+' && '+cutStringMT

            print cutString

            #get the reduced dataset we'll do the fit on
            binData = fullData.reduce(
                ROOT.RooFit.SelectVars(redVars), ROOT.RooFit.Cut(cutString),
                ROOT.RooFit.Name('data_rap' + str(rap_bin) + '_pt' +
                                 str(pt_bin + 1)),
                ROOT.RooFit.Title('Data For Fitting'))

            binDataWithCategory = RooDataSet(
                'data_rap' + str(rap_bin) + '_pt' + str(pt_bin + 1),
                'Data For Fitting', fitVars)
            #categorize
            binData.addColumn(ctauStates)
            binData.addColumn(massStates)
            binData.addColumn(states)
            for ev in range(binData.numEntries()):
                args = binData.get(ev)

                jPsiMass.setVal(args.find(jPsiMass.GetName()).getVal())
                jPsiRap.setVal(args.find(jPsiRap.GetName()).getVal())
                jPsiPt.setVal(args.find(jPsiPt.GetName()).getVal())
                jPsicTau.setVal(args.find(jPsicTau.GetName()).getVal())
                jPsicTauError.setVal(
                    args.find(jPsicTauError.GetName()).getVal())

                jPsiHXcosth.setVal(args.find(jPsiHXcosth.GetName()).getVal())
                jPsiHXphi.setVal(args.find(jPsiHXphi.GetName()).getVal())

                massStates.setIndex(int(massFun.getVal()))
                ctauStates.setIndex(int(ctauFun.getVal()))
                states.setIndex(int(mlFun.getVal()))

                binDataWithCategory.add(fitVars)

            getattr(ws, 'import')(binDataWithCategory)
Ejemplo n.º 23
0
def prepare_truth_models(ws, cat, mass, channel, turnon, truth):
    if channel in study_inputs:
        bkg_data = RooDataSet("bkgdata_%s" % (channel),
                              "M_{ll#gamma} with Errors",
                              ws.set("observables_weight"), "weight")

        for k, file in enumerate(study_inputs[channel]):
            f_in = TFile.Open(file, "READ")
            gDirectory.cd(pwd)
            n_events = f_in.Get("eventCount").GetBinContent(1)
            tree = f_in.Get("selected_zg").CloneTree()
            tree.SetName("tree_%s_%i" % (channel, k))
            f_in.Close()

            d_in = RooDataSet("temp", "M_{ll#gamma} with Errors", tree,
                              ws.set("observables"))
            norm = RooConstVar("norm", "norm", n_events)
            weight = RooFormulaVar(
                "weight",
                "weight",
                "1.3*@0*@1/@2",  #1.3 gives 19.6/fb
                RooArgList(ws.var("puWeight"), ws.var("procWeight"), norm))
            d_in.addColumn(weight)
            d_in_weight = RooDataSet("temp_weight", "M_{ll#gamma} with Errors",
                                     d_in, ws.set("observables_weight"), '',
                                     'weight')
            bkg_data.append(d_in_weight)

        # split off data for each category, create the
        # toy dataset truth models
        data = bkg_data.reduce("Mz + Mzg > 185 && r94cat == %i" % cat)
        getattr(ws, 'import')(data,
                              RooFit.Rename('bkgdata_%s_%i' % (channel, cat)))
        nevts = data.sumEntries('Mzg > %f && Mzg < %f' %
                                (mass - 1.5, mass + 1.5))
        #for sigm turn on we want erf truth
        if turnon == 'sigm' and truth == 'exp':
            #make RooDecay 'truth' model with erf turn on
            ws.factory(
                'RooGaussModel::MzgResoShape_exp_erf_%s_cat%i(Mzg,'\
                'bias_exp_erf_%s_cat%i[120,90,150],sigma_exp_erf_%s_cat%i[1,0.01,10])'%(
                channel,cat,
                channel,cat,
                channel,cat)
                )
            ws.factory(
                'RooDecay::MzgTruthModelBase_exp_erf_%s_cat%i(Mzg,'\
                'tau_erf_%s_cat%i[25,0,50],MzgResoShape_exp_erf_%s_cat%i,'
                'RooDecay::SingleSided)'%(channel,cat,
                                          channel,cat,
                                          channel,cat)
                )
            ws.factory(
                'RooExtendPdf::MzgTruthModel_exp_erf_%s_cat%i('\
                'MzgTruthModelBase_exp_erf_%s_cat%i,'\
                'norm_truth_exp_%s_cat%i[%f,%f,%f],"ROI")'%(channel,cat,
                                                            channel,cat,
                                                            channel,cat,
                                                            nevts,
                                                            0.25*nevts,1.75*nevts)
                )
            ws.pdf('MzgTruthModel_exp_erf_%s_cat%i' % (channel, cat)).fitTo(
                ws.data('bkgdata_%s_%i' % (channel, cat)),
                RooFit.Minimizer('Minuit2', 'scan'), RooFit.SumW2Error(False))
            ws.pdf('MzgTruthModel_exp_erf_%s_cat%i' % (channel, cat)).fitTo(
                ws.data('bkgdata_%s_%i' % (channel, cat)),
                RooFit.Minimizer('Minuit', 'simplex'),
                RooFit.SumW2Error(False))
            ws.pdf('MzgTruthModel_exp_erf_%s_cat%i' % (channel, cat)).fitTo(
                ws.data('bkgdata_%s_%i' % (channel, cat)),
                RooFit.SumW2Error(True))
        if turnon == 'sigm' and truth == 'pow':
            #make power-law truth model with erf turn on
            ws.factory('EXPR::MzgTruthModelShape_pow_erf_%s_cat%i('\
                       '"1e-20 + (@0 > @1)*((@0)^(-@2))",'\
                       '{Mzg,step_pow_erf_%s_cat%i[105,100,130],'\
                       'pow_%s_cat%i[2,0,10]})'\
                       %(channel,cat,
                         channel,cat,
                         channel,cat))
            ws.factory(
                'RooGaussModel::MzgResoShape_pow_erf_%s_cat%i(Mzg,'\
                'bias_pow_erf_%s_cat%i[0],sigma_pow_erf_%s_cat%i[1,0.01,10])'%(
                channel,cat,
                channel,cat,
                channel,cat)
                )
            ws.factory('FCONV::MzgTruthModelBase_pow_erf_%s_cat%i(Mzg,'\
                       'MzgTruthModelShape_pow_erf_%s_cat%i,'\
                       'MzgResoShape_pow_erf_%s_cat%i)'%(channel,cat,
                                                         channel,cat,
                                                         channel,cat))
            ws.factory(
                'RooExtendPdf::MzgTruthModel_pow_erf_%s_cat%i('\
                'MzgTruthModelBase_pow_erf_%s_cat%i,'\
                'norm_truth_pow_erf_%s_cat%i[%f,%f,%f],"ROI")'%(channel,cat,
                                                                channel,cat,
                                                                channel,cat,
                                                                nevts,
                                                                0.25*nevts,1.75*nevts)
                )
            ws.pdf('MzgTruthModel_pow_erf_%s_cat%i' % (channel, cat)).fitTo(
                ws.data('bkgdata_%s_%i' % (channel, cat)),
                RooFit.Minimizer('Minuit2', 'scan'), RooFit.SumW2Error(False))
            ws.pdf('MzgTruthModel_pow_erf_%s_cat%i' % (channel, cat)).fitTo(
                ws.data('bkgdata_%s_%i' % (channel, cat)),
                RooFit.Minimizer('Minuit', 'simplex'),
                RooFit.SumW2Error(False))
            ws.pdf('MzgTruthModel_pow_erf_%s_cat%i' % (channel, cat)).fitTo(
                ws.data('bkgdata_%s_%i' % (channel, cat)),
                RooFit.SumW2Error(True))

        #for erf fitting turn on we want sigmoid truth
        if turnon == 'erf' and truth == 'exp':
            #build exponential convoluted with sigmoid turn-on
            ws.factory('RooStepExponential::MzgTruthModelShape_exp_sigm_%s_cat%i'\
                       '(Mzg,tau_sigm_%s_cat%i[-0.05,-10,0],'\
                       'step_exp_sigm_%s_cat%i[110,100,130])'%(channel,cat,
                         channel,cat,
                         channel,cat))
            ws.factory('RooLogistics::MzgResoShape_exp_sigm_%s_cat%i(%s)' %
                       (channel, cat, ','.join([
                           'Mzg',
                           'bias_exp_sigm_%s_cat%i[0]' % (channel, cat),
                           'sigma_exp_sigm_%s_cat%i[5,0.01,20]' %
                           (channel, cat)
                       ])))
            ws.factory('FCONV::MzgTruthModelBase_exp_sigm_%s_cat%i(Mzg,'\
                       'MzgTruthModelShape_exp_sigm_%s_cat%i,'\
                       'MzgResoShape_exp_sigm_%s_cat%i)'%(channel,cat,
                                                          channel,cat,
                                                          channel,cat))
            ws.factory(
                'RooExtendPdf::MzgTruthModel_exp_sigm_%s_cat%i('\
                'MzgTruthModelBase_exp_sigm_%s_cat%i,'\
                'norm_truth_exp_sigm_%s_cat%i[%f,%f,%f],"ROI")'%(channel,cat,
                                                                 channel,cat,
                                                                 channel,cat,
                                                                 nevts,
                                                                 0.25*nevts,1.75*nevts)
                )
            ws.pdf('MzgTruthModel_exp_sigm_%s_cat%i' % (channel, cat)).fitTo(
                ws.data('bkgdata_%s_%i' % (channel, cat)),
                RooFit.Minimizer('Minuit2', 'scan'), RooFit.SumW2Error(False))
            ws.pdf('MzgTruthModel_exp_sigm_%s_cat%i' % (channel, cat)).fitTo(
                ws.data('bkgdata_%s_%i' % (channel, cat)),
                RooFit.Minimizer('Minuit', 'simplex'),
                RooFit.SumW2Error(False))
            ws.pdf('MzgTruthModel_exp_sigm_%s_cat%i' % (channel, cat)).fitTo(
                ws.data('bkgdata_%s_%i' % (channel, cat)),
                RooFit.SumW2Error(True))
        if turnon == 'erf' and truth == 'pow':
            #build power-law convoluted with sigmoid turn-on
            ws.factory('EXPR::MzgTruthModelShape_pow_sigm_%s_cat%i('\
                       '"1e-20 + (@0 > @1)*((@0)^(-@2))",'\
                       '{Mzg,step_pow_sigm_%s_cat%i[105,100,130],'\
                       'pow_sigm_%s_cat%i[2,0,10]})'\
                       %(channel,cat,
                         channel,cat,
                         channel,cat))
            ws.factory('RooLogistics::MzgResoShape_pow_sigm_%s_cat%i(%s)' %
                       (channel, cat, ','.join([
                           'Mzg',
                           'bias_pow_sigm_%s_cat%i[0]' % (channel, cat),
                           'sigma_pow_sigm_%s_cat%i[5,0.01,20]' %
                           (channel, cat)
                       ])))
            ws.factory('FCONV::MzgTruthModelBase_pow_sigm_%s_cat%i(Mzg,'\
                       'MzgTruthModelShape_pow_sigm_%s_cat%i,'\
                       'MzgResoShape_pow_sigm_%s_cat%i)'%(channel,cat,
                                                          channel,cat,
                                                          channel,cat))
            ws.factory(
                'RooExtendPdf::MzgTruthModel_pow_sigm_%s_cat%i('\
                'MzgTruthModelBase_pow_sigm_%s_cat%i,'\
                'norm_truth_pow_sigm_%s_cat%i[%f,%f,%f],"ROI")'%(channel,cat,
                                                                 channel,cat,
                                                                 channel,cat,
                                                                 nevts,
                                                                 0.25*nevts,1.75*nevts)
                )
            ws.pdf('MzgTruthModel_pow_sigm_%s_cat%i' % (channel, cat)).fitTo(
                ws.data('bkgdata_%s_%i' % (channel, cat)),
                RooFit.Minimizer('Minuit2', 'scan'), RooFit.SumW2Error(False))
            ws.pdf('MzgTruthModel_pow_sigm_%s_cat%i' % (channel, cat)).fitTo(
                ws.data('bkgdata_%s_%i' % (channel, cat)),
                RooFit.Minimizer('Minuit', 'simplex'),
                RooFit.SumW2Error(False))
            ws.pdf('MzgTruthModel_pow_sigm_%s_cat%i' % (channel, cat)).fitTo(
                ws.data('bkgdata_%s_%i' % (channel, cat)),
                RooFit.SumW2Error(True))
Ejemplo n.º 24
0
alldata = RooDataSet("alldata", "alldata", xTuple,
                     RooArgSet(masskk, mass, lxy, hlt,
                               massmumu))  #,cutFormula)
datasetfile = TFile("xMassDataset.root", "RECREATE")
datasetfile.cd()
alldata.Write()

# In[10]:

alldata.numEntries()

# In[ ]:

#xb->setRange("alt","x_coarse_bin1,x_coarse_bin3,x_coarse_bin5,x_coarse_bin7,x_coarse_bin9") ;
b0dataNonPrompt = ((
    alldata.reduce('xHlt!=8')).reduce('xM>5.2')).reduce("xL>3.0")

# In[ ]:

b0dataNonPromptMass = b0dataNonPrompt.reduce(SelectVars(RooArgSet(mass)))
b0dataNonPrompt.numEntries()

# In[ ]:

c = TCanvas("canvas", "canvas", 1200, 800)
mass.setRange("fitRange", massmin, massmax)
mass.setBins(200)
massFrame = mass.frame(Range(massmin, massmax))
b0dataNonPrompt.plotOn(massFrame)
massFrame.Draw()
c.SaveAs("testmass.png")
Ejemplo n.º 25
0
    loadDatasetlB=RooDataSet('loadData16n','loadData16',inn16,RooArgSet(massLb,massTkTk,space.var('lbl0Pt'))).reduce(ptCut)
    totNum=inN16.GetEntries()
    space.factory('numLb[{0},-100.,{1}]'.format(50,totNum))
    space.factory('numlB[{0},-100.,{1}]'.format(50,totNum))



    #tktkMassCut='tktkMass>1.100&&tktkMass<1.120'
    tktkMassCut='tktkMass>1.105&&tktkMass<1.125'
    #tktkMassCut='tktkMass>1.110&&tktkMass<1.120'
    # fit 2016 data in short range Lb mass window LbL0 {{{
    if veryShortRangeFitLb:
        massLb.setRange('sigShortRange',5.4,5.9)
        massLb.setBins(50)
        #binData=loadDatasetLb.binnedClone('shortBinLb')
        binData=loadDatasetLb.reduce(tktkMassCut)

        label='Run2016Data_pLbL0'
        fitLabel='lbl0Dist_lbl0MC'
        space.factory('x0[-5.498]')
        space.factory('Addition::X({{ {x},x0 }})'.format(x='lbl0Mass'))
        space.factory('Polynomial::pPDF_%s(X,{c1_%s[0.01,-2.,0.2],c2_%s[0.01,-3.,1.0]})' % (label,label,label) )
        #space.factory('Polynomial::pPDF_%s(lbl0Mass,{c1_%s[0.01,-5.,5.]})' % (label,label) )

        # set resolution issue: Convolute a gaussian.
        space.factory('numCombBkg_{0}[{1},0.,{2}]'.format(label, totNum,totNum))
        myPDF=RooAddPdf('totPdf_{0}'.format(label),'totPdf_{0}'.format(label),
                RooArgList( space.pdf('pPDF_{0}'.format(label)),
                            space.pdf('gPDF_lbl0Dist_lbl0MC') ),
                RooArgList( space.var('numCombBkg_{0}'.format(label)),
                            space.var('numLb') ),
Ejemplo n.º 26
0
    figDir.cd()
    myFrame.Write(fitLabel)
    canv.SaveAs(outFig)
    fitDir.cd()
    fitRes.Write(fitLabel)
    # fit lbtkMass in Lb MC end }}}

    # fit lbtkMass in antiLb MC {{{
if fitToLbMass_AntiLbTkMC:
    fitLabel='lbtkDist_antilbtkMC'
    mass=space.var('lbtkMass')

    inN=inFF.Get('pLbTk/AntiLbTk')
    #dataset=RooDataSet('dataset','dataset',inN,RooArgSet(mass,tk1Pt,tk2Pt)).reduce('tk1Pt>3.&&tk2Pt>2.')
    dataset=RooDataSet('dataset','dataset',inN,RooArgSet(mass))
    fitBkg=dataset.reduce(RooFit.Name('fitData_{0}'.format(fitLabel)))
    #getattr(space,'import')(fitBkg)

    # create target PDF.
    #space.factory('KeysPdf::kPDF_{0}(lbtkMass,fitData_{0},NoMirror,2.0)'.format(fitLabel))
    #myPDF=space.pdf('kPDF_{0}'.format(fitLabel))
    keyPDF=RooKeysPdf('kPDF_{0}'.format(fitLabel),'kPDF_{0}'.format(fitLabel),mass,fitBkg,RooKeysPdf.NoMirror,2.0)
    getattr(space,'import')(keyPDF)


    myPDF=keyPDF

    myFrame=mass.frame(RooFit.Title(fitLabel),RooFit.Title(fitLabel))
    if setAxis: myFrame=mass.frame(xaxisMin,xaxisMax)
    myFrame.GetXaxis().SetTitle('J/#psi p K^{-} Mass(GeV)')
    dataset.plotOn(myFrame)
Ejemplo n.º 27
0
    simulComponents = []

    # find systematic of Lb {{{
    if sysFitLb:
        label = 'LbSysFit'

        numSig = spaceExt.var('numLb')
        numBkg = spaceExt.var('numCombBkg_ShortRangeLbFit')
        varName = 'lbtkMass'
        figDir.cd()

        var = space.var(varName)
        model = spaceExt.pdf('totPdf_LbModel')
        #dataset=model.generate(RooArgSet(space.var('lbtkMass')),10000)
        dataset = loadDatasetLb.reduce(ptCut)
        nll = model.createNLL(dataset)
        fitres = model.fitTo(dataset, RooFit.Save(True),
                             RooFit.Minos(useMinos))

        plot = var.frame(RooFit.Title('toyMC check fit'))
        dataset.plotOn(plot)
        model.plotOn(
            plot,
            RooFit.Normalization(dataset.sumEntries(), RooAbsReal.NumEvent))
        SaveResult(origPlot=plot,
                   origVar=var,
                   data={'content': dataset},
                   totPDF={'content': model},
                   fitres=fitres,
                   label=label + 'resFitCheck_data',
Ejemplo n.º 28
0
def pdf_logPt2_incoh():

    #PDF fit to log_10(pT^2)

    #tree_in = tree_incoh
    tree_in = tree

    #ptbin = 0.04
    ptbin = 0.12
    ptmin = -5.
    ptmax = 1.

    mmin = 2.8
    mmax = 3.2

    #fitran = [-5., 1.]
    fitran = [-0.9, 0.1]

    binned = False

    #gamma-gamma 131 evt for pT<0.18

    #output log file
    out = open("out.txt", "w")
    ut.log_results(
        out, "in " + infile + " in_coh " + infile_coh + " in_gg " + infile_gg)
    loglist = [(x, eval(x)) for x in
               ["ptbin", "ptmin", "ptmax", "mmin", "mmax", "fitran", "binned"]]
    strlog = ut.make_log_string(loglist)
    ut.log_results(out, strlog + "\n")

    #input data
    pT = RooRealVar("jRecPt", "pT", 0, 10)
    m = RooRealVar("jRecM", "mass", 0, 10)
    dataIN = RooDataSet("data", "data", tree_in, RooArgSet(pT, m))
    strsel = "jRecM>{0:.3f} && jRecM<{1:.3f}".format(mmin, mmax)
    data = dataIN.reduce(strsel)
    #x is RooRealVar for log(Pt2)
    draw = "TMath::Log10(jRecPt*jRecPt)"
    draw_func = RooFormulaVar("x", "log_{10}( #it{p}_{T}^{2} ) (GeV^{2})",
                              draw, RooArgList(pT))
    x = data.addColumn(draw_func)
    x.setRange("fitran", fitran[0], fitran[1])

    #binned data
    nbins, ptmax = ut.get_nbins(ptbin, ptmin, ptmax)
    hPt = TH1D("hPt", "hPt", nbins, ptmin, ptmax)
    tree_in.Draw(draw + " >> hPt", strsel)
    dataH = RooDataHist("dataH", "dataH", RooArgList(x), hPt)

    #range for plot
    x.setMin(ptmin)
    x.setMax(ptmax)
    x.setRange("plotran", ptmin, ptmax)

    #create the pdf
    b = RooRealVar("b", "b", 5., 0., 10.)
    pdf_func = "log(10.)*pow(10.,x)*exp(-b*pow(10.,x))"
    pdf_logPt2 = RooGenericPdf("pdf_logPt2", pdf_func, RooArgList(x, b))

    #make the fit
    if binned == True:
        r1 = pdf_logPt2.fitTo(dataH, rf.Range("fitran"), rf.Save())
    else:
        r1 = pdf_logPt2.fitTo(data, rf.Range("fitran"), rf.Save())

    ut.log_results(out, ut.log_fit_result(r1))

    #calculate norm to number of events
    xset = RooArgSet(x)
    ipdf = pdf_logPt2.createIntegral(xset, rf.NormSet(xset),
                                     rf.Range("fitran"))
    print "PDF integral:", ipdf.getVal()
    if binned == True:
        nevt = tree_incoh.Draw(
            "", strsel + " && " + draw + ">{0:.3f}".format(fitran[0]) +
            " && " + draw + "<{1:.3f}".format(fitran[0], fitran[1]))
    else:
        nevt = data.sumEntries("x", "fitran")

    print "nevt:", nevt
    pdf_logPt2.setNormRange("fitran")
    print "PDF norm:", pdf_logPt2.getNorm(RooArgSet(x))

    #a = nevt/ipdf.getVal()
    a = nevt / pdf_logPt2.getNorm(RooArgSet(x))
    ut.log_results(out, "log_10(pT^2) parametrization:")
    ut.log_results(out, "A = {0:.2f}".format(a))
    ut.log_results(out, ut.log_fit_parameters(r1, 0, 2))
    print "a =", a

    #Coherent contribution
    hPtCoh = ut.prepare_TH1D("hPtCoh", ptbin, ptmin, ptmax)
    hPtCoh.Sumw2()
    #tree_coh.Draw(draw + " >> hPtCoh", strsel)
    tree_coh.Draw("TMath::Log10(jGenPt*jGenPt) >> hPtCoh", strsel)
    ut.norm_to_data(hPtCoh, hPt, rt.kBlue, -5., -2.2)  # norm for coh
    #ut.norm_to_data(hPtCoh, hPt, rt.kBlue, -5, -2.1)
    #ut.norm_to_num(hPtCoh, 405, rt.kBlue)
    print "Coherent integral:", hPtCoh.Integral()

    #TMath::Log10(jRecPt*jRecPt)

    #Sartre generated coherent shape
    sartre = TFile.Open(
        "/home/jaroslav/sim/sartre_tx/sartre_AuAu_200GeV_Jpsi_coh_2p7Mevt.root"
    )
    sartre_tree = sartre.Get("sartre_tree")
    hSartre = ut.prepare_TH1D("hSartre", ptbin, ptmin, ptmax)
    sartre_tree.Draw("TMath::Log10(pT*pT) >> hSartre",
                     "rapidity>-1 && rapidity<1")
    ut.norm_to_data(hSartre, hPt, rt.kViolet, -5, -2)  # norm for Sartre

    #gamma-gamma contribution
    hPtGG = ut.prepare_TH1D("hPtGG", ptbin, ptmin, ptmax)
    tree_gg.Draw(draw + " >> hPtGG", strsel)
    #ut.norm_to_data(hPtGG, hPt, rt.kGreen, -5., -2.9)
    ut.norm_to_num(hPtGG, 131., rt.kGreen)

    print "Int GG:", hPtGG.Integral()

    #psi' contribution
    psiP = TFile.Open(basedir_mc + "/ana_slight14e4x1_s6_sel5z.root")
    psiP_tree = psiP.Get("jRecTree")
    hPtPsiP = ut.prepare_TH1D("hPtPsiP", ptbin, ptmin, ptmax)
    psiP_tree.Draw(draw + " >> hPtPsiP", strsel)
    ut.norm_to_num(hPtPsiP, 12, rt.kViolet)

    #sum of all contributions
    hSum = ut.prepare_TH1D("hSum", ptbin, ptmin, ptmax)
    hSum.SetLineWidth(3)
    #add ggel to the sum
    hSum.Add(hPtGG)
    #add incoherent contribution
    func_logPt2 = TF1("pdf_logPt2",
                      "[0]*log(10.)*pow(10.,x)*exp(-[1]*pow(10.,x))", -10.,
                      10.)
    func_logPt2.SetParameters(a, b.getVal())
    hInc = ut.prepare_TH1D("hInc", ptbin, ptmin, ptmax)
    ut.fill_h1_tf(hInc, func_logPt2)
    hSum.Add(hInc)
    #add coherent contribution
    hSum.Add(hPtCoh)
    #add psi(2S) contribution
    #hSum.Add(hPtPsiP)
    #set to draw as a lines
    ut.line_h1(hSum, rt.kBlack)

    #create canvas frame
    can = ut.box_canvas()
    ut.set_margin_lbtr(gPad, 0.11, 0.09, 0.01, 0.01)

    frame = x.frame(rf.Bins(nbins), rf.Title(""))
    frame.SetTitle("")
    frame.SetMaximum(75)

    frame.SetYTitle("Events / ({0:.3f}".format(ptbin) + " GeV^{2})")

    print "Int data:", hPt.Integral()

    #plot the data
    if binned == True:
        dataH.plotOn(frame, rf.Name("data"))
    else:
        data.plotOn(frame, rf.Name("data"))

    pdf_logPt2.plotOn(frame, rf.Range("fitran"), rf.LineColor(rt.kRed),
                      rf.Name("pdf_logPt2"))
    pdf_logPt2.plotOn(frame, rf.Range("plotran"), rf.LineColor(rt.kRed),
                      rf.Name("pdf_logPt2_full"), rf.LineStyle(rt.kDashed))

    frame.Draw()

    amin = TMath.Power(10, ptmin)
    amax = TMath.Power(10, ptmax) - 1
    print amin, amax
    pt2func = TF1("f1", "TMath::Power(10, x)", amin,
                  amax)  #TMath::Power(x, 10)
    aPt2 = TGaxis(-5, 75, 1, 75, "f1", 510, "-")
    ut.set_axis(aPt2)
    aPt2.SetTitle("pt2")
    #aPt2.Draw();

    leg = ut.prepare_leg(0.57, 0.78, 0.14, 0.19, 0.03)
    ut.add_leg_mass(leg, mmin, mmax)
    hx = ut.prepare_TH1D("hx", 1, 0, 1)
    hx.Draw("same")
    ln = ut.col_lin(rt.kRed)
    leg.AddEntry(hx, "Data")
    leg.AddEntry(hPtCoh, "Sartre MC", "l")
    leg.AddEntry(hPtGG, "#gamma#gamma#rightarrow e^{+}e^{-} MC", "l")
    #leg.AddEntry(ln, "ln(10)*#it{A}*10^{log_{10}#it{p}_{T}^{2}}exp(-#it{b}10^{log_{10}#it{p}_{T}^{2}})", "l")
    #leg.AddEntry(ln, "Incoherent fit", "l")
    leg.Draw("same")

    l0 = ut.cut_line(fitran[0], 0.9, frame)
    l1 = ut.cut_line(fitran[1], 0.9, frame)
    #l0.Draw()
    #l1.Draw()

    desc = pdesc(frame, 0.14, 0.8, 0.054)
    desc.set_text_size(0.03)
    desc.itemD("#chi^{2}/ndf", frame.chiSquare("pdf_logPt2", "data", 2), -1,
               rt.kRed)
    desc.itemD("#it{A}", a, -1, rt.kRed)
    desc.itemR("#it{b}", b, rt.kRed)
    desc.draw()

    #put the sum
    #hSum.Draw("same")

    #gPad.SetLogy()

    frame.Draw("same")

    #put gamma-gamma
    hPtGG.Draw("same")
    #put coherent J/psi
    hPtCoh.Draw("same")

    #put Sartre generated coherent shape
    #hSartre.Draw("same")

    #put psi(2S) contribution
    #hPtPsiP.Draw("same")

    leg2 = ut.prepare_leg(0.14, 0.9, 0.14, 0.08, 0.03)
    leg2.AddEntry(
        ln,
        "ln(10)*#it{A}*10^{log_{10}#it{p}_{T}^{2}}exp(-#it{b}10^{log_{10}#it{p}_{T}^{2}})",
        "l")
    #leg2.AddEntry(hPtCoh, "Sartre MC reconstructed", "l")
    #leg2.AddEntry(hSartre, "Sartre MC generated", "l")
    leg2.Draw("same")

    ut.invert_col(rt.gPad)
    can.SaveAs("01fig.pdf")
Ejemplo n.º 29
0
fullmc = RooDataSet('fullmc', 'fullmc', tMC, RooArgSet(thevarsMC))
deltaB0M = fullmc.addColumn(deltaB0Mfunc)
deltaJpsiM = fullmc.addColumn(deltaJMfunc)
deltaPsiPM = fullmc.addColumn(deltaPMfunc)

thevars.add(deltaB0M)
thevars.add(deltaJpsiM)
thevars.add(deltaPsiPM)

thevarsMC.add(deltaB0M)
thevarsMC.add(deltaJpsiM)
thevarsMC.add(deltaPsiPM)

### define correct and wrong tag samples
rt_mc = fullmc.reduce(
    RooArgSet(thevarsMC),
    '((tagB0==1 && genSignal==1) || (tagB0==0 && genSignal==2))')
wt_mc = fullmc.reduce(
    RooArgSet(thevarsMC),
    '((tagB0==0 && genSignal==1) || (tagB0==1 && genSignal==2))')

c1 = ROOT.TCanvas()
dict_s_rt = {}
dict_s_wt = {}

out_f = TFile("results_fits_%s_newCB.root" % args.year, "RECREATE")

w = ROOT.RooWorkspace("w")
initial_n_1 = 3.
initial_n_2 = 1.
initial_a_1 = 1.
Ejemplo n.º 30
0
def fit_mass(data,
             column,
             x,
             sig_pdf=None,
             bkg_pdf=None,
             n_sig=None,
             n_bkg=None,
             blind=False,
             nll_profile=False,
             second_storage=None,
             log_plot=False,
             pulls=True,
             sPlot=False,
             bkg_in_region=False,
             importance=3,
             plot_importance=3):
    """Fit a given pdf to a variable distribution


    Parameter
    ---------
    data : |hepds_type|
        The data containing the variable to fit to
    column : str
        The name of the column to fit the pdf to
    sig_pdf : RooFit pdf
        The signal Probability Density Function. The variable to fit to has
        to be named 'x'.
    bkg_pdf : RooFit pdf
        The background Probability Density Function. The variable to fit to has
        to be named 'x'.
    n_sig : None or numeric
        The number of signals in the data. If it should be fitted, use None.
    n_bkg : None or numeric
        The number of background events in the data.
        If it should be fitted, use None.
    blind : boolean or tuple(numberic, numberic)
        If False, the data is fitted. If a tuple is provided, the values are
        used as the lower (the first value) and the upper (the second value)
        limit of a blinding region, which will be omitted in plots.
        Additionally, no true number of signal will be returned but only fake.
    nll_profile : boolean
        If True, a Negative Log-Likelihood Profile will be generated. Does not
        work with blind fits.
    second_storage : |hepds_type|
        A second data-storage that will be concatenated with the first one.
    importance : |importance_type|
        |importance_docstring|
    plot_importance : |plot_importance_type|
        |plot_importance_docstring|

    Return
    ------
    tuple(numerical, numerical)
        Return the number of signals and the number of backgrounds in the
        signal-region. If a blind fit is performed, the signal will be a fake
        number. If no number of background events is required, -999 will be
        returned.
    """

    if not (isinstance(column, str) or len(column) == 1):
        raise ValueError("Fitting to several columns " + str(column) +
                         " not supported.")
    if type(sig_pdf) == type(bkg_pdf) == None:
        raise ValueError("sig_pdf and bkg_pdf are both None-> no fit possible")
    if blind is not False:
        lower_blind, upper_blind = blind
        blind = True

    n_bkg_below_sig = -999
    # create data
    data_name = data.name
    data_array, _t1, _t2 = data.make_dataset(second_storage, columns=column)
    del _t1, _t2

    # double crystalball variables
    min_x, max_x = min(data_array[column]), max(data_array[column])

    #    x = RooRealVar("x", "x variable", min_x, max_x)

    # create data
    data_array = np.array([i[0] for i in data_array.as_matrix()])
    data_array.dtype = [('x', np.float64)]
    tree1 = array2tree(data_array, "x")
    data = RooDataSet("data", "Data", RooArgSet(x), RooFit.Import(tree1))

    #    # TODO: export somewhere? does not need to be defined inside...
    #    mean = RooRealVar("mean", "Mean of Double CB PDF", 5280, 5100, 5600)#, 5300, 5500)
    #    sigma = RooRealVar("sigma", "Sigma of Double CB PDF", 40, 0.001, 200)
    #    alpha_0 = RooRealVar("alpha_0", "alpha_0 of one side", 5.715)#, 0, 150)
    #    alpha_1 = RooRealVar("alpha_1", "alpha_1 of other side", -4.019)#, -200, 0.)
    #    lambda_0 = RooRealVar("lambda_0", "Exponent of one side", 3.42)#, 0, 150)
    #    lambda_1 = RooRealVar("lambda_1", "Exponent of other side", 3.7914)#, 0, 500)
    #
    #    # TODO: export somewhere? pdf construction
    #    frac = RooRealVar("frac", "Fraction of crystal ball pdfs", 0.479, 0.01, 0.99)
    #
    #    crystalball1 = RooCBShape("crystallball1", "First CrystalBall PDF", x,
    #                              mean, sigma, alpha_0, lambda_0)
    #    crystalball2 = RooCBShape("crystallball2", "Second CrystalBall PDF", x,
    #                              mean, sigma, alpha_1, lambda_1)
    #    doubleCB = RooAddPdf("doubleCB", "Double CrystalBall PDF",
    #                         crystalball1, crystalball2, frac)

    #    n_sig = RooRealVar("n_sig", "Number of signals events", 10000, 0, 1000000)

    # test input
    if n_sig == n_bkg == 0:
        raise ValueError("n_sig as well as n_bkg is 0...")

    if n_bkg is None:
        n_bkg = RooRealVar("n_bkg", "Number of background events", 10000, 0,
                           500000)
    elif n_bkg >= 0:
        n_bkg = RooRealVar("n_bkg", "Number of background events", int(n_bkg))
    else:
        raise ValueError("n_bkg is not >= 0 or None")

    if n_sig is None:
        n_sig = RooRealVar("n_sig", "Number of signal events", 1050, 0, 200000)

        # START BLINDING
        blind_cat = RooCategory("blind_cat", "blind state category")
        blind_cat.defineType("unblind", 0)
        blind_cat.defineType("blind", 1)
        if blind:
            blind_cat.setLabel("blind")
            blind_n_sig = RooUnblindPrecision("blind_n_sig",
                                              "blind number of signals",
                                              "wasistdas", n_sig.getVal(),
                                              10000, n_sig, blind_cat)
        else:
            #            blind_cat.setLabel("unblind")
            blind_n_sig = n_sig

        print "n_sig value " + str(n_sig.getVal())
#        raw_input("blind value " + str(blind_n_sig.getVal()))

#        n_sig = blind_n_sig

# END BLINDING
    elif n_sig >= 0:
        n_sig = RooRealVar("n_sig", "Number of signal events", int(n_sig))
    else:
        raise ValueError("n_sig is not >= 0")

#    if not blind:
#        blind_n_sig = n_sig

#    # create bkg-pdf
#    lambda_exp = RooRealVar("lambda_exp", "lambda exp pdf bkg", -0.00025, -1., 1.)
#    bkg_pdf = RooExponential("bkg_pdf", "Background PDF exp", x, lambda_exp)

    if blind:
        comb_pdf = RooAddPdf("comb_pdf", "Combined DoubleCB and bkg PDF",
                             RooArgList(sig_pdf, bkg_pdf),
                             RooArgList(blind_n_sig, n_bkg))
    else:
        comb_pdf = RooAddPdf("comb_pdf", "Combined DoubleCB and bkg PDF",
                             RooArgList(sig_pdf, bkg_pdf),
                             RooArgList(n_sig, n_bkg))

    # create test dataset
#    mean_gauss = RooRealVar("mean_gauss", "Mean of Gaussian", 5553, -10000, 10000)
#    sigma_gauss = RooRealVar("sigma_gauss", "Width of Gaussian", 20, 0.0001, 300)
#    gauss1 = RooGaussian("gauss1", "Gaussian test dist", x, mean_gauss, sigma_gauss)
#    lambda_data = RooRealVar("lambda_data", "lambda exp data", -.002)
#    exp_data = RooExponential("exp_data", "data example exp", x, lambda_data)
#    frac_data = RooRealVar("frac_data", "Fraction PDF of data", 0.15)
#
#    data_pdf = RooAddPdf("data_pdf", "Data PDF", gauss1, exp_data, frac_data)
#    data = data_pdf.generate(RooArgSet(x), 30000)

#    data.printValue()
#    xframe = x.frame()
#    data_pdf.plotOn(xframe)
#    print "n_cpu:", meta_config.get_n_cpu()
#    input("test")
#    comb_pdf.fitTo(data, RooFit.Extended(ROOT.kTRUE), RooFit.NumCPU(meta_config.get_n_cpu()))
#     HACK to get 8 cores in testing
    c5 = TCanvas("c5", "RooFit pdf not fit vs " + data_name)
    c5.cd()
    x_frame1 = x.frame()
    #    data.plotOn(x_frame1)
    #    comb_pdf.pdfList()[1].plotOn(x_frame1)

    if __name__ == "__main__":
        n_cpu = 8
    else:
        n_cpu = meta_config.get_n_cpu()
        print "n_cpu = ", n_cpu
        # HACK
#        n_cpu = 8
    result_fit = comb_pdf.fitTo(data, RooFit.Minos(ROOT.kTRUE),
                                RooFit.Extended(ROOT.kTRUE),
                                RooFit.NumCPU(n_cpu))
    # HACK end
    if bkg_in_region:
        x.setRange("signal", bkg_in_region[0], bkg_in_region[1])
        bkg_pdf_fitted = comb_pdf.pdfList()[1]
        int_argset = RooArgSet(x)
        #        int_argset = x
        #        int_argset.setRange("signal", bkg_in_region[0], bkg_in_region[1])
        integral = bkg_pdf_fitted.createIntegral(int_argset,
                                                 RooFit.NormSet(int_argset),
                                                 RooFit.Range("signal"))
        bkg_cdf = bkg_pdf_fitted.createCdf(int_argset, RooFit.Range("signal"))
        bkg_cdf.plotOn(x_frame1)

        #        integral.plotOn(x_frame1)
        n_bkg_below_sig = integral.getVal(int_argset) * n_bkg.getVal()
        x_frame1.Draw()

    if plot_importance >= 3:
        c2 = TCanvas("c2", "RooFit pdf fit vs " + data_name)
        c2.cd()
        x_frame = x.frame()
        #        if log_plot:
        #            c2.SetLogy()
        #        x_frame.SetTitle("RooFit pdf vs " + data_name)
        x_frame.SetTitle(data_name)
        if pulls:
            pad_data = ROOT.TPad("pad_data", "Pad with data and fit", 0, 0.33,
                                 1, 1)
            pad_pulls = ROOT.TPad("pad_pulls", "Pad with data and fit", 0, 0,
                                  1, 0.33)
            pad_data.SetBottomMargin(0.00001)
            pad_data.SetBorderMode(0)
            if log_plot:
                pad_data.SetLogy()
            pad_pulls.SetTopMargin(0.00001)
            pad_pulls.SetBottomMargin(0.2)
            pad_pulls.SetBorderMode(0)
            pad_data.Draw()
            pad_pulls.Draw()
            pad_data.cd()
        else:
            if log_plot:
                c2.SetLogy()
    if blind:
        # HACK
        column = 'x'
        # END HACK
        x.setRange("lower", min_x, lower_blind)
        x.setRange("upper", upper_blind, max_x)
        range_str = "lower,upper"
        lower_cut_str = str(
            min_x) + "<=" + column + "&&" + column + "<=" + str(lower_blind)
        upper_cut_str = str(
            upper_blind) + "<=" + column + "&&" + column + "<=" + str(max_x)
        sideband_cut_str = "(" + lower_cut_str + ")" + "||" + "(" + upper_cut_str + ")"

        n_entries = data.reduce(
            sideband_cut_str).numEntries() / data.numEntries()
        #        raw_input("n_entries: " + str(n_entries))
        if plot_importance >= 3:
            data.plotOn(x_frame, RooFit.CutRange(range_str),
                        RooFit.NormRange(range_str))
            comb_pdf.plotOn(
                x_frame, RooFit.Range(range_str),
                RooFit.Normalization(n_entries, RooAbsReal.Relative),
                RooFit.NormRange(range_str))
            if pulls:
                #                pull_hist(pull_frame=x_frame, pad_data=pad_data, pad_pulls=pad_pulls)
                x_frame_pullhist = x_frame.pullHist()
    else:
        if plot_importance >= 3:
            data.plotOn(x_frame)
            comb_pdf.plotOn(x_frame)
            if pulls:
                pad_pulls.cd()
                x_frame_pullhist = x_frame.pullHist()
                pad_data.cd()

            comb_pdf.plotOn(x_frame,
                            RooFit.Components(sig_pdf.namePtr().GetName()),
                            RooFit.LineStyle(ROOT.kDashed))
            comb_pdf.plotOn(x_frame,
                            RooFit.Components(bkg_pdf.namePtr().GetName()),
                            RooFit.LineStyle(ROOT.kDotted))
#            comb_pdf.plotPull(n_sig)

    if plot_importance >= 3:
        x_frame.Draw()

        if pulls:
            pad_pulls.cd()
            x_frame.SetTitleSize(0.05, 'Y')
            x_frame.SetTitleOffset(0.7, 'Y')
            x_frame.SetLabelSize(0.04, 'Y')

            #            c11 = TCanvas("c11", "RooFit\ pulls" + data_name)
            #            c11.cd()
            #            frame_tmp = x_frame
            frame_tmp = x.frame()

            #            frame_tmp.SetTitle("significance")

            frame_tmp.SetTitle("Roofit\ pulls\ " + data_name)
            frame_tmp.addObject(x_frame_pullhist)

            frame_tmp.SetMinimum(-5)
            frame_tmp.SetMaximum(5)

            #            frame_tmp.GetYaxis().SetTitle("significance")
            frame_tmp.GetYaxis().SetNdivisions(5)
            frame_tmp.SetTitleSize(0.1, 'X')
            frame_tmp.SetTitleOffset(1, 'X')
            frame_tmp.SetLabelSize(0.1, 'X')
            frame_tmp.SetTitleSize(0.1, 'Y')
            frame_tmp.SetTitleOffset(0.5, 'Y')
            frame_tmp.SetLabelSize(0.1, 'Y')

            frame_tmp.Draw()

#    raw_input("")

    if not blind and nll_profile:

        #        nll_range = RooRealVar("nll_range", "Signal for nLL", n_sig.getVal(),
        #                               -10, 2 * n_sig.getVal())
        sframe = n_sig.frame(RooFit.Bins(20), RooFit.Range(1, 1000))
        # HACK for best n_cpu
        lnL = comb_pdf.createNLL(data, RooFit.NumCPU(8))
        # HACK end
        lnProfileL = lnL.createProfile(ROOT.RooArgSet(n_sig))
        lnProfileL.plotOn(sframe, RooFit.ShiftToZero())
        c4 = TCanvas("c4", "NLL Profile")
        c4.cd()

        #        input("press ENTER to show plot")
        sframe.Draw()

    if plot_importance >= 3:
        pass

    params = comb_pdf.getVariables()
    params.Print("v")

    #    print bkg_cdf.getVal()

    if sPlot:
        sPlotData = ROOT.RooStats.SPlot(
            "sPlotData",
            "sPlotData",
            data,  # variable fitted to, RooDataSet
            comb_pdf,  # fitted pdf
            ROOT.RooArgList(
                n_sig,
                n_bkg,
                #                                                NSigB0s
            ))
        sweights = np.array([
            sPlotData.GetSWeight(i, 'n_sig') for i in range(data.numEntries())
        ])
        return n_sig.getVal(), n_bkg_below_sig, sweights

    if blind:
        return blind_n_sig.getVal(), n_bkg_below_sig, comb_pdf
    else:
        return n_sig.getVal(), n_bkg_below_sig, comb_pdf
Ejemplo n.º 31
0
def fit():

    #fit to log_10(pT^2) with components and plot of plain pT^2

    #range in log_10(pT^2)
    ptbin = 0.12
    ptmin = -5.
    ptmax = 0.99  # 1.01

    #range in pT^2
    ptsq_bin = 0.03
    ptsq_min = 1e-5
    ptsq_max = 1

    mmin = 2.8
    mmax = 3.2

    #range for incoherent fit
    fitran = [-0.9, 0.1]

    #number of gamma-gamma events
    ngg = 131

    #number of psi' events
    npsiP = 20

    #input data
    pT = RooRealVar("jRecPt", "pT", 0, 10)
    m = RooRealVar("jRecM", "mass", 0, 10)
    data_all = RooDataSet("data", "data", tree, RooArgSet(pT, m))
    #select for mass range
    strsel = "jRecM>{0:.3f} && jRecM<{1:.3f}".format(mmin, mmax)
    data = data_all.reduce(strsel)

    #create log(pT^2) from pT
    ptsq_draw = "jRecPt*jRecPt"  # will be used for pT^2
    logPtSq_draw = "TMath::Log10(" + ptsq_draw + ")"
    logPtSq_form = RooFormulaVar("logPtSq", "logPtSq", logPtSq_draw,
                                 RooArgList(pT))
    logPtSq = data.addColumn(logPtSq_form)
    logPtSq.setRange("fitran", fitran[0], fitran[1])

    #bins and range for the plot
    nbins, ptmax = ut.get_nbins(ptbin, ptmin, ptmax)
    logPtSq.setMin(ptmin)
    logPtSq.setMax(ptmax)
    logPtSq.setRange("plotran", ptmin, ptmax)

    #range for pT^2
    ptsq_nbins, ptsq_max = ut.get_nbins(ptsq_bin, ptsq_min, ptsq_max)

    #incoherent parametrization
    bval = RooRealVar("bval", "bval", 3.3, 0, 10)
    inc_form = "log(10.)*pow(10.,logPtSq)*exp(-bval*pow(10.,logPtSq))"
    incpdf = RooGenericPdf("incpdf", inc_form, RooArgList(logPtSq, bval))

    #make the incoherent fit
    res = incpdf.fitTo(data, rf.Range("fitran"), rf.Save())

    #get incoherent norm to the number of events
    lset = RooArgSet(logPtSq)
    iinc = incpdf.createIntegral(lset, rf.NormSet(lset), rf.Range("fitran"))
    inc_nevt = data.sumEntries("logPtSq", "fitran")
    incpdf.setNormRange("fitran")
    aval = RooRealVar("aval", "aval", inc_nevt / incpdf.getNorm(lset))
    #print "A =", aval.getVal()
    #print "b =", bval.getVal()

    #incoherent distribution from log_10(pT^2) function for the sum with gamma-gamma
    hIncPdf = ut.prepare_TH1D_n("hGG", nbins, ptmin, ptmax)
    func_incoh_logPt2 = TF1("func_incoh_logPt2",
                            "[0]*log(10.)*pow(10.,x)*exp(-[1]*pow(10.,x))",
                            -10., 10.)
    func_incoh_logPt2.SetNpx(1000)
    func_incoh_logPt2.SetLineColor(rt.kMagenta)
    func_incoh_logPt2.SetParameters(
        aval.getVal(),
        bval.getVal())  # 4.9 from incoherent mc, 3.3 from data fit
    ut.fill_h1_tf(hIncPdf, func_incoh_logPt2, rt.kMagenta)

    #gamma-gamma contribution
    hGG = ut.prepare_TH1D_n("hGG", nbins, ptmin, ptmax)
    tree_gg.Draw(logPtSq_draw + " >> hGG", strsel)
    ut.norm_to_num(hGG, ngg, rt.kGreen + 1)

    #sum of incoherent distribution and gamma-gamma
    hSumIncGG = ut.prepare_TH1D_n("hSumIncGG", nbins, ptmin, ptmax)
    hSumIncGG.Add(hIncPdf)
    hSumIncGG.Add(hGG)
    ut.line_h1(hSumIncGG, rt.kMagenta)

    #gamma-gamma in pT^2
    hGG_ptsq = ut.prepare_TH1D_n("hGG_ptsq", ptsq_nbins, ptsq_min, ptsq_max)
    tree_gg.Draw(ptsq_draw + " >> hGG_ptsq", strsel)
    ut.norm_to_num(hGG_ptsq, ngg, rt.kGreen + 1)

    #psi' contribution
    psiP_file = TFile.Open(basedir_mc + "/ana_slight14e4x1_s6_sel5z.root")
    psiP_tree = psiP_file.Get("jRecTree")
    hPsiP = ut.prepare_TH1D_n("hPsiP", nbins, ptmin, ptmax)
    psiP_tree.Draw(logPtSq_draw + " >> hPsiP", strsel)
    ut.norm_to_num(hPsiP, npsiP, rt.kViolet)

    #psi' in pT^2
    hPsiP_ptsq = ut.prepare_TH1D_n("hPsiP_ptsq", ptsq_nbins, ptsq_min,
                                   ptsq_max)
    psiP_tree.Draw(ptsq_draw + " >> hPsiP_ptsq", strsel)
    ut.norm_to_num(hPsiP_ptsq, npsiP, rt.kViolet)

    #create canvas frame
    gStyle.SetPadTickY(1)
    can = ut.box_canvas(1086, 543)  # square area is still 768^2
    can.SetMargin(0, 0, 0, 0)
    can.Divide(2, 1, 0, 0)
    gStyle.SetLineWidth(1)

    can.cd(1)
    ut.set_margin_lbtr(gPad, 0.11, 0.1, 0.01, 0)

    frame = logPtSq.frame(rf.Bins(nbins))
    frame.SetTitle("")
    frame.SetMaximum(80)

    frame.SetYTitle("Events / ({0:.3f}".format(ptbin) + " GeV^{2})")
    frame.SetXTitle("log_{10}( #it{p}_{T}^{2} ) (GeV^{2})")

    frame.GetXaxis().SetTitleOffset(1.2)
    frame.GetYaxis().SetTitleOffset(1.6)

    #plot the data
    data.plotOn(frame, rf.Name("data"), rf.LineWidth(2))

    #incoherent parametrization
    incpdf.plotOn(frame, rf.Range("fitran"), rf.LineColor(rt.kRed),
                  rf.Name("incpdf"), rf.LineWidth(2))
    incpdf.plotOn(frame, rf.Range("plotran"), rf.LineColor(rt.kRed),
                  rf.Name("incpdf_full"), rf.LineStyle(rt.kDashed),
                  rf.LineWidth(2))

    frame.Draw()

    #add gamma-gamma contribution
    hGG.Draw("same")

    #sum of incoherent distribution and gamma-gamma
    #hSumIncGG.Draw("same")

    #add psi'
    #hPsiP.Draw("same")

    #legend for log_10(pT^2)
    leg = ut.prepare_leg(0.15, 0.77, 0.28, 0.19, 0.035)
    hxl = ut.prepare_TH1D("hxl", 1, 0, 1)
    hxl.Draw("same")
    ilin = ut.col_lin(rt.kRed, 2)
    ilin2 = ut.col_lin(rt.kRed, 2)
    ilin2.SetLineStyle(rt.kDashed)
    leg.AddEntry(ilin, "Incoherent parametrization, fit region", "l")
    leg.AddEntry(ilin2, "Incoherent parametrization, extrapolation region",
                 "l")
    leg.AddEntry(hGG, "#gamma#gamma#rightarrow e^{+}e^{-}", "l")
    #leg.AddEntry(hxl, "Data", "lp")
    leg.AddEntry(hxl, "Data, log_{10}( #it{p}_{T}^{2} )", "lp")
    leg.Draw("same")

    #----- plot pT^2 on the right -----

    #pT^2 variable from pT
    ptsq_form = RooFormulaVar("ptsq", "ptsq", ptsq_draw, RooArgList(pT))
    ptsq = data.addColumn(ptsq_form)

    #range for pT^2 plot
    ptsq.setMin(ptsq_min)
    ptsq.setMax(ptsq_max)

    #make the pT^2 plot
    can.cd(2)
    gPad.SetLogy()
    #gPad.SetLineWidth(3)
    #gPad.SetFrameLineWidth(1)
    ut.set_margin_lbtr(gPad, 0, 0.1, 0.01, 0.15)

    ptsq_frame = ptsq.frame(rf.Bins(ptsq_nbins), rf.Title(""))

    #print type(ptsq_frame), type(ptsq)

    ptsq_frame.SetTitle("")

    ptsq_frame.SetXTitle("#it{p}_{T}^{2} (GeV^{2})")
    ptsq_frame.GetXaxis().SetTitleOffset(1.2)

    data.plotOn(ptsq_frame, rf.Name("data"), rf.LineWidth(2))

    ptsq_frame.SetMaximum(9e2)
    ptsq_frame.SetMinimum(0.8)  # 0.101

    ptsq_frame.Draw()

    #incoherent parametrization in pT^2 over the fit region, scaled to the plot
    inc_ptsq = TF1("inc_ptsq", "[0]*exp(-[1]*x)", 10**fitran[0], 10**fitran[1])
    inc_ptsq.SetParameters(aval.getVal() * ptsq_bin, bval.getVal())

    #incoherent parametrization in the extrapolation region, below and above the fit region
    inc_ptsq_ext1 = TF1("inc_ptsq_ext1", "[0]*exp(-[1]*x)", 0., 10**fitran[0])
    inc_ptsq_ext2 = TF1("inc_ptsq_ext2", "[0]*exp(-[1]*x)", 10**fitran[1], 10)
    inc_ptsq_ext1.SetParameters(aval.getVal() * ptsq_bin, bval.getVal())
    inc_ptsq_ext1.SetLineStyle(rt.kDashed)
    inc_ptsq_ext2.SetParameters(aval.getVal() * ptsq_bin, bval.getVal())
    inc_ptsq_ext2.SetLineStyle(rt.kDashed)

    inc_ptsq.Draw("same")
    inc_ptsq_ext1.Draw("same")
    inc_ptsq_ext2.Draw("same")

    #add gamma-gamma in pT^2
    hGG_ptsq.Draw("same")

    #add psi' in pT^2
    #hPsiP_ptsq.Draw("same")

    #redraw the frame
    #ptsq_frame.Draw("same")

    ptsq_frame.GetXaxis().SetLimits(-9e-3, ptsq_frame.GetXaxis().GetXmax())

    #vertical axis for pT^2 plot
    xpos = ptsq_frame.GetXaxis().GetXmax()
    ypos = ptsq_frame.GetMaximum()
    ymin = ptsq_frame.GetMinimum()

    ptsq_axis = TGaxis(xpos, 0, xpos, ypos, ymin, ypos, 510, "+GL")
    ut.set_axis(ptsq_axis)
    ptsq_axis.SetMoreLogLabels()

    ptsq_axis.SetTitle("Events / ({0:.3f}".format(ptsq_bin) + " GeV^{2})")
    ptsq_axis.SetTitleOffset(2.2)

    ptsq_axis.Draw()

    #legend for input data
    #dleg = ut.prepare_leg(0.4, 0.77, 0.14, 0.18, 0.035)
    dleg = ut.prepare_leg(0.4, 0.71, 0.16, 0.24, 0.035)
    dleg.AddEntry(None, "#bf{|#kern[0.3]{#it{y}}| < 1}", "")
    ut.add_leg_mass(dleg, mmin, mmax)
    dleg.AddEntry(None, "AuAu@200 GeV", "")
    dleg.AddEntry(None, "UPC sample", "")
    dleg.AddEntry(hxl, "Data, #it{p}_{T}^{2}", "lp")
    dleg.Draw("same")

    #ut.invert_col_can(can)
    can.SaveAs("01fig.pdf")
    simulComponents = []

    # scan Lb likelihood {{{
    # jack's profile likelihood scan
    if sysFitLb:
        label = 'sysLbFit'

        numSig = spaceExt.var('numLb')
        numBkg = spaceExt.var('numCombBkg_Run2016Data_pLbL0')
        varName = 'lbl0Mass'
        figDir.cd()

        var = space.var(varName)
        model = space1st.pdf('totPdf_Run2016Data_pLbL0')
        #dataset=model.generate(RooArgSet(space.var('lbtkMass')),10000)
        dataset = loadDatasetLb.reduce('{x}>{minVal}&&{x}<{maxVal}'.format(
            x=varName, minVal=var.getMin(), maxVal=var.getMax()))
        fitres = model.fitTo(dataset, RooFit.Save(True),
                             RooFit.Minos(useMinos))

        plot = var.frame(RooFit.Title('data fit {0}'.format(label)))
        dataset.plotOn(plot)
        model.plotOn(
            plot,
            RooFit.Normalization(dataset.sumEntries(), RooAbsReal.NumEvent))
        SaveResult(origPlot=plot,
                   origVar=var,
                   data={'content': dataset},
                   totPDF={'content': model},
                   fitres=fitres,
                   label=label,
                   fitDir=fitDir,
Ejemplo n.º 33
0
    num_pairs = gDirectory.Get("mass").GetEntries() * scale_factor
    radfrac = radfracFile.Get("radfrac").GetFunction("pol3").Eval(mass)
    #radfrac = radfracFile.Get("radfrac_10mrad").GetFunction("pol3").Eval(mass)
    num_rad = radfrac * num_pairs
    ap_yield = 3 * math.pi / (2 * (1 / 137.0)) * num_rad * (mass / deltaM)
    print "{0} pairs, {1} radfrac, {2} rad, {3} A'".format(
        num_pairs, radfrac, num_rad, ap_yield)

    breakz = tailsFile.Get("breakz").GetFunction("pol3").Eval(mass)
    length = tailsFile.Get("length").GetFunction("pol3").Eval(mass)

    c.cd(2)
    gPad.SetLogy()
    frame = vtxZRefitUnc.frame()
    dataInRange = dataset.reduce(
        obs, "abs({0}-{1})<{2}/2*({3}+{4}*{5})".format(massVar, mass,
                                                       masscut_nsigma, mres_p0,
                                                       mres_p1, vtxVar))
    binnedData = dataInRange.binnedClone()
    binnedData.plotOn(frame)
    mean = binnedData.mean(vtxZRefitUnc)
    sigma = binnedData.sigma(vtxZRefitUnc)
    vtxZRefitUnc.setRange("fitRange", mean - 2 * sigma, mean + 2 * sigma)
    gauss_params.setRealValue("mean", mean)
    gauss_params.setRealValue("sigma", sigma)
    gauss_pdf.fitTo(binnedData, RooFit.Range("fitRange"),
                    RooFit.PrintLevel(-1))
    mean = gauss_params.getRealValue("mean")
    sigma = gauss_params.getRealValue("sigma")
    gaussexp_params.setRealValue("gauss_mean", mean)
    gaussexp_params.setRealValue("gauss_sigma", sigma)
    gaussexp_params.setRealValue("exp_breakpoint", breakz)
lxysig = RooRealVar("xL", "l_{xy} sign." + region + "l_{xy} / #sigma(l_{xy})",
                    -1000.0, 1000.0)

massvars = RooArgSet(tt_mass, mm_mass, mmtt_mass)
ptvars = RooArgSet(tt_pt, mm_pt, mmtt_pt)
kinvars = RooArgSet(massvars, ptvars)
extravars = RooArgSet(lxysig)

theData = RooDataSet("theData", "theData", theTree,
                     RooArgSet(kinvars, extravars))

c = TCanvas("canvas", "canvas", 1200, 800)

if args.nonprompt:
    theData = theData.reduce("xL > 3.0")
if args.prompt:
    theData = theData.reduce("xL < 1.5")

if args.ptcuts is not None:
    theData = theData.reduce("trigp_pT > " + str(args.ptcuts))
    theData = theData.reduce("trign_pT > " + str(args.ptcuts))
    cuts += "P_t_" + str(args.ptcuts) + "_"
#### #### Plotting variables
#### TrakTrak Data

if args.noplot:

    print("TrakTrak data plotting . . .")

    print("All : " + str(theData.numEntries()))
Ejemplo n.º 35
0
    masskP = space.var('kpibarMass')

    tk1Pt = space.var('tk1Pt')
    tk2Pt = space.var('tk2Pt')

    loadDatasetLb = RooDataSet(
        'loadData16', 'loadData16', inN16,
        RooArgSet(massLb, massBd, massbD, massBs, massKK, massKp, masskP,
                  tk1Pt, tk2Pt))
    frame = "lbtkMass>5.3&&lbtkMass<6."
    ptsel = "tk1Pt>2. && tk2Pt>2."
    Bdbkg = "((bdMass>5.25&&bdMass<5.31)&&(kpiMass>0.86&&kpiMass<0.93))"
    bDbkg = "(bdbarMass>5.25&&bdbarMass<5.31&&kpibarMass<0.93)"
    bsbkg = "(bsMass>5.25&&bsMass<5.4&&kkMass>1.01&&kkMass<1.03)"

    cutData = loadDatasetLb.reduce('&&'.join([frame, ptsel]))
    bkgComb = loadDatasetLb.reduce('&&'.join([frame, ptsel]) + '&&' +
                                   '||'.join([Bdbkg, bDbkg, bsbkg]))

    space.factory('Polynomial::pPDF(lbtkMass,{c1[0.01,-5.,5.]})')
    keyPDF = RooKeysPdf('kPDF', 'kPDF', massLb, bkgComb, RooKeysPdf.NoMirror,
                        0.1)
    getattr(space, 'import')(keyPDF)
    space.factory(
        'SUM::totPDF(numBKG[{initNum},0.,{maxNum}]*pPDF,{bkgNum}*kPDF)'.format(
            initNum=cutData.sumEntries() - bkgComb.sumEntries(),
            maxNum=cutData.sumEntries() * 1.05,
            bkgNum=bkgComb.sumEntries()))
    fitModel = space.factory('totPDF')

    massLb.setRange('leftSideband', 5.3, 5.619 - 0.03)
Ejemplo n.º 36
0
		ApProduced = TH2F("ApProduced","ApProduced",nApMass,Medges,NepsBins,Epsedges)
		VProducedRho = TH2F("VProducedRho","VProducedRho",nApMass,Medges,NepsBins,Epsedges)
		detectableRho = TH2F("detectableRho","detectableRho",nApMass,Medges,NepsBins,Epsedges)
		VProducedPhi = TH2F("VProducedPhi","VProducedPhi",nApMass,Medges,NepsBins,Epsedges)
		detectablePhi = TH2F("detectablePhi","detectablePhi",nApMass,Medges,NepsBins,Epsedges)
		for k in range(0,nApMass):
			massAp = (massApmax - massApmin)/float(nApMass - 1) * k + massApmin
			massV = 0.6*massAp
			massPi = massAp/3.
			fPi = massPi/fpiArr[i]
			massVres = massresfile.Get("mres").GetFunction("pol1").Eval(massV)
			breakz = tailsfile.Get("breakz").GetFunction("pol3").Eval(massV)
			length = tailsfile.Get("length").GetFunction("pol3").Eval(massV)

			frame = uncVZ.frame()
			dataInRange = dataset.reduce(obs,"abs({0}-{1})<{2}/2*{3}".format("uncM",massV,masscut_nsigma,massVres))
			binnedData = dataInRange.binnedClone()
			binnedData.plotOn(frame)
			mean = binnedData.mean(uncVZ)
			sigma = binnedData.sigma(uncVZ)
			uncVZ.setRange("fitRange",mean-2*sigma,mean+2*sigma)
			gauss_params.setRealValue("mean",mean)
			gauss_params.setRealValue("sigma",sigma)
			gauss_pdf.fitTo(binnedData,RooFit.Range("fitRange"),RooFit.PrintLevel(-1))
			mean = gauss_params.getRealValue("mean")
			sigma = gauss_params.getRealValue("sigma")
			gaussexp_params.setRealValue("gauss_mean",mean)
			gaussexp_params.setRealValue("gauss_sigma",sigma)
			gaussexp_params.setRealValue("exp_breakpoint",breakz)
			gaussexp_params.setRealValue("exp_length",length)
			w.var("gauss_mean").setConstant(True)
Ejemplo n.º 37
0
magnet_datas = {}
dp_inv = (p_inv.getMax() - p_inv.getMin()) / n_bins
dp = (p.getMax() - p.getMin()) / n_bins
bins_p = [0 + i * dp for i in range(n_bins + 1)]

graphs = {}
sigmas = defaultdict(list)
sigmas_err = defaultdict(list)
av = []
err_x = []
p_vars = {p_inv.GetName(): p_inv, p.GetName(): p}

vname = p_inv.GetName()
bins = bins_p_inv
for i in range(n_bins):
    ds = magnet_data.reduce('{0} > {1} && {0} < {2}'.format(
        vname, bins[i], bins[i + 1]))
    magnet_datas[i] = ds
    av += [ds.mean(p_vars[vname])]
    err_x += [0.]

for obs, tag in ((pull_xm, 'xm'), (pull_ym, 'ym')):
    cn = 'fit_canvas_' + tag
    canvas_fit = TCanvas(cn, cn, 1200, 800)
    canvas_fit.Divide(3, 3)
    canvases['fit_' + tag] = canvas_fit
    model = models[tag]
    for i in range(n_bins):
        ds = magnet_datas[i]
        magnet_results[(tag, i)] = model.fitTo(ds, RooFit.Minimizer('Minuit2'),
                                               RooFit.Save(), RooFit.NumCPU(2))
        frame = obs.frame()
Ejemplo n.º 38
0
else:
    print "Running without 'r' argument disabled"
    sys.exit(0)
    rootInFile = TFile("../BsStuff.root")
    keyList = rootInFile.GetListOfKeys()
    keyList.At(0).ReadObj().Print()
    keyList.At(1).ReadObj().Print()
    tupleDataSet = rootInFile.Get('treeData')

    if not os.path.isfile(tupleDictFilename) or tupleDictFilename == "-":
        print "Filename argument invalid; running for default tuple dictionary file"
        tupleDictFilename = os.environ[
            "B2DXFITTERSROOT"] + "/tutorial/tupleDict2.py"

    tupleDict = importTupleDict(tupleDictFilename)
    tupleDataSet = tupleDataSet.reduce('osDecision==ssDecision')

    from B2DXFitters.utils import configDictFromFile
    config = configDictFromFile('bsConfig.py')

    # start with RooFit stuff
    from ROOT import (RooRealVar, RooConstVar, RooCategory, RooWorkspace,
                      RooArgSet, RooArgList, RooLinkedList, RooAbsReal,
                      RooRandom, TRandom3, MistagDistribution,
                      MistagCalibration, RooFormulaVar)
    # safe settings for numerical integration (if needed)
    RooAbsReal.defaultIntegratorConfig().setEpsAbs(1e-9)
    RooAbsReal.defaultIntegratorConfig().setEpsRel(1e-9)
    RooAbsReal.defaultIntegratorConfig().getConfigSection(
        'RooAdaptiveGaussKronrodIntegrator1D').setCatLabel(
            'method', '15Points')
           (( mumuMass < {JPSIM} && !( abs(deltaB0M - deltaJpsiM) < 0.16 || abs(deltaB0M - deltaPsiPM) < 0.06) ) || \
            ( mumuMass > {PSIM}  && !( abs(deltaB0M - deltaJpsiM) < 0.06 || abs(deltaB0M - deltaPsiPM) < 0.03) ) || \
            ( mumuMass > {JPSIM} && mumuMass < {PSIM} && !( abs(deltaB0M - deltaJpsiM) < 0.06 || abs(deltaB0M - deltaPsiPM) < 0.06 ))))'.format(
        JPSIM=JPsiMass_, PSIM=PsiPMass_, CUT=nSigma_psiRej)
elif args.dimusel == 'keepPsi':
    cut = '(abs(mumuMass - {JPSIM}) < {CUT}*mumuMassE || abs(mumuMass - {PSIM}) < {CUT}*mumuMassE)'.format(
        JPSIM=JPsiMass_, PSIM=PsiPMass_, CUT=nSigma_psiRej)
elif args.dimusel == 'nocut':
    cut = 'mumuMass > 0'
else:
    print '\nYou should define which dimuon mass to consider. Please choose between following options: \nkeepPsiP, keepJpsi, rejectPsi, keepPsi'
    sys.exit(0)

print cut

data = fulldata.reduce(RooArgSet(theBMass, mumuMass, mumuMassE), cut)

mean = RooRealVar("mass", "mean", B0Mass_, 3, 7, "GeV")
sigma = RooRealVar("#sigma", "sigma", 0.028, 0, 10, "GeV")
signalGauss = RooGaussian("signalGauss", "signal gauss", theBMass, mean, sigma)

sigma2 = RooRealVar("#sigma2", "sigma2", 0.048, 0, 0.07, "GeV")
signalGauss2 = RooGaussian("signalGauss2", "signal gauss2", theBMass, mean,
                           sigma2)
f1 = RooRealVar("f1", "f1", 0.8, 0., 1.)
gaus = RooAddPdf("gaus", "gaus1+gaus2", RooArgList(signalGauss, signalGauss2),
                 RooArgList(f1))

pol_c1 = RooRealVar("p1", "coeff x^0 term", 0.5, -10, 10)
pol_c2 = RooRealVar("p2", "coeff x^1 term", 0.5, -10, 10)
pol_c3 = RooRealVar("p3", "coeff x^2 term", 0.5, -10, 10)