Ejemplo n.º 1
0
def plcLimit(obs_, poi_, model, ws, data, CL=0.95, verbose=False):
    # obs : observable variable or RooArgSet of observables
    # poi : parameter of interest or RooArgSet of parameters
    # model : RooAbsPdf of model to consider including any constraints
    # data : RooAbsData of the data
    # CL : confidence level for interval
    # returns a dictionary with the upper and lower limits for the first/only
    # parameter in poi_ as well as the interval object and status flag

    obs = RooArgSet(obs_)
    obs.setName('observables')
    poi = RooArgSet(poi_)
    poi.setName('poi')
    poi.setAttribAll('Constant', False)
    nuis = model.getParameters(obs)
    nuis.remove(poi)
    nuis.remove(nuis.selectByAttrib('Constant', True))
    nuis.setName('nuisance')

    if verbose:
        print 'observables'
        obs.Print('v')
        print 'parameters of interest'
        poi.Print('v')
        print 'nuisance parameters'
        nuis.Print('v')

    mc = RooStats.ModelConfig('mc')
    mc.SetWorkspace(ws)
    mc.SetPdf(model)
    mc.SetObservables(obs)
    mc.SetParametersOfInterest(poi)
    mc.SetNuisanceParameters(nuis)

    plc = RooStats.ProfileLikelihoodCalculator(data, mc)
    plc.SetConfidenceLevel(CL)

    interval = plc.GetInterval()

    upperLimit = Double(999.)
    lowerLimit = Double(0.)
    Limits = {}

    paramIter = poi.createIterator()
    param = paramIter.Next()
    while param:
        ok = interval.FindLimits(param, lowerLimit, upperLimit)
        Limits[param.GetName()] = {
            'ok': ok,
            'upper': float(upperLimit),
            'lower': float(lowerLimit)
        }
        param = paramIter.Next()

    if verbose:
        print '%.0f%% CL limits' % (interval.ConfidenceLevel() * 100)
        print Limits

    Limits['interval'] = interval
    return Limits
Ejemplo n.º 2
0
def GetPLRInterval(filename="workspace.root",
                   wsname='myWS',
                   interactive=False):
    # this function loads a workspace and computes
    # a Bayesian upper limit

    pInFile = ROOT.TFile(filename, "read")

    # load workspace
    pWs = pInFile.Get(wsname)
    if not pWs:
        print "workspace ", wsname, " not found"
        return -1

    # printout workspace content
    pWs.Print()

    # load and print data from workspace
    data = pWs.data("data")
    data.Print()

    # load and print S+B Model Config
    pSbHypo = pWs.obj("SbHypo")
    pSbHypo.Print()

    # create RooStats Profiled Likelihood ratio calculator and set parameters
    bCalc = RooStats.ProfileLikelihoodCalculator(data, pSbHypo)
    bCalc.SetConfidenceLevel(0.95)

    # estimate credible interval
    # NOTE: unfortunate notation: the UpperLimit() name refers
    #       to the upper boundary of an interval,
    #       NOT to the upper limit on the parameter of interest
    #       (it just happens to be the same for the one-sided
    #       interval starting at 0)
    pSInt = bCalc.GetInterval()
    upper_bound = pSInt.UpperLimit(pWs.var('xsec'))
    lower_bound = pSInt.LowerLimit(pWs.var('xsec'))

    print "one-sided 95%.C.L. interval for xsec: ", "[", lower_bound, ", ", upper_bound, "]"

    # make posterior PDF plot for POI
    c1 = ROOT.TCanvas("plr", "likelihood furnction")
    pPlot = RooStats.LikelihoodIntervalPlot(pSInt)
    pPlot.SetRange(0., 0.006)
    pPlot.SetMaximum(5.)
    pPlot.SetNPoints(50)
    pPlot.Draw()
    ROOT.gPad.Update()
    c1.SaveAs("plr_plot.pdf")

    if interactive:
        raw_input("\npress <enter> to continue")
Ejemplo n.º 3
0
    def calculate_cls(self, workspace_name):
        """
        returns a dictionary of CLs values
        """
        from scharmfit import utils
        utils.load_susyfit()
        from ROOT import Util
        from ROOT import RooStats
        if not isfile(workspace_name):
            raise OSError("can't find workspace {}".format(workspace_name))
        workspace = Util.GetWorkspaceFromFile(workspace_name, 'combined')

        Util.SetInterpolationCode(workspace,4)
        # NOTE: We're completely silencing the fitter. Add an empty string
        # to the accept_strings to get all output.
        with OutputFilter(accept_strings={}):
            limit = RooStats.get_Pvalue(
                workspace,
                True,                   # doUL
                1,                      # n_toys
                2,                      # asymtotic calculator
                3,                      # test type (3 is atlas standard)
                )
        return dict(
            cls=limit.GetCLs(),
            cls_exp=limit.GetCLsexp(),
            cls_up_1_sigma=limit.GetCLsu1S(),
            cls_down_1_sigma=limit.GetCLsd1S(),
            cls_up_2_sigma=limit.GetCLsu2S(),
            cls_down_2_sigma=limit.GetCLsd2S())
Ejemplo n.º 4
0
def GetBayesianInterval(filename="workspace.root",
                        wsname='myWS',
                        interactive=False):
    # this function loads a workspace and computes
    # a Bayesian upper limit

    pInFile = ROOT.TFile(filename, "read")

    # load workspace
    pWs = pInFile.Get(wsname)
    if not pWs:
        print "workspace ", wsname, " not found"
        return -1

    # printout workspace content
    pWs.Print()

    # load and print data from workspace
    data = pWs.data("data")
    data.Print()

    # load and print S+B Model Config
    pSbHypo = pWs.obj("SbHypo")
    pSbHypo.Print()

    # create RooStats Bayesian calculator and set parameters
    bCalc = RooStats.BayesianCalculator(data, pSbHypo)
    bCalc.SetName("myBC")
    bCalc.SetConfidenceLevel(0.95)
    bCalc.SetLeftSideTailFraction(0.0)
    #bcalc->SetIntegrationType("ROOFIT")

    # estimate credible interval
    # NOTE: unfortunate notation: the UpperLimit() name refers
    #       to the upper boundary of an interval,
    #       NOT to the upper limit on the parameter of interest
    #       (it just happens to be the same for the one-sided
    #       interval starting at 0)
    pSInt = bCalc.GetInterval()
    upper_bound = pSInt.UpperLimit()
    lower_bound = pSInt.LowerLimit()

    print "one-sided 95%.C.L. bayesian credible interval for xsec: ", "[", lower_bound, ", ", upper_bound, "]"

    # make posterior PDF plot for POI
    c1 = ROOT.TCanvas("posterior", "posterior")
    bCalc.SetScanOfPosterior(100)
    pPlot = bCalc.GetPosteriorPlot()
    pPlot.Draw()
    ROOT.gPad.Update()
    c1.SaveAs("bayesian_num_posterior.pdf")

    if interactive:
        raw_input("\npress <enter> to continue")
Ejemplo n.º 5
0
def get_significance(s, b1, b2, err_b1, err_b2, threshold):
    '''
        asimov significance
        https://root.cern.ch/doc/v614/RooStatsUtils_8cxx_source.html
        https://www.pp.rhul.ac.uk/~cowan/stat/medsig/medsigNote.pdf
        eq[10], eq[20]
    '''
    err_b1_b2 = eff_error(b1, b2, err_b1, err_b2, threshold)
    nB = max(b1 + b2, threshold)
    significance = 0.
    if s > 1.1e-10:
        # value smaller than this cause NaN value when use vfunc
        # please think and figure out a better way to treat negative weight
        significance = RooStats.AsimovSignificance(s, nB, err_b1_b2)
    return err_b1_b2, significance
Ejemplo n.º 6
0
    def execute(self, ws, debug = 0):
        print self.legend, 'Profile Likelihood calculation started...'

        # time the action
        t = TStopwatch()
        t.Start()

        # model config is guaranteed to be here
        # the action won't configure without it
        # and this code will never run unless valid model config is found
        mconf = ws.obj(self._model_config_name)
            
        _poi = mconf.GetParametersOfInterest()

        plcInt = self._plc.GetInterval()

        # stop watch and print how long it took to get the interval
        t.Print()

        # iterate over all parameters of interest and print out the intervals
        # (could there be more than one?)
        _iter = _poi.createIterator()
        while True:
            _poi_name = _iter().GetTitle()
            
            lower_limit = plcInt.LowerLimit( _poi[_poi_name] )
            upper_limit = plcInt.UpperLimit( _poi[_poi_name] )
            
            print self.legend, 'Profile Likelihood interval for', _poi_name, 'is ['+ \
                  str(lower_limit) + ', ' + \
                  str(upper_limit) + ']'

            if _iter.Next() == None:
                break
            

        if self._scan_plot:
            # draw scan plot

            print self.legend, 'making the likelihood scan plot'
            _plot_name = _poi_name+'_plc_scan_exost.'+self._plot_format
            c1 = TCanvas("c1", "c1", 600, 600)
            plcPlot = RooStats.LikelihoodIntervalPlot(plcInt)
            gROOT.SetStyle("Plain")
            plcPlot.Draw()
            c1.SaveAs(_plot_name)
            
        return (lower_limit, upper_limit)
    def model(self, ws, debug=0):

        if self.sModel not in self.items:
            if debug > 0:
                print self.legend, 'no Model section defined in the config file'
                print self.legend, 'no model will be created'
            return

        legend = '[' + self.sModel + ']:'

        # FIXME: find a better way to load custom PDFs
        #gROOT.ProcessLine(".L dijetQstarPdf.cxx+");
        #gROOT.ProcessLine(".L Qstar_qg.cxx+");
        #gROOT.ProcessLine(".L Qstar_qg_2.cxx+");
        #gROOT.ProcessLine(".L Jacobian_mt.cxx+");

        model_items = self.items[self.sModel]

        if (debug > 0):
            print 'Loading model to the workspace', ws.GetName()

        # using RooStats::HLFactory to parse the model
        # make a temp file with a card file
        card_file_name = 'hlfCardFile.rs'
        with open(card_file_name, 'w') as cardfile:
            for item in model_items:
                print >> cardfile, item[0], '=', item[1]

        hlfVerbosity = debug > 0
        #hlf = ROOT.RooStats.HLFactory('HLFactoryExost', card_file_name, True)
        hlf = RooStats.HLFactory('HLFactoryExost', ws, hlfVerbosity)

        self.modelAutoImportWarningExplanation(legend, debug)

        current_messaging_level = RooMsgService.instance().globalKillBelow()
        if debug <= 0:
            RooMsgService.instance().setGlobalKillBelow(RooFit.ERROR)

        hlf.ProcessCard(card_file_name)

        print legend, 'importing nonstandard class code into the workspace...'
        ws.importClassCode()
        #ws.importClassCode('Qstar_qg', true);
        print legend, '...code import done'

        # return messaging to the original level
        RooMsgService.instance().setGlobalKillBelow(current_messaging_level)
Ejemplo n.º 8
0
def limitBayesian(w=initializeWorkspace(), B=1, dB=0.35, S=1, dS=0.1):
    w.var("B").setVal(B)
    w.var("dB").setVal(dB)
    w.var("S").setVal(S)
    w.var("dS").setVal(dS)
    w.var("N").setVal(B)

    obs = ROOT.RooArgSet(w.var("N"))
    data = ROOT.RooDataSet("data", "data", obs)
    data.add(obs)  # insert entry

    rbackup = w.var("r").getMax()

    nuisances = ROOT.RooArgSet()
    if dB != 0:
        nuisances.add(w.var("thetaB"))
        w.var("thetaB").setConstant(False)
    else:
        w.var("thetaB").setConstant(True)

    if dS != 0:
        nuisances.add(w.var("thetaS"))
        w.var("thetaS").setConstant(False)
    else:
        w.var("thetaS").setConstant(True)

    poi = ROOT.RooArgSet(w.var("r"))
    model = w.pdf({True: "model_s", False: "modelStat_s"}[dS > 0 or dB > 0])
    prior = w.pdf("prior")
    nuisSet = {True: nuisances, False: None}[dS > 0 or dB > 0]
    bcalc = RooStats.BayesianCalculator(data, model, poi, prior, nuisSet)
    bcalc.SetLeftSideTailFraction(0)
    bcalc.SetConfidenceLevel(0.95)
    interval = bcalc.GetInterval()
    ret = interval.UpperLimit()
    while ret > 0.5 * w.var("r").getMax():
        #print "Got ",ret,"too close to the upper bound",w.var("r").getMax()
        if (w.var("r").getMax() > 200): break
        w.var("r").setMax(w.var("r").getMax() * 2)
        interval = bcalc.GetInterval()
        ret = interval.UpperLimit()
    w.var("r").setMax(rbackup)
    return ret
Ejemplo n.º 9
0
    def calculate_cls(self, workspace_name):
        """
        returns a dictionary of CLs values
        """
        from scharmfit import utils
        utils.load_susyfit()
        from ROOT import Util
        from ROOT import RooStats
        if not isfile(workspace_name):
            raise OSError("can't find workspace {}".format(workspace_name))
        workspace = Util.GetWorkspaceFromFile(workspace_name, 'combined')

        Util.SetInterpolationCode(workspace,4)
        # NOTE: We're completely silencing the fitter. Add an empty string
        # to the accept_strings to get all output.
        with OutputFilter(accept_strings={}):
            limit = RooStats.get_Pvalue(
                workspace,
                True,                   # doUL
                1,                      # n_toys
                2,                      # asymtotic calculator
                3,                      # test type (3 is atlas standard)
                )
        ws_type = workspace_name.rsplit('_',1)[1].split('.')[0]
        if ws_type == self.nominal:
            return {
                'obs':limit.GetCLs(),
                'exp':limit.GetCLsexp(),
                'exp_u1s':limit.GetCLsu1S(),
                'exp_d1s':limit.GetCLsd1S(),
                }
        elif ws_type == self.up1s:
            return {'obs_u1s':limit.GetCLs()}
        elif ws_type == self.down1s:
            return {'obs_d1s':limit.GetCLs()}
        # should never get here
        raise ValueError('can\'t classify {} as type of limit'.format(
                workspace_name))
Ejemplo n.º 10
0
def GetLimits(tl,f):
    from ROOT import RooStats,Util
    #w=gDirectory.Get("w")

    print "analysis name: ",tl.name
    print "workspace name: ",tl.wsFileName

    if not ("SU" in tl.name):
        print "Do no hypothesis test for bkg only or discovery fit!\n"
        return

    print "Need to load workspace"
    Util.ReadWorkspace(tl.wsFileName,"combined")
    w=gDirectory.Get("w")
    

    result = RooStats.MakeUpperLimitPlot(tl.name,w,2,3,1000,True,20,True)

    if not result==0:
        result.Print() 
        print result.UpperLimit()
        
    return
    b0SideSub.SetMarkerStyle(kFullCircle)
    b0SideSub.SetMarkerColor(kBlack)
    b0SideSub.SetMarkerSize(0.8)
    b0SideSub.SetLineColor(kBlack)
    b0SideSub.Draw("E0")

    linezero = TLine(b0SideSub.GetBinCenter(1), 0.0,
                     b0SideSub.GetBinCenter(b0SideSub.GetNbinsX()), 0.0)
    linezero.SetLineColor(kRed)
    linezero.SetLineWidth(2)
    linezero.SetLineStyle(kDotted)
    linezero.Draw()
    kcanvas.SaveAs(region + "/b0s_subtracted_" + region + ".png")
    kcanvas.SaveAs(region + "/b0s_subtracted_" + region + ".root")

    splot = RooStats.SPlot("sPlot", "sPlot", theData, kkTot,
                           RooArgList(nSigKK, nBkgKK))

    dstree = theData.store().tree()
    dstree.GetEntryNumber(88)

    sPlot_B0_hist = TH1F("sPlot_B0_hist",
                         "#mu#muKK sPlot - " + region + "; m(#mu#muKK) [GeV]",
                         2000, 4.00, 6.0)

    sPlot_B0_hist.Sumw2()
    sPlot_B0_hist.SetLineColor(2)
    sPlot_B0_hist.SetMarkerColor(2)
    sPlot_B0_hist.SetMinimum(0.)
    dstree.Project("sPlot_B0_hist", "xM", "nSig_sw")

    sPlot_B0_hist.Draw("e0")
Ejemplo n.º 12
0
def getProfile(idx=None, update=False):
    from ROOT import TFile, TCanvas
    from ROOT import RooStats as RS

    f = TFile("%s/data/fitWorkspace.root" % dsi.latSWDir)
    fitWorkspace = f.Get("fitWorkspace")
    fData = fitWorkspace.allData().front()
    hitE = fitWorkspace.var("trapENFCal")
    model = fitWorkspace.pdf("model")
    fitResult = fitWorkspace.allGenericObjects().front()
    fPars = fitResult.floatParsFinal()
    nPars = fPars.getSize()

    # === get fit results: {name : [nCts, err]} ===
    fitVals = {}
    for i in range(nPars):
        fp = fitResult.floatParsFinal()
        name = fp.at(i).GetName()
        fitVal, fitErr = fp.at(i).getValV(), fp.at(i).getError()
        if "amp" in name:
            # fitVals[name.split('-')[1]] = [fitVal, fitErr]
            fitVals[name] = [fitVal, fitErr, name.split('-')[1]]

    # for f in fitVals:
    # print(f, fitVals[f])

    # === get "true" counts (reverse efficiency correction based on fit value) ===
    hAx = getHistList("axion")
    x, y, xpb = wl.npTH1D(hAx)
    x, y = normPDF(x, y, eLo, eHi)
    nCts, nErr, _ = fitVals["amp-axion"]  # fit result
    yc = nCts * getEffCorr(x, y, inv=True)
    nCorr = np.sum(yc)
    effCorr = nCorr / nCts
    print("nCts %d  nCorr %.2f  effCorr %.2f" % (nCts, nCorr, effCorr))

    # thesis plot, don't delete
    # plt.step(x, y * nCts * (epb/xpb), c='r', lw=2, label="Eff-weighted: %.1f" % (nCts))
    # plt.step(x, yc * (epb/xpb), c='b', lw=2, label="True counts: %.1f" % (nCorr))
    # plt.xlabel("Energy (keV)", ha='right', x=1)
    # plt.ylabel("Counts / keV", ha='right', y=1)
    # plt.legend(loc=1)
    # plt.tight_layout()
    # plt.show()

    tMode = "UPDATE" if update else "RECREATE"
    tOut = TFile("%s/data/rs-plc.root" % dsi.latSWDir, "UPDATE")

    start = time.clock()

    name = "amp-axion"
    fitVal = fitVals[name][0]
    thisVar = fitWorkspace.var(name)

    pCL = 0.9
    plc = RS.ProfileLikelihoodCalculator(fData, model, ROOT.RooArgSet(thisVar))
    plc.SetConfidenceLevel(0.90)
    interval = plc.GetInterval()
    lower = interval.LowerLimit(thisVar)
    upper = interval.UpperLimit(thisVar)
    plot = RS.LikelihoodIntervalPlot(interval)
    plot.SetNPoints(50)
    plot.Draw("tf1")

    pName = "hP_%d" if idx is not None else "hP"
    hProfile = plot.GetPlottedObject()
    hProfile.SetName(pName)
    hProfile.SetTitle("PL %.2f  %s  lo %.3f  mid %.3f  hi %.3f  eC %.3f" %
                      (pCL, name, lower, fitVal, upper, effCorr))
    hProfile.Write()
    print(hProfile.GetTitle())

    tOut.Close()

    print("elapsed:", time.clock() - start)
Ejemplo n.º 13
0
tenIntegralSig  = tenIntegralSig * nSig.getValV() / totIntegralSig

fiveIntegralBkg = fiveIntegralBkg * nBkg.getValV() / totIntegralBkg
tenIntegralBkg  = tenIntegralBkg * nBkg.getValV() / totIntegralBkg

fiveIntegralTot = fiveIntegralTot * (nBkg.getValV()+nSig.getValV()) / totIntegralTot
tenIntegralTot  = tenIntegralTot * (nBkg.getValV()+nSig.getValV()) / totIntegralTot

c.SaveAs('phimassSPlot_'+ outname + '.png')
c.SaveAs('phimassSPlot_' + outname + '.root')
c.Clear()


cD=TCanvas("cD","cD",750,600)
cD.cd()
splot   = RooStats.SPlot ("sPlot","sPlot",splotData, tot, RooArgList(nSig,nBkg))
dstree  = splotData.store().tree()


#S plot hist for signal
shistSig   = TH1F('shistSig','shistSig', 50, 4.0, 6.0)
shistSig.Sumw2()
shistSig.SetLineColor(2)
shistSig.SetMarkerColor(2); shistSig.SetMinimum(0.)
dstree.Project('shistSig','dimuonditrk_m_rf_c','nSig_sw');

shistSig.Draw('e0');
cD.SaveAs('SigSPlotPhi_' + outname + '_' + outname + '.gif')
cD.SaveAs('SigSPlotPhi_' + outname + '.root')

Ejemplo n.º 14
0
def latexfitresults(filename,
                    poiname='mu_SIG',
                    lumiFB=1.0,
                    nTOYS=3000,
                    asimov=False,
                    wname='combined'):
    """
  Calculate before/after-fit yields in all channels given
  
  @param filename The filename containing afterFit workspace
  @param poiname Name of ParameterOfInterest = POI (default='mu_SIG')
  @param lumiFB Given lumi in fb-1 to translate upper limit on N_events into xsection limit (default='1.0')
  @param nTOYS Number of toys to be run
  @param asimov Boolean to run asimov or not (default=False)
  @param wname RooWorkspace name in file (default='combined')
  """
    """
  pick up workspace from file
  """
    workspacename = wname
    w = Util.GetWorkspaceFromFile(filename, workspacename)
    if w == None:
        print "ERROR : Cannot open workspace : ", workspacename
        sys.exit(1)
    """
  Set the POI in ModelConfig
  """
    if len(poiname) == 0:
        print " "
    else:
        modelConfig = w.obj("ModelConfig")
        poi = w.var(poiname)
        if poi == None:
            print "ERROR : Cannot find POI with name: ", poiname, " in workspace from file ", filename
            sys.exit(1)
        modelConfig.SetParametersOfInterest(RooArgSet(poi))
        modelConfig.GetNuisanceParameters().remove(poi)
    """
  set some default values for nToys, calculator type and npoints to be scanned
  """
    ntoys = 3000
    calctype = 0  # toys = 0, asymptotic (asimov) = 2
    npoints = 20

    if nTOYS != 3000 and nTOYS > 0:
        ntoys = nTOYS
    if asimov:
        calctype = 2
    """
  set the range of POI to be scanned and perform HypoTest inversion
  """
    murangelow = 0.0
    murangehigh = 40.0
    hti_result = RooStats.DoHypoTestInversion(w, ntoys, calctype, 3, True,
                                              npoints, murangelow, murangehigh)
    """
  save and print the HypoTest result
  """
    outFileName = "./htiResult_poi_" + poiname + "_ntoys_" + str(
        ntoys) + "_calctype_" + str(calctype) + "_npoints_" + str(
            npoints) + ".root"
    hti_result.SaveAs(outFileName)
    hti_result.Print()
    """
  get the upper limit on N_obs out of hypotest result, and transform to limit on visible xsection
  """
    uL_nobsinSR = hti_result.UpperLimit()
    uL_visXsec = uL_nobsinSR / lumiFB
    """
  get the expected upper limit and one scan point up and down to calculate the error on upper limit
  """
    uL_nexpinSR = hti_result.GetExpectedUpperLimit(0)
    uL_nexpinSR_P = hti_result.GetExpectedUpperLimit(1)
    uL_nexpinSR_M = hti_result.GetExpectedUpperLimit(-1)
    if uL_nexpinSR > uL_nexpinSR_P or uL_nexpinSR < uL_nexpinSR_M:
        print " \n something very strange, either the uL_nexpinSR > uL_nexpinSR_P or uL_nexpinSR < uL_nexpinSR_M"
        print "  uL_nexpinSR = ", uL_nexpinSR, " uL_nexpinSR_P = ", uL_nexpinSR_P, " uL_nexpinSR_M = ", uL_nexpinSR_M
    uL_nexpinSRerrP = hti_result.GetExpectedUpperLimit(1) - uL_nexpinSR
    uL_nexpinSRerrM = uL_nexpinSR - hti_result.GetExpectedUpperLimit(-1)
    """
  find the CLB values at indexes above and below observed CLs p-value
  """
    CLB_P = 0.
    CLB_M = 0.
    mu_P = 0.
    mu_M = 0.
    index_P = 0
    indexFound = False
    for iresult in range(hti_result.ArraySize()):
        xval = hti_result.GetXValue(iresult)
        yval = hti_result.GetYValue(iresult)
        if xval > uL_nobsinSR and not indexFound:
            index_P = iresult
            CLB_P = hti_result.CLb(iresult)
            mu_P = xval
            if iresult > 0:
                CLB_M = hti_result.CLb(iresult - 1)
                mu_M = hti_result.GetXValue(iresult - 1)
                indexFound = True
    """
  interpolate (linear) the value of CLB to be exactly above upperlimit p-val
  """
    try:
        alpha_CLB = (CLB_P - CLB_M) / (mu_P - mu_M)
        beta_CLB = CLB_P - alpha_CLB * mu_P
        CLB = alpha_CLB * uL_nobsinSR + beta_CLB
    except ZeroDivisionError:
        print "WARNING ZeroDivisionError while calculating CLb. Setting CLb=0."
        CLB = 0.0

    print "\n\n\n\n  ***---  now doing p-value (s=0) calculation ---*** \n\n\n\n"
    """
  reset parameter values and errors for p(s=0) calculation by reopening workspace
  """
    w2 = Util.GetWorkspaceFromFile(filename, workspacename)

    if w2 == None:
        print "ERROR : Cannot open workspace : ", workspacename
        sys.exit(1)
    """
  calculate p(s=0) from the workspace given
  """
    pval = RooStats.get_Presult(w2, False, ntoys, calctype)

    ulList = [
        uL_visXsec, uL_nobsinSR, uL_nexpinSR, uL_nexpinSRerrP, uL_nexpinSRerrM,
        CLB, pval
    ]

    return ulList
if opts.nullFit:
    fr_null.Write()
#fitter.ws.Print()
output.Close()

if pars.btagSelection:
    c1.SaveAs("DibosonBoostedBtaglnuJ_%s_%ijets_Stacked.png" % (mode, opts.Nj))
    c2.SaveAs("DibosonBoostedBtaglnuJ_%s_%ijets_Subtracted.png" %
              (mode, opts.Nj))
    cp1.SaveAs("DibosonBoostedBtaglnuJ_%s_%ijets_Pull.png" % (mode, opts.Nj))
else:
    c1.SaveAs("DibosonBoostedlnuJ_%s_%ijets_Stacked.png" % (mode, opts.Nj))
    c2.SaveAs("DibosonBoostedlnuJ_%s_%ijets_Subtracted.png" % (mode, opts.Nj))
    cp1.SaveAs("DibosonBoostedlnuJ_%s_%ijets_Pull.png" % (mode, opts.Nj))

print 'Time elapsed: %.1f sec' % timer.RealTime()
print 'CPU time used: %.1f sec' % timer.CpuTime()

print '%i degrees of freedom' % ndf
print 'chi2: %.2f / %i = %.2f' % (chi2_1, ndf, (chi2 / ndf))
print 'chi2 probability: %.4g' % (TMath.Prob(chi2, ndf))

if opts.nullFit:
    likelihoodRatio = 2. * fr_null.minNll() - 2. * fr.minNll()
    print '2*nll_null - 2*nll: %.4f - %.4f = %.4f' % (
        2. * fr_null.minNll(), 2. * fr.minNll(), likelihoodRatio)

    pval = TMath.Prob(likelihoodRatio, 1)
    print 'p-value: %.4g' % pval
    print 'Gaussian significance: %.3g' % RooStats.PValueToSignificance(pval)
Ejemplo n.º 16
0
def latexfitresults(filename, poiname='mu_SIG', lumiFB=1.0, nTOYS=3000, asimov=False, wname='combined'):

  workspacename=wname
 
  w = Util.GetWorkspaceFromFile(filename,workspacename)
  
  if w==None:
    print "ERROR : Cannot open workspace : ", workspacename
    sys.exit(1) 

  if len(poiname)==0:
    print " "
  else:
    modelConfig = w.obj("ModelConfig")
    poi = w.var(poiname)
    if poi==None:
      print "ERROR : Cannot find POI with name: ", poiname, " in workspace from file ", filename
      sys.exit(1)
    modelConfig.SetParametersOfInterest(RooArgSet(poi))
    modelConfig.GetNuisanceParameters().remove(poi)

  ntoys = 3000
  calctype = 0   # toys = 0, asymptotic (asimov) = 2
  npoints = 20

  if nTOYS != 3000 and nTOYS>0:
    ntoys = nTOYS
  if asimov:
    calctype = 2
 
  # hti_result = RooStats.MakeUpperLimitPlot(poiname,w,calctype,3,ntoys,True,npoints)
##   #   RooStats::MakeUpperLimitPlot(const char* fileprefix,
##   # 			     RooWorkspace* w,
##   # 			     int calculatorType ,                         # toys = 0, asymptotic (asimov) = 2
##   # 			     int testStatType , 
##   # 			     int ntoys,
##   # 			     bool useCLs ,  
##   # 			     int npoints )

  murangelow = 0.0
  murangehigh = 40.0
  hti_result = RooStats.DoHypoTestInversion(w,ntoys,calctype,3,True,npoints,murangelow,murangehigh)

  outFileName = "./htiResult_poi_" + poiname + "_ntoys_" + str(ntoys) + "_calctype_" + str(calctype) + "_npoints_" + str(npoints) + ".root"
  hti_result.SaveAs(outFileName)
  hti_result.Print()
  
  uL_nobsinSR = hti_result.UpperLimit()
  uL_visXsec = uL_nobsinSR / lumiFB
  # uL_visXsecErrorUp = uL_visXsec - uL_nobsinSR/(lumiFB * (1. + lumiRelUncert))
  # uL_visXsecErrorDown = uL_nobsinSR/(lumiFB * (1. - lumiRelUncert)) - uL_visXsec

  uL_nexpinSR = hti_result.GetExpectedUpperLimit(0)
  uL_nexpinSR_P = hti_result.GetExpectedUpperLimit(1) 
  uL_nexpinSR_M = hti_result.GetExpectedUpperLimit(-1)
  if uL_nexpinSR > uL_nexpinSR_P or uL_nexpinSR < uL_nexpinSR_M:
    print " \n something very strange, either the uL_nexpinSR > uL_nexpinSR_P or uL_nexpinSR < uL_nexpinSR_M"
    print "  uL_nexpinSR = ", uL_nexpinSR , " uL_nexpinSR_P = ", uL_nexpinSR_P, " uL_nexpinSR_M = ", uL_nexpinSR_M
  uL_nexpinSRerrP = hti_result.GetExpectedUpperLimit(1) - uL_nexpinSR
  uL_nexpinSRerrM = uL_nexpinSR - hti_result.GetExpectedUpperLimit(-1)

  # find the CLB values at indexes above and below observed CLs p-value
  CLB_P = 0.
  CLB_M = 0.
  mu_P = 0.
  mu_M = 0.
  index_P = 0
  indexFound = False
  for iresult in range(hti_result.ArraySize()):
    xval = hti_result.GetXValue(iresult) 
    yval = hti_result.GetYValue(iresult)
    if xval>uL_nobsinSR and not indexFound:
      index_P = iresult
      CLB_P = hti_result.CLb(iresult)
      mu_P = xval
      if iresult>0:
        CLB_M = hti_result.CLb(iresult-1)
        mu_M = hti_result.GetXValue(iresult-1)
        indexFound = True
 #       print " \n   found the CLB values to interpolate"
 #       print " CLB_M =", CLB_M, " CLB_P =", CLB_P, "  mu_P = ", mu_P, " mu_M = ", mu_M

  # interpolate the value of CLB to be exactly above upperlimit p-val
  try:
    alpha_CLB = (CLB_P - CLB_M) / (mu_P - mu_M)
    beta_CLB = CLB_P - alpha_CLB*mu_P
    # CLB is taken as the point on the CLB curve for the same poi value, as the observed upperlimit
    CLB = alpha_CLB * uL_nobsinSR + beta_CLB
  except ZeroDivisionError:
    print "WARNING ZeroDivisionError while calculating CLb. Setting CLb=0."
    CLB=0.0
  #print " CLB = " , CLB

  print "\n\n\n\n  ***---  now doing p-value calculation ---*** \n\n\n\n"
  Util.resetAllValues(w)
  Util.resetAllErrors(w)
  Util.resetAllNominalValues(w)

  pval = RooStats.get_Presult(w,False,1000,2)
  # get_Presult(  RooWorkspace* w,
  #           		bool doUL, // = true, // true = exclusion, false = discovery
  #             		int ntoys, //=1000,
  #             		int calculatorType, // = 0,
  #             		int testStatType, // = 3,  
  #             		const char * modelSBName, // = "ModelConfig",
  #             		const char * modelBName, // = "",
  #             		const char * dataName, // = "obsData",
  #             		bool useCLs, // = true ,   
  #             		bool useNumberCounting, // = false,
  #             		const char * nuisPriorName) // = 0 
  
  ulList = [uL_visXsec, uL_nobsinSR, uL_nexpinSR, uL_nexpinSRerrP, uL_nexpinSRerrM, CLB, pval ]

  return ulList
Ejemplo n.º 17
0
observedZValue = []
tmpIntegratedLumi = 0.0

for ibin in xrange( h_den.GetNbinsX() ):
	if tmpIntegratedLumi/1000.>22.1:
		break
	tmpIntegratedLumi += h_den.GetBinContent(ibin)

	nobs = h_num["SRG3b"].Integral(0,ibin)
	nexp = 2.8*tmpIntegratedLumi/(22.1 * 1000.)
	nexpsig = 10*tmpIntegratedLumi/(22.1 * 1000.)

	integratedLumi.append(tmpIntegratedLumi/1000.)

	tmpPvalue = RooStats.NumberCountingUtils.BinomialObsP(nexpsig,nexp,0.27)/2.
	tmpZvalue = RooStats.PValueToSignificance( tmpPvalue ) if tmpPvalue else 0
	expectedZValue.append( tmpZvalue )

	tmpPvalue = RooStats.NumberCountingUtils.BinomialObsP(nexpsig,nexp*(1+0.27),0.27)/2.
	tmpZvalue = RooStats.PValueToSignificance( tmpPvalue ) if tmpPvalue else 0
	expectedUpZValue.append( tmpZvalue )
	tmpPvalue = RooStats.NumberCountingUtils.BinomialObsP(nexpsig,nexp*(1-0.27),0.27)/2.
	tmpZvalue = RooStats.PValueToSignificance( tmpPvalue ) if tmpPvalue else 0
	expectedDownZValue.append( tmpZvalue )

	tmpPvalue = RooStats.NumberCountingUtils.BinomialObsP(nobs,nexp,0.27)/2.
	tmpZvalue = RooStats.PValueToSignificance( tmpPvalue ) if tmpPvalue else 0
	observedZValue.append(  tmpZvalue )


Ejemplo n.º 18
0
c = TCanvas("canvas", "canvas", 1200, 800)
phiFrame = masskk.frame(Range(massmin, massmax))
xdataPrompt.plotOn(phiFrame)
tot.plotOn(phiFrame)

phiFrame.Draw()
c.SaveAs("phiMassSPlotPhi.png")
c.SaveAs("phiMassSPlotPhi.root")
c.Clear()

# In[ ]:

cD = TCanvas("cD", "cD", 750, 600)
cD.cd()
splot = RooStats.SPlot("sPlot", "sPlot", xdataPrompt, tot, alist2)
dstree = xdataPrompt.store().tree()

# In[19]:

shist = TH1F('shist', 'shist', 200, 0.97, 1.07)

# In[20]:

shist.Sumw2()
shist.SetLineColor(2)
shist.SetMarkerColor(2)
shist.SetMinimum(0.)
dstree.Project('shist', 'kkM', 'S1_sw + S2_sw')

# In[21]:
Ejemplo n.º 19
0
def latexfitresults(filename, poiname='mu_Sig', lumiFB=1.0,
                    nTOYS=3000, asimov=False, wname='combined'):

  workspacename=wname

  w = Util.GetWorkspaceFromFile(filename,workspacename)

  if w==None:
    print "ERROR : Cannot open workspace : ", workspacename
    sys.exit(1)

  if len(poiname)==0:
    print " "
  else:
    modelConfig = w.obj("ModelConfig")
    poi = w.var(poiname)
    if poi==None:
      print "ERROR : Cannot find POI with name: ", poiname, " in workspace from file ", filename
      sys.exit(1)
    modelConfig.SetParametersOfInterest(RooArgSet(poi))
    modelConfig.GetNuisanceParameters().remove(poi)

  ntoys = 3000
  calctype = 0   # toys = 0, asymptotic (asimov) = 2
  npoints = 20

  if nTOYS != 3000 and nTOYS>0:
    ntoys = nTOYS
  if asimov:
    calctype = 2

  hti_result = RooStats.MakeUpperLimitPlot(
    poiname,w,calctype,3,ntoys,True,npoints)
  outFileName = "./htiResult_poi_" + poiname + "_ntoys_" + str(ntoys) + "_calctype_" + str(calctype) + "_npoints_" + str(npoints) + ".root"
  hti_result.SaveAs(outFileName)
  hti_result.Print()

  uL_nobsinSR = hti_result.UpperLimit()
  uL_visXsec = uL_nobsinSR / lumiFB
  # uL_visXsecErrorUp = uL_visXsec - uL_nobsinSR/(lumiFB * (1. + lumiRelUncert))
  # uL_visXsecErrorDown = uL_nobsinSR/(lumiFB * (1. - lumiRelUncert)) - uL_visXsec

  uL_nexpinSR = hti_result.GetExpectedUpperLimit(0)
  uL_nexpinSR_P = hti_result.GetExpectedUpperLimit(1) 
  uL_nexpinSR_M = hti_result.GetExpectedUpperLimit(-1)
  if uL_nexpinSR > uL_nexpinSR_P or uL_nexpinSR < uL_nexpinSR_M:
    print " \n something very strange, either the uL_nexpinSR > uL_nexpinSR_P or uL_nexpinSR < uL_nexpinSR_M"
    print "  uL_nexpinSR = ", uL_nexpinSR , " uL_nexpinSR_P = ", uL_nexpinSR_P, " uL_nexpinSR_M = ", uL_nexpinSR_M
  uL_nexpinSRerrP = hti_result.GetExpectedUpperLimit(1) - uL_nexpinSR
  uL_nexpinSRerrM = uL_nexpinSR - hti_result.GetExpectedUpperLimit(-1)

  # find the CLB values at indexes above and below observed CLs p-value
  CLB_P = 0.
  CLB_M = 0.
  mu_P = 0.
  mu_M = 0.
  index_P = 0
  indexFound = False
  for iresult in range(hti_result.ArraySize()):
    xval = hti_result.GetXValue(iresult) 
    yval = hti_result.GetYValue(iresult)
    if xval>uL_nobsinSR and not indexFound:
      index_P = iresult
      CLB_P = hti_result.CLb(iresult)
      mu_P = xval
      if iresult>0:
        CLB_M = hti_result.CLb(iresult-1)
        mu_M = hti_result.GetXValue(iresult-1)
        indexFound = True
 #       print " \n   found the CLB values to interpolate"
 #       print " CLB_M =", CLB_M, " CLB_P =", CLB_P, "  mu_P = ", mu_P, " mu_M = ", mu_M

  # interpolate the value of CLB to be exactly above upperlimit p-val
  alpha_CLB = (CLB_P - CLB_M) / (mu_P - mu_M)
  beta_CLB = CLB_P - alpha_CLB*mu_P
  # CLB is taken as the point on the CLB curve for the same poi value,
  # as the observed upperlimit
  CLB = alpha_CLB * uL_nobsinSR + beta_CLB
  #print " CLB = " , CLB

  print "\n\n\n\n  ***---  now doing p-value calculation ---*** \n\n\n\n"
  pval = RooStats.get_Presult(w,False,1000,2)

  print "p-value is: ", pval
  
  ulList = [uL_visXsec, uL_nobsinSR, uL_nexpinSR, uL_nexpinSRerrP, uL_nexpinSRerrM, CLB, pval ]

  return ulList
Ejemplo n.º 20
0
def MakeWorkspace(outfilename):
    # use this area to implement your model for a counting experiment
    print "building counting model..."

    #create workspace
    pWs = ROOT.RooWorkspace("myWS")

    #observable
    pWs.factory("n[0]")  #this create a literal, real-valued container called n

    #signal yield
    # pWs.factory("nsig[0,0,100]") # name[value,min bound,max bound]
    # pWs.factory("lumi[0]") #luminosity
    pWs.factory("lumi_nom[20000, 10000, 30000]")  #nominal lumi of 20 fb-1
    pWs.factory("lumi_kappa[1.026]")
    pWs.factory("lumi_beta[0,-5,5]")
    pWs.factory("RooPowerFunction::lumi_alpha(lumi_kappa, lumi_beta)")
    pWs.factory("prod::lumi(lumi_nom,lumi_alpha)")  #the new lumi

    pWs.factory("Gaussian::lumi_constr(lumi_beta,lumi_glob[0,-5,5],1)")

    pWs.factory("xsec[0,0,0.1]")  #cross-section (our new POI)

    # pWs.factory("eff[0]") #efficiency
    pWs.factory("eff_nom[0.1, 0.01, 0.20]")  #nominal eff
    pWs.factory("eff_kappa[1.1]")
    pWs.factory("eff_beta[0,-5,5]")
    pWs.factory("RooPowerFunction::eff_alpha(eff_kappa, eff_beta)")
    pWs.factory("prod::eff(eff_nom,eff_alpha)")  #the new eff

    pWs.factory("Gaussian::eff_constr(eff_beta,eff_glob[0,-5,5],1)")

    pWs.factory("prod::nsig(lumi,xsec,eff)")  #new definition of nsig

    #background yield
    # pWs.factory("nbkg[10,0,100]")
    pWs.factory("nbkg_nom[10.,5.,15.]")
    pWs.factory("nbkg_kappa[1.1]")
    pWs.factory("nbkg_beta[0,-5,5]")
    pWs.factory("RooPowerFunction::nbkg_alpha(nbkg_kappa, nbkg_beta)")
    pWs.factory("prod::nbkg(nbkg_nom,lumi_alpha,nbkg_alpha)")

    pWs.factory("Gaussian::nbkg_constr(nbkg_beta, nbkg_glob[0,-5,5],1)")

    #full yield
    pWs.factory("sum::yield(nsig,nbkg)")  # creates a function nsig+nbkg

    # Bayesian prior
    pWs.factory("Uniform::prior(xsec)")

    # define the physics model a Poisson distribution
    pWs.factory("Poisson::model_core(n,yield)")

    # model and systematics
    # pWs.factory("PROD::model(model_core,lumi_constr)") # all-cap PROD means PDF instead of only function
    pWs.factory("PROD::model(model_core,lumi_constr,eff_constr,nbkg_constr)")

    # create set of observables (needed for datasets and ModelConfig later)
    pObs = pWs.var("n")  # get the pointer to the observable
    obs = ROOT.RooArgSet("observables")
    obs.add(pObs)

    # create the dataset
    pObs.setVal(11)  # this is your observed data: you counted eleven events
    data = ROOT.RooDataSet("data", "data", obs)
    data.add(obs)

    # import dataset into workspace
    getattr(pWs, 'import')(
        data
    )  # we call it this way because "import" is a reserved word in python

    # create set of global observables (need to be defined as constants!)
    pWs.var("lumi_glob").setConstant(True)
    pWs.var("eff_glob").setConstant(True)
    pWs.var("nbkg_glob").setConstant(True)
    globalObs = ROOT.RooArgSet("global_obs")
    globalObs.add(pWs.var("lumi_glob"))
    globalObs.add(pWs.var("eff_glob"))
    globalObs.add(pWs.var("nbkg_glob"))

    # create set of parameters of interest (POI)
    poi = ROOT.RooArgSet("poi")
    poi.add(pWs.var("xsec"))

    # create set of nuisance parameters
    nuis = ROOT.RooArgSet("nuis")
    nuis.add(pWs.var("lumi_beta"))
    nuis.add(pWs.var("eff_beta"))
    nuis.add(pWs.var("nbkg_beta"))

    # fix all other variables in model:
    # everything except observables, POI, and nuisance parameters
    # must be constant
    pWs.var("lumi_nom").setConstant(True)
    pWs.var("eff_nom").setConstant(True)
    pWs.var("nbkg_nom").setConstant(True)
    pWs.var("lumi_kappa").setConstant(True)
    pWs.var("eff_kappa").setConstant(True)
    pWs.var("nbkg_kappa").setConstant(True)
    fixed = ROOT.RooArgSet("fixed")
    fixed.add(pWs.var("lumi_nom"))
    fixed.add(pWs.var("eff_nom"))
    fixed.add(pWs.var("nbkg_nom"))
    fixed.add(pWs.var("lumi_kappa"))
    fixed.add(pWs.var("eff_kappa"))
    fixed.add(pWs.var("nbkg_kappa"))

    # create signal+background Model Config
    sbHypo = RooStats.ModelConfig("SbHypo")
    sbHypo.SetWorkspace(pWs)
    sbHypo.SetPdf(pWs.pdf("model"))
    sbHypo.SetObservables(obs)
    sbHypo.SetGlobalObservables(globalObs)
    sbHypo.SetParametersOfInterest(poi)
    sbHypo.SetNuisanceParameters(nuis)
    sbHypo.SetPriorPdf(pWs.pdf("prior"))  # this is optional

    # set parameter snapshot that corresponds to the best fit to data
    pNll = sbHypo.GetPdf().createNLL(data)
    pProfile = pNll.createProfile(
        globalObs)  # do not profile global observables
    pProfile.getVal(
    )  # this will do fit and set POI and nuisance parameters to fitted values
    pPoiAndNuisance = ROOT.RooArgSet("poiAndNuisance")
    pPoiAndNuisance.add(sbHypo.GetNuisanceParameters())
    pPoiAndNuisance.add(sbHypo.GetParametersOfInterest())
    sbHypo.SetSnapshot(pPoiAndNuisance)

    # import S+B ModelConfig into workspace
    getattr(pWs, 'import')(sbHypo)

    # create background-only Model Config from the S+B one
    bHypo = RooStats.ModelConfig(sbHypo)
    bHypo.SetName("BHypo")
    bHypo.SetWorkspace(pWs)

    # set parameter snapshot for bHypo, setting xsec=0
    # it is useful to understand how this block of code works
    # but you can also use it as a recipe to make a parameter snapshot
    pNll = bHypo.GetPdf().createNLL(data)
    poiAndGlobalObs = ROOT.RooArgSet("poiAndGlobalObs")
    poiAndGlobalObs.add(poi)
    poiAndGlobalObs.add(globalObs)
    pProfile = pNll.createProfile(
        poiAndGlobalObs)  # do not profile POI and global observables
    poi.first().setVal(0)  # set xsec=0 here
    pProfile.getVal(
    )  # this will do fit and set nuisance parameters to profiled values
    pPoiAndNuisance = ROOT.RooArgSet("poiAndNuisance")
    pPoiAndNuisance.add(nuis)
    pPoiAndNuisance.add(poi)
    bHypo.SetSnapshot(pPoiAndNuisance)

    # import model config into the workspace
    getattr(pWs, 'import')(bHypo)

    #print the contents of the workspace
    pWs.Print()

    #save the workspace to a file
    pWs.SaveAs(outfilename)

    return 0
Ejemplo n.º 21
0
              RooFit.LineStyle(kDashed))
bfr5.SetTitle("Jet slice of sim pdf")
bfr5.Draw()

#c.cd(6)
#bfr6 = w.var("bdt").frame()
#simPdf.plotOn(bfr6, RooFit.ProjWData(ROOT.RooArgSet(sample),combData)) ;
#simPdf.plotOn(bfr6, RooFit.ProjWData(ROOT.RooArgSet(sample),combData), RooFit.Slice(sample, "JKS"), RooFit.LineColor(2), RooFit.LineStyle(kDashed))
#simPdf.plotOn(bfr6, RooFit.ProjWData(ROOT.RooArgSet(sample),combData), RooFit.Slice(sample, "Jet"), RooFit.LineColor(4), RooFit.LineStyle(kDashed))
#bfr6.SetTitle("sim pdf")
#bfr6.Draw()
"""
sct = RooSimWSTool(w)
model_sim = sct.build("model_sim","model",SplitParam("m","c"))
"""
mc = RooStats.ModelConfig("mc", w)
mc.SetPdf(simPdf)
mc.SetParametersOfInterest("mu")
mc.SetObservables("bdt")
mc.SetNuisanceParameters("nbkg")
mc.SetNuisanceParameters("nbkg2")

c.cd(7)
bfr7 = w.var("bdt").frame()
cdata = ROOT.RooStats.AsymptoticCalculator.MakeAsimovData(
    combData, mc, w.argSet("bdt,sample"), ROOT.RooArgSet())
dh = ROOT.RooDataHist("", "", w.argSet("bdt,sample"), cdata)
err_correction = [
    dh.set(dh.get(i), dh.weight(dh.get(i)),
           ROOT.TMath.Sqrt(dh.weight(dh.get(i))))
    for i in range(0, dh.numEntries())
Ejemplo n.º 22
0
mean.setConstant(ROOT.kFALSE)
rfit = tot.fitTo(b0dataNonPrompt, Range(massmin, massmax), RooFit.NumCPU(8))
gamma.setConstant(ROOT.kFALSE)
rfit = tot.fitTo(b0dataNonPrompt, Range(phimean - 0.025, phimean + 0.025),
                 RooFit.NumCPU(8))

masskkFrame = masskk.frame(Range(phimean - 0.025, phimean + 0.025))
b0dataNonPrompt.plotOn(massFrame, RooLinkedList())
tot.plotOn(masskkFrame)

massFrame.Draw()
c.SaveAs("testmassFit.png")

cD = TCanvas("cD", "cD", 750, 600)
cD.cd()
splot = RooStats.SPlot("sPlot", "sPlot", b0dataNonPrompt, tot,
                       RooArgList(nSig, nBkg))

# In[18]:

dstree = b0dataNonPrompt.store().tree()

# In[19]:

shist = TH1F('shist', 'shist', 500, 1.00, 1.05)

# In[20]:

shist.Sumw2()
shist.SetLineColor(2)
shist.SetMarkerColor(2)
shist.SetMinimum(0.)
Ejemplo n.º 23
0
    def variables(self, ws, debug):
        var_items = self.items[self.sVariables]

        legend = '[' + self.sVariables + ']:'

        print legend, 'begin processing...'
        print legend, 'define variables, constants, categories, sets and lists'

        # dictionary of value lists for each item
        # this is more detailed than the original items object
        # because the multiple settings for a given item
        # are already split
        # NOTE: sets are special case and are not added here
        item_values = {}

        # using RooStats::HLFactory to parse the model
        # make a temp file with a card file
        card_file_name = 'hlfCardFile.rs'
        with open(card_file_name, 'w') as cardfile:
            vSets = {}
            for item in var_items:
                #
                # special case for sets
                # standard RooFactoryWSTool interface exists in newer versions
                # need to switch at some point
                # for now parsing and adding named sets by hand
                #
                if item[1].strip()[0:3] == 'set':
                    set_arg_list = item[1].strip()
                    set_arg_list = set_arg_list[3:len(set_arg_list)]
                    set_arg_list = set_arg_list.strip(' ;()').split(',')

                    set_args = []
                    for arg in set_arg_list:
                        set_args.append(arg.strip())

                    vSets[item[0].strip()] = set_args

                    if (debug > 2):
                        print legend, 'Set arg value is ->' + item[1] + '<-'
                        print legend, 'set args are', set_args
                else:
                    # this is a way to handle multiple settings
                    # for each item: they are separated by semicolon
                    # in the value field of the config item
                    item_values[item[0]] = self.split_values(item)

                    #print >> cardfile,  item[0], '=', item[1]
                    print >> cardfile, item[0], '=', item_values[item[0]][0]

        # add variables using HLFactory cards
        hlfVerbosity = debug > 2
        hlf = RooStats.HLFactory('HLFactoryExost', ws, hlfVerbosity)
        hlf.ProcessCard(card_file_name)

        # process the secondary options (fix/float etc.)
        for _key in item_values:
            n_values = len(item_values[_key])
            for _index in range(0, n_values):
                self.process_value(ws, _key, item_values[_key][_index], debug)

        # now add sets by hand
        print legend, 'creating sets now...'

        # fixme experimental
        _sets = {}

        for set_args_key in vSets.keys():
            arg_list = ''

            # fixme experimental
            _sets[set_args_key] = RooArgSet(set_args_key)

            for arg in vSets[set_args_key]:
                if len(arg_list) > 0:
                    arg_list += ','
                arg_list += arg

                # fixme experimental
                _sets[set_args_key].add(ws.var(arg))

            #ws.defineSet(set_args_key, arg_list)
            print legend, 'set', set_args_key, 'created'

        print legend, 'done creating sets'

        return {'sets': _sets}
Ejemplo n.º 24
0
    def bayesian(self, ws, debug=0):

        if self.sBayes not in self.items:
            if debug > 0:
                print self.legend, 'no Bayesian Calculator section in the config file'
                print self.legend, 'cannot configure Bayesian calculator'
            return {'status': 'fail'}

        legend = '[' + self.sBayes + ']:'

        _name = 'exostBayes'

        # getting items as a dictionary
        bayes_items = {}
        bayes_items.update(self.items[self.sBayes])

        print legend, 'Configuring Bayesian calculator... '

        # check if a CL is specified
        m_conf_name = self.check_value(self.sBayes, 'model_config')
        if m_conf_name == -1:
            print legend, 'Error: model config is not specified'
            print legend, 'Error:', self.sBayes, 'cannot be configured'
            return {'status': 'fail'}

        # check if data is specified
        data_name = self.check_value(self.sBayes, 'data')

        data_valid = False
        if data_name != -1:
            data_valid = True
            if ws.data(data_name) != None:
                data = ws.data(data_name)
            else:
                data_valid = False
                print legend, 'Error: dataset', data_name, 'is not defined'

        if data_valid == False:
            print legend, 'Error:', self.sBayes, 'cannot be configured'
            return {'status': 'fail'}

        # check if a CL is specified
        conf_level = self.check_value(self.sBayes, 'confidence_level')
        if conf_level == -1:
            print legend, 'Warning: desired confidence level is not specified, setting to 0.90'
            conf_level = 0.90

        # check if a posterior plot is requested
        post_plot = self.check_value(self.sBayes, 'posterior_plot')
        b_post_plot = False
        if post_plot == -1:
            print legend, 'will generate a posterior plot'
            b_post_plot = True
        elif post_plot == 'True':
            b_post_plot = True
        else:
            b_post_plot = False

        # plot format
        if post_plot:
            plot_format = self.check_value(self.sBayes, 'plot_format')
            if plot_format == -1:
                plot_format = 'png'

        # to suppress messgaes when pdf goes to zero
        RooMsgService.instance().setGlobalKillBelow(RooFit.FATAL)

        #mconf = ws.obj('exostModelConfig')
        mconf = ws.obj(m_conf_name)

        if mconf == None:
            if debug > 0:
                print self.legend, 'fail to get Model Config'
                print self.legend, 'unable to configure Bayesian calculator'
                print self.legend, 'calculator will not be imported into the workspace'
            return {'status': 'fail'}

        bCalc = RooStats.BayesianCalculator(data, mconf)
        bCalc.SetConfidenceLevel(float(conf_level))

        ############# FIXME: debug test
        #bInt = bCalc.GetInterval()
        #print legend, 'DEBUG3*******************************'
        #
        #cl = bCalc.ConfidenceLevel()
        #print legend,  str(cl)+'% CL central interval: [', bInt.LowerLimit(), ' - ', bInt.UpperLimit(), ']'
        #print legend, 'or', str(cl+(1.0-cl)/2), '% CL limits'
        ##############################

        #size = 1.0 - float(conf_level)
        #bCalc.SetTestSize(size)

        # import the calculator into the Workspace
        getattr(ws, 'import')(bCalc, _name)

        print legend, 'Bayesian calculator', _name, 'is configured and added to workspace', ws.GetName(
        )
        print legend, 'done'

        return {
            'do_posterior_plot': b_post_plot,
            'status': 'success',
            'model_config_name': m_conf_name,
            'plot_format': plot_format
        }
Ejemplo n.º 25
0
    def configure(self, ws, items, section, debug = 0):
        print self.legend, 'configuring Profile Likelihood calculator...'

        _items = items[section]

        # check mandatory parameters

        # dataset name in the workspace
        _dataset_name = self.check_value(items, section, 'data')
        if _dataset_name == None:
            print self.legend, 'ERROR: dataset is not specified, cannot configure'
            return
        else:
            if ws.data(_dataset_name) != None:
                _data = ws.data(_dataset_name)
            else:
                print legend, 'Error: dataset', _dataset_name, 'is not defined, cannot configure'
                return
    
        # model config name in the workspace
        self._model_config_name = self.check_value(items, section, 'model_config')
        if self._model_config_name == None:
            print self.legend, 'ERROR: Model Config name is not specified, cannot configure'
            return
        else:
            if self.check_generic_object(ws, self._model_config_name, debug):
                _mconf = ws.obj(self._model_config_name.strip())
            else:
                print self.legend, 'Error: model config object is not found, cannot configure'
                return
            

        # check optional parameters, set defaults if not specified

        # desired confidence level
        _conf_level = self.check_value(items, section, 'confidence_level')
        if _conf_level == None:
            print self.legend, 'no confidence level specified, setting to 0.95'
            _conf_level = 0.95
                
        # whether to make the posterior plot or not
        self._scan_plot = self.check_value(items, section, 'make_scan_plot')
        if self._scan_plot == None:
            print self.legend, 'likelihood intervalscan plot is not requested'
            self._scan_plot = False
        elif self._scan_plot == 'True':
            self._scan_plot = True
        else:
            print self.legend, 'invalid assignment make_scan_plot =', self._scan_plot
            print self.legend, 'likelihood interval scan plot will not be made'
            self._scan_plot = False

        # plot format
        if self._scan_plot:
            self._plot_format = self.check_value(items, section, 'plot_format')
            if self._plot_format == None:
                print self.legend, 'no plot format specified, setting to PNG'
                self._plot_format = png
            
                

        # configuring now...

        self._plc = RooStats.ProfileLikelihoodCalculator(_data,_mconf)
        self._plc.SetConfidenceLevel( float(_conf_level) )

        print legend, 'Profile Likelihood calculator is configured'

        # import the calculator into the Workspace
        #getattr(ws, 'import')(self._plc, 'exostMcmcCalc')
        #print legend, 'Markov chain MC calculator', 'exostMcmcCalc', 'is added to workspace', ws.GetName()
        #print legend, 'done'

        ws.Print()

        # flag that the action is configured successfully
        self.configured = True

        return {'do_scan_plot':self._scan_plot}
Ejemplo n.º 26
0
def latexfitresults(filename, poiname='mu_SIG', lumiFB=1.0, nTOYS=3000, asimov=False, wname='combined'):
  """
  Calculate before/after-fit yields in all channels given
  
  @param filename The filename containing afterFit workspace
  @param poiname Name of ParameterOfInterest = POI (default='mu_SIG')
  @param lumiFB Given lumi in fb-1 to translate upper limit on N_events into xsection limit (default='1.0')
  @param nTOYS Number of toys to be run
  @param asimov Boolean to run asimov or not (default=False)
  @param wname RooWorkspace name in file (default='combined')
  """

  """
  pick up workspace from file
  """
  workspacename=wname
  w = Util.GetWorkspaceFromFile(filename,workspacename)
  if w==None:
    print "ERROR : Cannot open workspace : ", workspacename
    sys.exit(1) 

    
  """
  Set the POI in ModelConfig
  """
  if len(poiname)==0:
    print " "
  else:
    modelConfig = w.obj("ModelConfig")
    poi = w.var(poiname)
    if poi==None:
      print "ERROR : Cannot find POI with name: ", poiname, " in workspace from file ", filename
      sys.exit(1)
    modelConfig.SetParametersOfInterest(RooArgSet(poi))
    modelConfig.GetNuisanceParameters().remove(poi)

  """
  set some default values for nToys, calculator type and npoints to be scanned
  """


  ntoys = 3000
  calctype = 0   # toys = 0, asymptotic (asimov) = 2

  if nTOYS != 3000 and nTOYS>0:
    ntoys = nTOYS
  if asimov:
    calctype = 2
 
  """
  set the range of POI to be scanned and perform HypoTest inversion
  """
  murangelow = 240
  murangehigh = 350 #40.0 #set here -1. if you want to have automatic determined scan range, if using values != -1, please check the log file if the scan range was large enough

  npoints = int((murangehigh-murangelow)*2.)


  hti_result = RooStats.DoHypoTestInversion(w,ntoys,calctype,3,True,npoints,murangelow,murangehigh)



  """
  save and print the HypoTest result
  """
  outFileName = "./htiResult_poi_" + poiname + "_ntoys_" + str(ntoys) + "_calctype_" + str(calctype) + "_npoints_" + str(npoints) + ".root"
  hti_result.SaveAs(outFileName)
  hti_result.Print()

  """
  get the upper limit on N_obs out of hypotest result, and transform to limit on visible xsection
  """
  uL_nobsinSR = hti_result.UpperLimit()
  uL_visXsec = uL_nobsinSR / lumiFB

  """
  get the expected upper limit and one scan point up and down to calculate the error on upper limit
  """
  uL_nexpinSR = hti_result.GetExpectedUpperLimit(0)
  uL_nexpinSR_P = hti_result.GetExpectedUpperLimit(1) 
  uL_nexpinSR_M = hti_result.GetExpectedUpperLimit(-1)
  if uL_nexpinSR > uL_nexpinSR_P or uL_nexpinSR < uL_nexpinSR_M:
    print " \n something very strange, either the uL_nexpinSR > uL_nexpinSR_P or uL_nexpinSR < uL_nexpinSR_M"
    print "  uL_nexpinSR = ", uL_nexpinSR , " uL_nexpinSR_P = ", uL_nexpinSR_P, " uL_nexpinSR_M = ", uL_nexpinSR_M
  uL_nexpinSRerrP = hti_result.GetExpectedUpperLimit(1) - uL_nexpinSR
  uL_nexpinSRerrM = uL_nexpinSR - hti_result.GetExpectedUpperLimit(-1)

  """
  find the CLB values at indexes above and below observed CLs p-value
  """
  CLB_P = 0.
  CLB_M = 0.
  mu_P = 0.
  mu_M = 0.
  index_P = 0
  indexFound = False
  for iresult in range(hti_result.ArraySize()):
    xval = hti_result.GetXValue(iresult) 
    yval = hti_result.GetYValue(iresult)
    if xval>uL_nobsinSR and not indexFound:
      index_P = iresult
      CLB_P = hti_result.CLb(iresult)
      mu_P = xval
      if iresult>0:
        CLB_M = hti_result.CLb(iresult-1)
        mu_M = hti_result.GetXValue(iresult-1)
        indexFound = True

  """
  interpolate (linear) the value of CLB to be exactly above upperlimit p-val
  """
  try:
    alpha_CLB = (CLB_P - CLB_M) / (mu_P - mu_M)
    beta_CLB = CLB_P - alpha_CLB*mu_P
    CLB = alpha_CLB * uL_nobsinSR + beta_CLB
  except ZeroDivisionError:
    print "WARNING ZeroDivisionError while calculating CLb. Setting CLb=0."
    CLB=0.0

   
  print "\n\n\n\n  ***---  now doing p-value (s=0) calculation ---*** \n\n\n\n"

  """
  reset parameter values and errors for p(s=0) calculation by reopening workspace
  """
  w2 = Util.GetWorkspaceFromFile(filename,workspacename) 
  
  if w2==None:
    print "ERROR : Cannot open workspace : ", workspacename
    sys.exit(1) 
        
  """
  calculate p(s=0) from the workspace given
  """
  pval = RooStats.get_Presult(w2,False,ntoys,calctype)
  
  ulList = [uL_visXsec, uL_nobsinSR, uL_nexpinSR, uL_nexpinSRerrP, uL_nexpinSRerrM, CLB, pval ]

  return ulList
Ejemplo n.º 27
0
def plotProfiles():

    f = TFile("./data/fitWorkspace.root")
    fitWorkspace = f.Get("fitWorkspace")
    fData = fitWorkspace.allData().front()
    fEnergy = fitWorkspace.var("energy_keV")
    model = fitWorkspace.pdf("model")
    fitResult = fitWorkspace.allGenericObjects().front()
    fitValsFinal = getRooArgDict(fitResult.floatParsFinal())
    print "Fit Cov Qual:", fitResult.covQual()

    nameList = ["amp-axion"]
    # nameList = []
    # for key in sorted(fitValsFinal):
    #     if "amp-" in key:
    #         nameList.append(key)

    print "Generating profiles ..."
    c = TCanvas("c", "c", 800, 600)
    for name in nameList:

        fitVal = fitValsFinal[name]
        thisVar = fitWorkspace.var(name)

        # Brian & Clint method
        plc = RS.ProfileLikelihoodCalculator(fData, model,
                                             ROOT.RooArgSet(thisVar))
        plc.SetConfidenceLevel(0.90)
        interval = plc.GetInterval()
        lower = interval.LowerLimit(thisVar)
        upper = interval.UpperLimit(thisVar)
        print "%-10s = lo %-7.3f  best %-7.3f  hi %.3f" % (name, lower, fitVal,
                                                           upper)
        plot = RS.LikelihoodIntervalPlot(interval)
        # p1, pltHi = fitVal - 1.5*(fitVal - lower), fitVal + 1.5*(upper - fitVal)
        # plot.SetRange(pltLo,pltHi)
        plot.SetTitle("%s: lo %.3f  fit %.3f  hi %.3f" %
                      (name, lower, fitVal, upper))
        plot.SetNPoints(50)
        plot.Draw("tf1")
        """
        # Lukas method
        # note: lukas uses ModelConfig, to explicitly set observables, constraints, and nuisance parameters
        # https://root-forum.cern.ch/t/access-toy-datasets-generated-by-roostat-frequentistcalculator/24465/8

        mc = RS.ModelConfig('mc', fitWorkspace)
        mc.SetPdf( model )
        mc.SetParametersOfInterest( ROOT.RooArgSet(thisVar) )
        mc.SetObservables( ROOT.RooArgSet(fEnergy) )

        # lukas example
        # mc.SetConstraintParameters( ROOT.RooArgSet(mean, sigma) )
        # mc.SetNuisanceParameters( ROOT.RooArgSet(mean, sigma, n_bkg) )
        # mc.SetGlobalObservables( ROOT.RooArgSet(mean_obs, sigma_obs) )

        # need to make some RooArgSets from RooRealVars
        # constraints, nuisances, globalobs = ROOT.RooArgSet(), ROOT.RooArgSet(), ROOT.RooArgSet()
        # for parName in sorted(fitValsFinal):
        #     rrv = fitWorkspace.var(parName)
        #     if parName != name:
        #         constraints.add(rrv)
        #         # .. etc.

        # pl = RS.ProfileLikelihoodCalculator(fData, mc)
        # pl.SetConfidenceLevel(0.683) # lukas used 0.90
        # interval = pl.GetInterval()
        # plot = RS.LikelihoodIntervalPlot(interval)
        # plot.SetNPoints(50)
        # plot.Draw("")
        """
        c.Print("./plots/profile_%s.pdf" % name)
Ejemplo n.º 28
0
################################################################################
poi = ROOT.RooArgSet("poi")
#poi.add( pWs.var("glob_nttbar") );
poi.add(pWs.var("nttbar_nom"))
#poi.add( pWs.var("beta_nttbar") );

################################################################################
# create set of nuisance parameters
################################################################################
nuis = ROOT.RooArgSet("nuis")
nuis.add(pWs.var("beta_nqcd"))
nuis.add(pWs.var("beta_nt"))
nuis.add(pWs.var("beta_ntbar"))
nuis.add(pWs.var("beta_nwjets"))

sbHypo = RooStats.ModelConfig("SbHypo")
sbHypo.SetWorkspace(pWs)
sbHypo.SetPdf(pWs.pdf("model"))
sbHypo.SetObservables(obs)
sbHypo.SetGlobalObservables(globalObs)
sbHypo.SetParametersOfInterest(poi)
sbHypo.SetNuisanceParameters(nuis)

pWs.var("beta_nttbar").setConstant(False)
pWs.var("beta_nqcd").setConstant(False)
pWs.var("beta_nwjets").setConstant(False)
pWs.var("beta_nt").setConstant(False)
pWs.var("beta_ntbar").setConstant(False)

pWs.var("nwjets_nom").setConstant(True)
pWs.var("nt_nom").setConstant(True)
Ejemplo n.º 29
0
    xpoints1=array.array('d')
    ypoints1=array.array('d')
    xerrors1=array.array('d')
    yerrors1=array.array('d')
    
    for i in range(2,20):
       x=i*0.25
       ys=[]
       for toy in range(jobs*toysPerJob):
           ymax=0
           for mass,significances in fWW:
	       #if mass<1200: continue
	       ymax=max(ymax,significances[toy])
	   ys+=[ymax]
       y=RooStats.PValueToSignificance(float(len([s for s in ys if s>=x]))/len(ys))
       if y>10 or y<-10: continue
       xpoints1.append(x)
       ypoints1.append(y)
       xerrors1.append(0)
       if len([s for s in ys if s>=x])>0:
          yerror=2*(y-RooStats.PValueToSignificance(float(sqrt(len([s for s in ys if s>=x]))+len([s for s in ys if s>=x]))/len(ys)))
       else:
          yerror=y
       yerrors1.append(yerror)
       print x,y,yerror
    
    canvas = TCanvas("","",0,0,200,200)
    
    legend=TLegend(0.3,0.7,0.95,0.90,"")
Ejemplo n.º 30
0
    def model_config(self, ws, debug=0, sets=None):

        if self.sModelConfig not in self.items:
            if debug > 0:
                print self.legend, 'no Model Config section in the config file'
                print self.legend, 'cannot create Model Config'
            return

        legend = '[' + self.sModelConfig + ']:'

        # getting items as a dictionary
        model_config_items = {}
        model_config_items.update(self.items[self.sModelConfig])

        print legend, 'Configuring the model... '

        # get the desired name for the model config object
        _model_config_name = self.check_value(self.sModelConfig, 'name')
        if _model_config_name == -1:
            print self.legend, 'using default name for Model Config: exostModelConfig'
            _model_config_name = 'exostModelConfig'
        else:
            print self.legend, 'creating Model Config with name', _model_config_name

        # create the ModelConfig object and associate it with the Workspace
        model_config = RooStats.ModelConfig(_model_config_name,
                                            _model_config_name)
        model_config.SetWorkspace(ws)

        # check if the model is defined
        if 'model' in model_config_items.keys():
            _model = model_config_items['model']
            print legend, 'The full likelihood model:', _model
            #model_config.SetPdf(ws.pdf(_model))
            model_config.SetPdf(_model)
        else:
            print legend, 'Error: the model PDF is not specified'
            print legend, 'Error: the model config is invalid'
            print legend, 'Error: the model config is not added to the workspace'
            return -1

        # check if the observables are specified
        observables_valid = False
        if 'observables' in model_config_items.keys():
            observables_valid = True

            _observables = model_config_items['observables']
            print legend, 'Observables:', _observables
            # fixme experimental
            #if ws.set(_observables) != None:
            #    model_config.SetObservables(ws.set(_observables))
            if sets[_observables] != None:
                model_config.SetObservables(sets[_observables])
            else:
                observables_valid = False
                print legend, 'Warning: observables set', _observables, 'is not defined'
        else:
            observables_valid = False
            print legend, 'Warning: no observables specified'

        # observables is an optional field in ModelConfig, no need to invalidate
        #if observables_valid == False:
        #    print legend, 'Error: the model config is invalid'
        #    print legend, 'Error: the model config is not added to the workspace'
        #    return -1

        # check if the global global_observables are specified
        global_observables_valid = False
        if 'global_observables' in model_config_items.keys():
            global_observables_valid = True

            _global_observables = model_config_items['global_observables']
            print legend, 'Global observables:', _global_observables
            # fixme experimental
            #if ws.set(_global_observables) != None:
            #    model_config.SetGlobalObservables(ws.set(_global_observables))
            if sets[_global_observables] != None:
                model_config.SetGlobalObservables(sets[_global_observables])
            else:
                global_observables_valid = False
                print legend, 'Warning: global observables set', _global_observables, 'is not defined'
        else:
            global_observables_valid = False
            print legend, 'Warning: no global observables specified'

        #if global_observables_valid == False:
        #    print legend, 'Error: the model config is invalid'
        #    print legend, 'Error: the model config is not added to the workspace'
        #    return -1

        # check if the parameters of interest are specified
        poi_valid = False
        if 'poi' in model_config_items.keys():
            poi_valid = True

            _poi = model_config_items['poi']
            print legend, 'Parameters of interest:', _poi
            # fixme experimental
            #if ws.set(_poi) != None:
            #    model_config.SetParametersOfInterest(ws.set(_poi))
            if sets[_poi] != None:
                model_config.SetParametersOfInterest(sets[_poi])
            else:
                poi_valid = False
                print legend, 'Error: POI set', _poi, 'is not defined'
        else:
            poi_valid = False
            print legend, 'Error: no parameters of interest specified'

        if poi_valid == False:
            print legend, 'Error: the model config is invalid'
            print legend, 'Error: the model config is not added to the workspace'
            return -1

        # check if the nuisance parameters are specified
        nuis_valid = False
        if 'nuisance_parameters' in model_config_items.keys():
            nuis_valid = True

            _nuis = model_config_items['nuisance_parameters']
            print legend, 'Nuisance parameters:', _nuis
            #fixme experimental
            #if ws.set(_nuis) != None:
            #    model_config.SetNuisanceParameters(ws.set(_nuis))
            if sets[_nuis] != None:
                model_config.SetNuisanceParameters(sets[_nuis])
            else:
                nuis_valid = False
                print legend, 'Error: Nuisance parameter set', _nuis, 'is not defined'
        else:
            nuis_valid = False
            print legend, 'Error: no nuisance parameters specified'

        if nuis_valid == False:
            print legend, 'Error: the model config is invalid'
            print legend, 'Error: the model config is not added to the workspace'
            return -1

        # check if a prior PDF is specified
        prior_valid = False
        if 'prior' in model_config_items.keys():
            prior_valid = True

            _prior = model_config_items['prior']
            print legend, 'Prior:', _prior
            if ws.pdf(_prior) != None:
                model_config.SetPriorPdf(ws.pdf(_prior))
            else:
                prior_valid = False
                print legend, 'Error: prior', _prior, 'is not defined'
        else:
            prior_valid = False
            print legend, 'Error: no prior PDF specified'

        if prior_valid == False:
            print legend, 'Error: the model config is invalid'
            print legend, 'Error: the model config is not added to the workspace'
            return -1

        # import the model config
        getattr(ws, 'import')(model_config, _model_config_name)

        print legend, 'Model config is added to workspace ', ws.GetName()
        print legend, 'done'
def latexfitresults(filename, poiname='mu_SIG', lumiFB=1.0, nTOYS=3000, nPoints=20, muRange=40, asimov=False, wname='combined', outputPrefix=""):
  """
  Calculate before/after-fit yields in all channels given
  
  @param filename The filename containing afterFit workspace
  @param poiname Name of ParameterOfInterest = POI (default='mu_SIG')
  @param lumiFB Given lumi in fb-1 to translate upper limit on N_events into xsection limit (default='1.0')
  @param nTOYS Number of toys to be run
  @param asimov Boolean to run asimov or not (default=False)
  @param nPoints Number of points of mu_SIG ranges to scan
  @param muRange Maximim value of mu_SIG to probe
  @param wname RooWorkspace name in file (default='combined')
  @param outputPrefix Prefix of the output file name (default="")
  """

  """
  pick up workspace from file
  """
  workspacename=wname
  w = Util.GetWorkspaceFromFile(filename,workspacename)
  if w==None:
    print "ERROR : Cannot open workspace : ", workspacename
    sys.exit(1) 

    
  """
  Set the POI in ModelConfig
  """
  if len(poiname)==0:
    print " "
  else:
    modelConfig = w.obj("ModelConfig")
    poi = w.var(poiname)
    if poi==None:
      print "ERROR : Cannot find POI with name: ", poiname, " in workspace from file ", filename
      sys.exit(1)
    modelConfig.SetParametersOfInterest(RooArgSet(poi))
    modelConfig.GetNuisanceParameters().remove(poi)

  """
  set some default values for nToys, calculator type and nPoints to be scanned
  """
  ntoys = 3000
  calctype = 0   # toys = 0, asymptotic (asimov) = 2
  nPoints = nPoints

  if nTOYS != 3000 and nTOYS>0:
    ntoys = nTOYS
  if asimov:
    calctype = 2
 
  """
  set the range of POI to be scanned and perform HypoTest inversion
  """
  nCPUs = 8
  murangelow = 0.0
  murangehigh = muRange #set here -1. if you want to have automatic determined scan range, if using values != -1, please check the log file if the scan range was large enough
  hti_result = RooStats.DoHypoTestInversion(w, ntoys, calctype, 3, True, nPoints, murangelow, murangehigh, False, False, "ModelConfig", "", "obsData", "")
  #hti_result = RooStats.DoHypoTestInversion(w, ntoys, calctype, 3, True, nPoints, murangelow, murangehigh, False, False, "ModelConfig", "", "obsData", "", nCPUs)

  nRemoved = hti_result.ExclusionCleanup()
  if nRemoved > 0:
    print "WARNING: removed %d points from hti_result" % nRemoved

  #store plot
  RooStats.AnalyzeHypoTestInverterResult( hti_result, calctype, 3, True, nPoints, "%s%s" % (outputPrefix, poiname), ".eps")
  RooStats.AnalyzeHypoTestInverterResult( hti_result, calctype, 3, True, nPoints, "%s%s" % (outputPrefix, poiname), ".pdf")
  RooStats.AnalyzeHypoTestInverterResult( hti_result, calctype, 3, True, nPoints, "%s%s" % (outputPrefix, poiname), ".png")
  
  outFileName = "./%shtiResult_poi_%s_ntoys_%d_calctype_%s_nPoints_%d.root" % (outputPrefix, poiname, ntoys, calctype, nPoints)
  
  hti_result.SaveAs(outFileName)
  hti_result.Print()

  """
  get the upper limit on N_obs out of hypotest result, and transform to limit on visible xsection
  """
  uL_nobsinSR = hti_result.UpperLimit()
  uL_visXsec = uL_nobsinSR / lumiFB

  """
  get the expected upper limit and one scan point up and down to calculate the error on upper limit
  """
  uL_nexpinSR = hti_result.GetExpectedUpperLimit(0)
  uL_nexpinSR_P = hti_result.GetExpectedUpperLimit(1) 
  uL_nexpinSR_M = hti_result.GetExpectedUpperLimit(-1)
  if uL_nexpinSR > uL_nexpinSR_P or uL_nexpinSR < uL_nexpinSR_M:
    print " \n something very strange, either the uL_nexpinSR > uL_nexpinSR_P or uL_nexpinSR < uL_nexpinSR_M"
    print "  uL_nexpinSR = ", uL_nexpinSR , " uL_nexpinSR_P = ", uL_nexpinSR_P, " uL_nexpinSR_M = ", uL_nexpinSR_M
  uL_nexpinSRerrP = hti_result.GetExpectedUpperLimit(1) - uL_nexpinSR
  uL_nexpinSRerrM = uL_nexpinSR - hti_result.GetExpectedUpperLimit(-1)

  """
  find the CLB values at indexes above and below observed CLs p-value
  """
  CLB_P = 0.
  CLB_M = 0.
  mu_P = 0.
  mu_M = 0.
  index_P = 0
  indexFound = False
  for iresult in range(hti_result.ArraySize()):
    xval = hti_result.GetXValue(iresult) 
    yval = hti_result.GetYValue(iresult)
    if xval>uL_nobsinSR and not indexFound:
      index_P = iresult
      CLB_P = hti_result.CLb(iresult)
      mu_P = xval
      if iresult>0:
        CLB_M = hti_result.CLb(iresult-1)
        mu_M = hti_result.GetXValue(iresult-1)
        indexFound = True

  """
  interpolate (linear) the value of CLB to be exactly above upperlimit p-val
  """
  try:
    alpha_CLB = (CLB_P - CLB_M) / (mu_P - mu_M)
    beta_CLB = CLB_P - alpha_CLB*mu_P
    # CLB is taken as the point on the CLB curve for the same poi value, as the observed upperlimit
    CLB = alpha_CLB * uL_nobsinSR + beta_CLB
  except ZeroDivisionError:
    print "WARNING ZeroDivisionError while calculating CLb. Setting CLb=0."
    CLB=0.0

   
  print "\n\n\n\n  ***---  now doing p-value (s=0) calculation ---*** \n\n\n\n"

  """
  reset parameter values and errors for p(s=0) calculation by reopening workspace
  """
  w2 = Util.GetWorkspaceFromFile(filename,workspacename) 
  
  if w2==None:
    print "ERROR : Cannot open workspace : ", workspacename
    sys.exit(1) 
        
  """
  calculate p(s=0) from the workspace given
  """
  pval = RooStats.get_Presult(w2,False,ntoys,calctype)
  #print pval
  #sigma = StatTools.GetSigma(pval)
  #print sigma
 
  UL = {}
  UL["visXsec"] = uL_visXsec
  UL["nObsInSR"] = uL_nobsinSR
  UL["nExpInSR"] = uL_nexpinSR
  UL["nExpInSRPlus1Sigma"] = uL_nexpinSRerrP
  UL["nExpInSRMinus1Sigma"] = uL_nexpinSRerrM
  UL["CLb"] = CLB
  UL["p0"] = pval
  UL["Z"] = StatTools.GetSigma(pval)
  
  return UL
Ejemplo n.º 32
0
def latexfitresults(filename,
                    poiname='mu_SIG',
                    lumiFB=1.0,
                    nTOYS=3000,
                    nPoints=20,
                    muRange=40,
                    asimov=False,
                    wname='combined',
                    outputPrefix=""):
    """
  Calculate before/after-fit yields in all channels given
  
  @param filename The filename containing afterFit workspace
  @param poiname Name of ParameterOfInterest = POI (default='mu_SIG')
  @param lumiFB Given lumi in fb-1 to translate upper limit on N_events into xsection limit (default='1.0')
  @param nTOYS Number of toys to be run
  @param asimov Boolean to run asimov or not (default=False)
  @param nPoints Number of points of mu_SIG ranges to scan
  @param muRange Maximim value of mu_SIG to probe
  @param wname RooWorkspace name in file (default='combined')
  @param outputPrefix Prefix of the output file name (default="")
  """
    """
  pick up workspace from file
  """
    workspacename = wname
    w = Util.GetWorkspaceFromFile(filename, workspacename)
    if w == None:
        print "ERROR : Cannot open workspace : ", workspacename
        sys.exit(1)
    """
  Set the POI in ModelConfig
  """
    if len(poiname) == 0:
        print " "
    else:
        modelConfig = w.obj("ModelConfig")
        poi = w.var(poiname)
        if poi == None:
            print "ERROR : Cannot find POI with name: ", poiname, " in workspace from file ", filename
            sys.exit(1)
        modelConfig.SetParametersOfInterest(RooArgSet(poi))
        modelConfig.GetNuisanceParameters().remove(poi)
    """
  set some default values for nToys, calculator type and nPoints to be scanned
  """
    ntoys = 3000
    calctype = 0  # toys = 0, asymptotic (asimov) = 2
    nPoints = nPoints

    if nTOYS != 3000 and nTOYS > 0:
        ntoys = nTOYS
    if asimov:
        calctype = 2
    """
  set the range of POI to be scanned and perform HypoTest inversion
  """
    nCPUs = 8
    murangelow = 0.0
    murangehigh = muRange  #set here -1. if you want to have automatic determined scan range, if using values != -1, please check the log file if the scan range was large enough
    hti_result = RooStats.DoHypoTestInversion(w, ntoys, calctype, 3, True,
                                              nPoints, murangelow, murangehigh,
                                              False, False, "ModelConfig", "",
                                              "obsData", "")
    #hti_result = RooStats.DoHypoTestInversion(w, ntoys, calctype, 3, True, nPoints, murangelow, murangehigh, False, False, "ModelConfig", "", "obsData", "", nCPUs)

    nRemoved = hti_result.ExclusionCleanup()
    if nRemoved > 0:
        print "WARNING: removed %d points from hti_result" % nRemoved

    #store plot
    RooStats.AnalyzeHypoTestInverterResult(hti_result, calctype, 3, True,
                                           nPoints,
                                           "%s%s" % (outputPrefix, poiname),
                                           ".eps")
    RooStats.AnalyzeHypoTestInverterResult(hti_result, calctype, 3, True,
                                           nPoints,
                                           "%s%s" % (outputPrefix, poiname),
                                           ".pdf")
    RooStats.AnalyzeHypoTestInverterResult(hti_result, calctype, 3, True,
                                           nPoints,
                                           "%s%s" % (outputPrefix, poiname),
                                           ".png")

    outFileName = "./%shtiResult_poi_%s_ntoys_%d_calctype_%s_nPoints_%d.root" % (
        outputPrefix, poiname, ntoys, calctype, nPoints)

    hti_result.SaveAs(outFileName)
    hti_result.Print()
    """
  get the upper limit on N_obs out of hypotest result, and transform to limit on visible xsection
  """
    uL_nobsinSR = hti_result.UpperLimit()
    uL_visXsec = uL_nobsinSR / lumiFB
    """
  get the expected upper limit and one scan point up and down to calculate the error on upper limit
  """
    uL_nexpinSR = hti_result.GetExpectedUpperLimit(0)
    uL_nexpinSR_P = hti_result.GetExpectedUpperLimit(1)
    uL_nexpinSR_M = hti_result.GetExpectedUpperLimit(-1)
    if uL_nexpinSR > uL_nexpinSR_P or uL_nexpinSR < uL_nexpinSR_M:
        print " \n something very strange, either the uL_nexpinSR > uL_nexpinSR_P or uL_nexpinSR < uL_nexpinSR_M"
        print "  uL_nexpinSR = ", uL_nexpinSR, " uL_nexpinSR_P = ", uL_nexpinSR_P, " uL_nexpinSR_M = ", uL_nexpinSR_M
    uL_nexpinSRerrP = hti_result.GetExpectedUpperLimit(1) - uL_nexpinSR
    uL_nexpinSRerrM = uL_nexpinSR - hti_result.GetExpectedUpperLimit(-1)
    """
  find the CLB values at indexes above and below observed CLs p-value
  """
    CLB_P = 0.
    CLB_M = 0.
    mu_P = 0.
    mu_M = 0.
    index_P = 0
    indexFound = False
    for iresult in range(hti_result.ArraySize()):
        xval = hti_result.GetXValue(iresult)
        yval = hti_result.GetYValue(iresult)
        if xval > uL_nobsinSR and not indexFound:
            index_P = iresult
            CLB_P = hti_result.CLb(iresult)
            mu_P = xval
            if iresult > 0:
                CLB_M = hti_result.CLb(iresult - 1)
                mu_M = hti_result.GetXValue(iresult - 1)
                indexFound = True
    """
  interpolate (linear) the value of CLB to be exactly above upperlimit p-val
  """
    try:
        alpha_CLB = (CLB_P - CLB_M) / (mu_P - mu_M)
        beta_CLB = CLB_P - alpha_CLB * mu_P
        # CLB is taken as the point on the CLB curve for the same poi value, as the observed upperlimit
        CLB = alpha_CLB * uL_nobsinSR + beta_CLB
    except ZeroDivisionError:
        print "WARNING ZeroDivisionError while calculating CLb. Setting CLb=0."
        CLB = 0.0

    print "\n\n\n\n  ***---  now doing p-value (s=0) calculation ---*** \n\n\n\n"
    """
  reset parameter values and errors for p(s=0) calculation by reopening workspace
  """
    w2 = Util.GetWorkspaceFromFile(filename, workspacename)

    if w2 == None:
        print "ERROR : Cannot open workspace : ", workspacename
        sys.exit(1)
    """
  calculate p(s=0) from the workspace given
  """
    pval = RooStats.get_Presult(w2, False, ntoys, calctype)
    #print pval
    #sigma = StatTools.GetSigma(pval)
    #print sigma

    UL = {}
    UL["visXsec"] = uL_visXsec
    UL["nObsInSR"] = uL_nobsinSR
    UL["nExpInSR"] = uL_nexpinSR
    UL["nExpInSRPlus1Sigma"] = uL_nexpinSRerrP
    UL["nExpInSRMinus1Sigma"] = uL_nexpinSRerrM
    UL["CLb"] = CLB
    UL["p0"] = pval
    UL["Z"] = StatTools.GetSigma(pval)

    return UL
Ejemplo n.º 33
0
def frequentistCalculator(  ):
	"""Compute the significance (hypothesis test) using a frequentist calculator"""

	warnings.filterwarnings( action='ignore', category=RuntimeWarning, message='.*class stack<RooAbsArg\*,deque<RooAbsArg\*> >' )

	inFile = TFile('Rootfiles/workspace_QCD_RPVSt100tojj_FitP4Gaus_rooFit_1fb.root')
	myWS = inFile.Get("myWS") 
	data = myWS.data("data_obs")

	sbModel = myWS.obj("modelConfig") 
	sbModel.SetName("S+B Model")
	#sbModel.GetParametersOfInterest().first().setVal(5.)
	#sbModel.GetParametersOfInterest().first().setConstant()
	sbModel.SetSnapshot( sbModel.GetParametersOfInterest() )

	bModel = sbModel.Clone()
	bModel.SetName("B Model")
	bModel.GetParametersOfInterest().first().setVal(0.)
	bModel.GetParametersOfInterest().first().setConstant()
	bModel.SetSnapshot( bModel.GetParametersOfInterest() )

	#c1 = TCanvas('c1', 'c1',  10, 10, 750, 500 )
	#test = data.reduce( RooFit.Name('test'))
	#testHisto = TH1D('test','test', 10, 80, 180)
	#testHisto = test.fillHistogram( testHisto, RooArgList(x) )
	#testHisto.Draw()

	#x = RooRealVar( "x", "x", 50., 180. )
	#testHisto = sbModel.GetPdf() 
	#xframe = x.frame()
	#testHisto.plotOn( xframe  )

	#c1.SaveAs("test.pdf")


	# create the AsymptoticCalculator from data,alt model, null model
	################################### Here, roostats is fitting again and the parameters are wrong.
	asym_calc = RooStats.AsymptoticCalculator(data, bModel, sbModel)
	asym_calc.SetOneSidedDiscovery( True )
	result = asym_calc.GetHypoTest()
	result.Print()

	tw = TStopwatch()
	tw.Start()
	# Frequentist calculator
	fc = RooStats.FrequentistCalculator(data, bModel, sbModel)
	fc.SetToys(10,10) 

	# create the test statistics
	profll = RooStats.ProfileLikelihoodTestStat( sbModel.GetPdf() )
	profll.SetOneSidedDiscovery( True )

	# configure  ToyMCSampler and set the test statistics
	toymcs = RooStats.ToyMCSampler( fc.GetTestStatSampler()  )
	toymcs.SetTestStatistic( profll )

	pc = RooStats.ProofConfig( myWS, 10, "", 0 ) #ROOT.kFALSE)
	toymcs.SetProofConfig(pc)    # enable proof

	########################################## change to 0
	if not sbModel.GetPdf().canBeExtended(): toymcs.SetNEventsPerToy(0)

	# run the test
	fqResult = RooStats.HypoTestResult( fc.GetHypoTest() )
	fqResult.Print()
	tw.Stop()
	print tw.CpuTime(), tw.RealTime()

	c1 = TCanvas('c1', 'c1',  10, 10, 750, 500 )
	plot = RooStats.HypoTestPlot( fqResult )
	plot.SetLogYaxis(true)
	plot.Draw()
	c1.SaveAs("Plots/Significance.pdf")
Ejemplo n.º 34
0
        #Util.SetInterpolationCode(w,4)

        print "Processing analysis " + sigSamples[0]

        #if 'onestepCC' in sigSamples[0] and int(sigSamples[0].split("_")[3])>900:
        #    w.var("mu_SIG").setMax(50000.)
        #    print "Gluino mass above 900 - extending mu_SIG range \n"

        ## first asumptotic limit, to get a quick but reliable estimate for the upper limit
        ## dynamic evaluation of ranges
        testStatType = 3
        calcType = 2  #asympt
        nToys = 1000
        nPoints = 20  #mu sampling
        hypo = RooStats.DoHypoTestInversion(w, 1, 2, testStatType, True, 20, 0,
                                            -1)

        # then reevaluate with proper settings

        if (hypo != 0):
            hypo.ExclusionCleanup()

            i = 0
            while (i < 5):
                if min_CLs(hypo) > 0.05:
                    print "Starting rescan iteration: " + str(i)
                    hypo = RedoScan(w, testStatType, hypo)
                    if (hypo != 0):
                        hypo.ExclusionCleanup()
                else:
                    break
    [(4800, 5400)],
    [(4200, 4800)],
    [(3600, 4200)],
    [(3000, 3600)],
    [(2400, 3000)],
]

for signal, signalMass, massbinsset in [
    ("CIplusLL", "12000", massbinssets2),
    ("cs_ct14nlo_", "13000", massbinssets1),
    ("AntiCIplusLL", "12000", massbinssets2),
    ("DMAxial_Dijet_LO_Mphi_1_1p0_1p0_Mar5_gdmv_0_gdma_1p0_gv_0_ga_1", "6000",
     ""),
]:
    for massbins in massbinsset:
        limits = {}
        name = "pvalue_LHCa" + signal + "_" + ("_".join([
            s[0:4] for s in str(massbins).strip("[]").split("(")
        ])).strip("_") + "_exp_" + signalMass + "_2016"
        print name
        f1 = open(name + ".txt")
        observed = 0
        for l in f1.readlines():
            if "CLb" in l:
                pval = float(l.split("=")[1].split("+")[0].strip(" "))
                print "pvalue", pval, "significance", RooStats.PValueToSignificance(
                    (1. - pval) / 2.)
            if "Significance:" in l:
                significance = float(l.strip().split(" ")[-1].strip(")"))
                print "significance", significance
Ejemplo n.º 36
0
def GetBayesianInterval(filename="workspace.root",
                        wsname='myWS',
                        interactive=False):

    pInFile = ROOT.TFile(filename, "read")

    # load workspace
    pWs = pInFile.Get("myWS")
    if not pWs:
        print "workspace ", wsname, " not found"
        return -1

    # printout workspace content
    pWs.Print()

    # load and print data from workspace
    data = pWs.data("data")
    data.Print()

    # load and print S+B Model Config
    pSbHypo = pWs.obj("SbHypo")
    pSbHypo.Print()

    # create RooStats Bayesian calculator and set parameters
    # Metropolis-Hastings algorithm needs a proposal function
    sp = RooStats.SequentialProposal(10.0)

    mcmc = RooStats.MCMCCalculator(data, pSbHypo)
    mcmc.SetConfidenceLevel(0.95)
    mcmc.SetNumIters(100000)  # Metropolis-Hastings algorithm iterations
    mcmc.SetProposalFunction(sp)
    mcmc.SetNumBurnInSteps(500)  # first N steps to be ignored as burn-in
    mcmc.SetLeftSideTailFraction(0.0)
    mcmc.SetNumBins(
        40)  # for plotting only - does not affect limit calculation

    # estimate credible interval
    # NOTE: unfortunate notation: the UpperLimit() name refers
    #       to the upper boundary of an interval,
    #       NOT to the upper limit on the parameter of interest
    #       (it just happens to be the same for the one-sided
    #       interval starting at 0)
    pMcmcInt = mcmc.GetInterval()
    upper_bound = pMcmcInt.UpperLimit(pWs.var("xsec"))
    lower_bound = pMcmcInt.LowerLimit(pWs.var("xsec"))

    print "one-sided 95%.C.L. bayesian credible interval for xsec: ", "[", lower_bound, ", ", upper_bound, "]"

    # make posterior PDF plot for POI
    c1 = ROOT.TCanvas("posterior", "posterior")
    plot = RooStats.MCMCIntervalPlot(pMcmcInt)
    plot.Draw()
    c1.SaveAs("bayesian_mcmc_posterior.pdf")

    # make scatter plots to visualise the Markov chain
    c2 = ROOT.TCanvas("xsec_vs_beta_lumi", "xsec vs lumi_beta")
    plot.DrawChainScatter(pWs.var("xsec"), pWs.var("lumi_beta"))
    c2.SaveAs("scatter_mcmc_xsec_vs_beta_lumi.pdf")

    c3 = ROOT.TCanvas("xsec_vs_beta_efficiency", "xsec vs eff_beta")
    plot.DrawChainScatter(pWs.var("xsec"), pWs.var("eff_beta"))
    c3.SaveAs("scatter_mcmc_xsec_vs_beta_efficiency.pdf")

    c4 = ROOT.TCanvas("xsec_vs_beta_nbkg", "xsec vs nbkg_beta")
    plot.DrawChainScatter(pWs.var("xsec"), pWs.var("nbkg_beta"))
    c4.SaveAs("scatter_mcmc_xsec_vs_beta_nbkg.pdf")

    ROOT.gPad.Update()

    if interactive:
        raw_input("\npress <enter> to continue")