Ejemplo n.º 1
0
def plotPulls(optunf="Bayes",
              ntest=10,
              leff=True,
              loufl=False,
              optfun="exp",
              opttfun="",
              gmean=-1.0,
              nrebin=4):

    if opttfun == "":
        opttfun = optfun

    if optfun == "blobel":
        gmean = 0.0

    funttxt, funtxt = funtxts(opttfun, optfun, leff, loufl)

    global histos, canv, canv2
    histos = []

    canv = TCanvas("canv", "thruth vs reco pulls", 600, 800)
    canv.Divide(1, 3)
    canv2 = TCanvas("canv2", "P(chi^2)", 600, 800)
    canv2.Divide(2, 3)

    if optunf == "BasisSplines":
        bininfo = BinInfo(nrebin)
        unfoldtester = UnfoldTester(optunf, nrebin)
    else:
        bininfo = BinInfo()
        unfoldtester = UnfoldTester(optunf)
    trainer = Trainer(bininfo, opttfun, optfun)
    tester = Tester(bininfo, optfun)
    hbininfo = bininfo.create(optfun)
    dx = hbininfo["mhi"]
    for sigma, ipad in [[0.01 * dx, 1], [0.03 * dx, 2], [0.1 * dx, 3]]:
        txt = optunf + ", smear mu, s.d.= " + str(gmean) + ", " + str(
            sigma) + ", train: " + funttxt + ", test: " + funtxt + ", " + str(
                ntest) + " tests"
        hPulls = TProfile("pulls", txt, hbininfo["tbins"], hbininfo["tlo"],
                          hbininfo["thi"])
        hPulls.SetErrorOption("s")
        hPulls.SetYTitle("Thruth reco pull")
        histos.append(hPulls)
        hChisq = TH1D("chisq", "P(chi^2) rec " + txt, 10, 0.0, 1.0)
        hChisqm = TH1D("chisqm", "P(chi^2) mea " + txt, 10, 0.0, 1.0)
        histos.append(hChisq)
        histos.append(hChisqm)
        measurement = createMeasurement(gmean, sigma, leff, optfun)
        response = trainer.train(measurement, loufl=loufl)
        for itest in range(ntest):
            print "Test", itest
            unfold, hTrue, hMeas = unfoldtester.rununfoldtest(
                tester, measurement, response)
            unfold.PrintTable(cout, hTrue, 2)
            hReco = unfold.Hreco(2)
            nbin = hReco.GetNbinsX()
            if hbininfo["nrebin"] > 1:
                hTrue = hTrue.Rebin(nrebin)
            for ibin in range(nbin + 1):
                truevalue = hTrue.GetBinContent(ibin)
                recvalue = hReco.GetBinContent(ibin)
                error = hReco.GetBinError(ibin)
                if error > 0.0:
                    pull = (recvalue - truevalue) / error
                    hPulls.Fill(hReco.GetBinCenter(ibin), pull)
            chisq = unfold.Chi2(hTrue, 2)
            hChisq.Fill(TMath.Prob(chisq, hTrue.GetNbinsX()))
            chisqm = unfold.Chi2measured()
            pchisqm = TMath.Prob(chisqm, hMeas.GetNbinsX() - hReco.GetNbinsX())
            print "Chisq measured=", chisqm, "P(chi^2)=", pchisqm
            hChisqm.Fill(pchisqm)

        canv.cd(ipad)
        gStyle.SetErrorX(0)
        hPulls.SetMinimum(-3.0)
        hPulls.SetMaximum(3.0)
        hPulls.SetMarkerSize(1.0)
        hPulls.SetMarkerStyle(20)
        hPulls.SetStats(False)
        hPulls.Draw()
        canv2.cd(ipad * 2 - 1)
        hChisq.Draw()
        canv2.cd(ipad * 2)
        hChisqm.Draw()

    fname = "RooUnfoldTestPulls_" + optunf + "_" + opttfun + "_" + optfun
    if loufl:
        fname += "_oufl"
    canv.Print(fname + ".pdf")
    fname = "RooUnfoldTestChisq_" + optunf + "_" + opttfun + "_" + optfun
    if loufl:
        fname += "_oufl"
    canv2.Print(fname + ".pdf")

    return
Ejemplo n.º 2
0
Y = np.array(d.get('target')[0:num_events][:, 1], np.float64)
X[X < 1e-6] = 0
Y = Y
Data = np.sum(X, axis=(1, 2, 3))

for j in np.arange(num_events):
    Eprof.Fill(Y[j], Data[j] / Y[j])
Eprof.SetTitle("Ratio of Ecal and Ep")
Eprof.GetXaxis().SetTitle("Ep")
Eprof.GetYaxis().SetTitle("Ecal/Ep")
Eprof.Draw()
Eprof.Fit('pol6')
c.Update()
Eprof.GetFunction("pol6").SetLineColor(color[0])
c.Update()
Eprof.SetStats(0)
Eprof.GetYaxis().SetRangeUser(0, 0.04)
Eprof.SetLineColor(color[0])
legend = TLegend(0.7, 0.7, 0.9, 0.9)
legend.AddEntry(Eprof, "Data", "l")
Gprof = []
for i, gweight in enumerate(gweights):
    Gprof.append(TProfile("Gprof" + str(i), "Gprof" + str(i), 100, 0, 500))
    #Gprof[i].SetStates(0)
    #Generate events
    g.load_weights(gweight)
    noise = np.random.normal(0, 1, (num_events, latent))
    generator_in = np.multiply(np.reshape(Y / 100, (-1, 1)), noise)
    generated_images = g.predict(generator_in, verbose=False, batch_size=100)
    GData = np.sum(generated_images, axis=(1, 2, 3)) / scales[i]
    print GData.shape