Ejemplo n.º 1
0
    def Plan(self, start_config, goal_config, epsilon = 0.001):
        
        ftree = RRTTree(self.planning_env, start_config)
        rtree = RRTTree(self.planning_env, goal_config)

        if self.visualize and hasattr(self.planning_env, 'InitializePlot'):
            self.planning_env.InitializePlot(goal_config)

        # max edge length + a lot of code clean up
        maxDist = 5
        milestone = 10
        while True:
            sample = self.planning_env.GenerateRandomConfiguration()
            f_vid, f_best = self.ExtendFromTree(ftree,sample,maxDist, epsilon)
            r_vid, r_best = self.ExtendFromTree(rtree,sample,maxDist, epsilon)
            if f_best is not None:
                f_ids = self.AddNodeAndMilestones(ftree, f_vid, f_best, milestone)
                for id in f_ids:
                    # check if new vertex I'm adding joins the trees
                    connects, r_close_vid = self.CheckIfOtherTreeConnects(ftree.vertices[id], rtree, epsilon)
                    if(connects):
                        return self.GeneratePlan(ftree, rtree, id, r_close_vid)

            if r_best is not None:
                r_ids = self.AddNodeAndMilestones(rtree, r_vid, r_best, milestone)
                for id in r_ids:
                    # check if new vertex I'm adding joins the trees
                    connects, f_close_vid = self.CheckIfOtherTreeConnects(rtree.vertices[id], ftree, epsilon)
                    if(connects):
                        return self.GeneratePlan(ftree, rtree, f_close_vid, id)
Ejemplo n.º 2
0
    def Plan(self, start_config, goal_config, epsilon = 0.001):
        
        ftree = RRTTree(self.planning_env, start_config)
        rtree = RRTTree(self.planning_env, goal_config)
        plan = []
        #true represents ftree, false represents rtree
        isftree = True
        qi_f = start_config
        qi_r = goal_config

        if self.visualize and hasattr(self.planning_env, 'InitializePlot'):
            self.planning_env.InitializePlot(goal_config)
        # TODO: Here you will implement the rrt connect planner
        #  The return path should be an array
        #  of dimension k x n where k is the number of waypoints
        #  and n is the dimension of the robots configuration space
        while(True):
            if(isftree):
                #update qi_f
                qi_f_id, qi_f = self.ftree.GetNearestVertex(qi_r)
                qr_id, qr = self.rtree.GetNearestVertex(qi_f)
                if(self.planning_env.Extend(qi_f,qr)== qi_f):
                    qr = self.planning_env.GenerateRandomConfiguration()
                qc = self.planning_env.Extend(qi_f, qr)
                qc_id = self.ftree.AddVertex(qc)
                self.ftree.AddEdge(qi_f_id, qc_id)




            if(len(self.ftree.vertices) > len(self.rtree.vertices)):
                isftree = False

            if (!isftree):
                # update qi_r
                qi_r_id, qi_r = self.rtree.GetNearestVertex(qi_f)
                qr_id, qr = self.ftree.GetNearestVertex(qi_r)
                if (self.planning_env.Extend(qi_r, qr) == qi_r):
                    qr = self.planning_env.GenerateRandomConfiguration()
                qc = self.planning_env.Extend(qi_r, qr)
                qc_id = self.rtree.AddVertex(qc)
                self.rtree.AddEdge(qi_r_id, qc_id)

            if (len(self.ftree.vertices) < len(self.rtree.vertices)):
                isftree = True

            if(self.planning_env.ComputeDistance(qi_r, qi_f) < epsilon):
                print("Reach the goal ")
                break

        plan.append(start_config)
        plan.append(goal_config)
        
        return plan
    def Plan(self, start_config, goal_config, epsilon=0.2):
        ftree = RRTTree(self.planning_env, start_config)
        rtree = RRTTree(self.planning_env, goal_config)
        plan = []

        if self.visualize and hasattr(self.planning_env, 'InitializePlot'):
            self.planning_env.InitializePlot(goal_config)

        NUM_ITERATIONS = 100000
        for iter in range(NUM_ITERATIONS):

            # pick random goal tree and connect path tree
            rand_tree, rand_goal_config = (ftree, goal_config) if len(
                ftree.vertices) < len(rtree.vertices) else (rtree,
                                                            start_config)
            connect_tree = ftree if len(ftree.vertices) >= len(
                rtree.vertices) else rtree

            # random goal plan
            v_new = self.RandomGoalPlan(rand_tree, rand_goal_config)
            # connect path plan
            if (v_new is not None) and self.ConnectPlan(
                    connect_tree, v_new, epsilon):
                break

            if (iter % 10 == 0):
                d_f = self.planning_env.ComputeDistance(
                    ftree.GetNearestVertex(goal_config)[1], goal_config)
                d_r = self.planning_env.ComputeDistance(
                    rtree.GetNearestVertex(start_config)[1], start_config)
                print(iter, ' Closest ftree dist to end goal :', d_f,
                      '; Closest rtree dist to start goal :', d_r)

        dist = self.planning_env.ComputeDistance(ftree.vertices[-1],
                                                 rtree.vertices[-1])
        print("Dist=", dist)
        if dist < epsilon:
            plan_f, fid = [ftree.vertices[-1]], len(ftree.vertices) - 1
            while (fid != ftree.GetRootId()):
                plan_f.append(ftree.vertices[ftree.edges[fid]])
                fid = ftree.edges[fid]
            plan_r, rid = [rtree.vertices[-1]], len(rtree.vertices) - 1
            while (rid != rtree.GetRootId()):
                plan_r.append(rtree.vertices[rtree.edges[rid]])
                rid = rtree.edges[rid]
            plan = plan_f[::-1]
            plan.extend(plan_r)

            if self.visualize and hasattr(self.planning_env, 'InitializePlot'):
                self.planning_env.InitializePlot(goal_config)
                if self.planning_env.visualize:
                    [
                        self.planning_env.PlotEdge(plan[i - 1], plan[i])
                        for i in range(1, len(plan))
                    ]

        return plan
Ejemplo n.º 4
0
    def Plan(self, start_config, goal_config, epsilon=0.001):

        ftree = RRTTree(self.planning_env, start_config)
        rtree = RRTTree(self.planning_env, goal_config)
        plan = []

        if self.visualize and hasattr(self.planning_env, 'InitializePlot'):
            self.planning_env.InitializePlot(goal_config)
        # TODO: Here you will implement the rrt connect planner
        #  The return path should be an array
        #  of dimension k x n where k is the number of waypoints
        #  and n is the dimension of the robots configuration space

        plan.append(start_config)
        plan.append(goal_config)

        return plan
Ejemplo n.º 5
0
    def Plan(self, start_config, goal_config, epsilon = 0.001):
        
        ftree = RRTTree(self.planning_env, start_config)
        rtree = RRTTree(self.planning_env, goal_config)
        plan = []

        if self.visualize and hasattr(self.planning_env, 'InitializePlot'):
            self.planning_env.InitializePlot(goal_config)

        # max edge length + a lot of code clean up
        maxDist = .5
        while True:
            sample = self.planning_env.GenerateRandomConfiguration()
            f_vid, f_vtx = ftree.GetNearestVertex(sample)
            r_vid, r_vtx = rtree.GetNearestVertex(sample)
            f_vtx_sample_dist = self.planning_env.ComputeDistance(sample,f_vtx)
            r_vtx_sample_dist = self.planning_env.ComputeDistance(sample,r_vtx)
            f_sample = f_vtx + (sample-f_vtx)/f_vtx_sample_dist * min(f_vtx_sample_dist, maxDist)
            r_sample = r_vtx + (sample-r_vtx)/r_vtx_sample_dist * min(r_vtx_sample_dist, maxDist)
            f_best = self.planning_env.Extend(f_vtx, f_sample)
            r_best = self.planning_env.Extend(r_vtx, r_sample)

            if f_best is not None:
                f_new_vid = self.AddNode(ftree, f_vid, f_best)
                # check if new vertex I'm adding joins the trees
                connects, r_close_vid = self.CheckIfOtherTreeConnects(f_best, rtree, epsilon)
                if(connects):
                    return self.GeneratePlan(ftree, rtree, f_new_vid, r_close_vid)

            if r_best is not None:
                r_new_vid = self.AddNode(rtree, r_vid, r_best)
                connects, f_close_vid = self.CheckIfOtherTreeConnects(r_best, ftree, epsilon)
                if(connects):
                    return self.GeneratePlan(ftree, rtree, f_close_vid, r_new_vid)
Ejemplo n.º 6
0
    def Plan(self, start_config, goal_config, epsilon=0.001):
        start_time = time.time()
        ftree = RRTTree(self.planning_env, start_config)
        rtree = RRTTree(self.planning_env, goal_config)
        plan = []
        rplan = []
        fplan = []
        expansions = 0

        if self.visualize and hasattr(self.planning_env, 'InitializePlot'):
            self.planning_env.InitializePlot(goal_config)
        # TODO: Here you will implement the rrt connect planner
        #  The return path should be an array
        #  of dimension k x n where k is the number of waypoints
        #  and n is the dimension of the robots configuration space

        print "startConfig = [%.2f, %.2f]" % (start_config[0], start_config[1])
        print "goalConfig = [%.2f, %.2f]" % (goal_config[0], goal_config[1])
        disc = True
        while (disc):
            if (random.random() < 0.5):
                desConfig = self.planning_env.GenerateRandomConfiguration()
            else:
                desConfig = goal_config
            expansions += 1
            [nearID, nearConfig] = ftree.GetNearestVertex(desConfig)
            extension = self.planning_env.Extend(nearConfig, desConfig)
            if (extension != None):
                extIDf = ftree.AddVertex(extension)
                ftree.AddEdge(nearID, extIDf)
                #self.planning_env.PlotEdge(nearConfig, extension);

            #if(numpy.array_equal(extension, goal_config)):
            #    disc = False

            if (random.random() < 0.95):
                desConfig = self.planning_env.GenerateRandomConfiguration()
            else:
                desConfig = start_config
            expansions += 1
            [nearID, nearConfig] = rtree.GetNearestVertex(desConfig)
            extension = self.planning_env.Extend(nearConfig, desConfig)
            if (extension != None):
                extIDr = rtree.AddVertex(extension)
                rtree.AddEdge(nearID, extIDr)
                #self.planning_env.PlotEdge(nearConfig, extension);

            #if(numpy.array_equal(extension, start_config)):
            #    disc = False

            for i in range(len(ftree.vertices)):
                if (numpy.linalg.norm(
                        numpy.array(desConfig) -
                        numpy.array(ftree.vertices[i])) < 5):
                    lastlink = self.planning_env.Extend(
                        extension, ftree.vertices[i])
                    if (numpy.array_equal(lastlink, ftree.vertices[i])):
                        lastIDr = rtree.AddVertex(lastlink)
                        rtree.AddEdge(extIDr, lastIDr)
                        #self.planning_env.PlotEdge(extension, lastlink);
                        disc = False
                        extIDf = i
                        expansions += 1
                        break
        lastlink_cp = lastlink
        rplan.insert(0, goal_config)
        while 1:
            if (extIDr == rtree.GetRootId()):
                break
            else:
                rplan.insert(1, extension)
            extIDr = rtree.edges[extIDr]
            extension = rtree.vertices[extIDr]

        plan = list(reversed(rplan))

        plan.insert(0, start_config)
        while 1:
            if (extIDf == ftree.GetRootId()):
                break
            else:
                plan.insert(1, lastlink)
            extIDf = ftree.edges[extIDf]
            lastlink = ftree.vertices[extIDf]

        for config in plan:
            print "fconfig = [%.2f, %.2f]" % (config[0], config[1])
        print("--- %s seconds ---" % (time.time() - start_time))
        print "Total expansions = %d" % (expansions)
        print("--- %s seconds ---" % (time.time() - start_time))
        print("--- %s path length ---" % len(plan))
        print("--- %s vertices ---" %
              (len(ftree.vertices) + len(rtree.vertices) - 1))

        return plan
    def Plan(self, start_config, goal_config, epsilon=0.001):

        ftree = RRTTree(self.planning_env, start_config, goal_config)
        rtree = RRTTree(self.planning_env, goal_config, goal_config)
        plan = []
        start_time = time.time()
        if self.visualize and hasattr(self.planning_env, 'InitializePlot'):
            self.planning_env.InitializePlot(goal_config)
        # TODO: Here you will implement the rrt connect planner
        #  The return path should be an array
        #  of dimension k x n where k is the number of waypoints
        #  and n is the dimension of the robots configuration space
        count = 0
        start = [round(q, 3) for q in start_config]
        goal = [round(f, 3) for f in goal_config]
        num_turns = 1 / epsilon
        while count != num_turns:
            count = count + 1
            rand = self.planning_env.generate_random_configuration()
            #print "rand",rand
            #get neighbours
            fNid, fneighbour = ftree.GetNearestVertex(rand)
            rNid, rneighbour = rtree.GetNearestVertex(rand)

            fnew_guy = self.planning_env.connect(fneighbour, rand)

            rnew_guy = self.planning_env.connect(rneighbour, rand)
            fNew_id = ftree.AddVertex(fnew_guy)
            rNew_id = rtree.AddVertex(rnew_guy)
            #print "neighbour",neighbour,"new_guy",new_guy
            ftree.AddEdge(fNid, fNew_id)
            rtree.AddEdge(rNid, rNew_id)
            #print "new_guy",new_guy
            if self.planning_env.dimension == 2:
                self.planning_env.PlotEdge(fneighbour, fnew_guy)
                self.planning_env.PlotEdge(rneighbour, rnew_guy)
            if fnew_guy == rnew_guy:
                print "Goal Reached"
                last = fNew_id
                book = []
                while last != 0:
                    book.append(ftree.vertices[last])
                    last = ftree.edges[last]
                book.append(ftree.vertices[last])
                x = len(book)
                nicebook = [0] * x
                for i in range(x):
                    nicebook[i] = book[x - i - 1]
                last = rNew_id
                while last != 0:
                    nicebook.append(rtree.vertices[last])
                    last = rtree.edges[last]
                nicebook.append(rtree.vertices[last])
                print("--- %s seconds ---" % (time.time() - start_time))
                print "count", count
                dist = 0
                f = start
                for i in nicebook:
                    dist = dist + self.planning_env.compute_distance(f, i)
                    f = i
                print "total path =", dist
                return nicebook
        print "Goal NOT foud"
        return 0

        return plan
Ejemplo n.º 8
0
    def Plan(self, start_config, goal_config, epsilon=0.001):

        ftree = RRTTree(self.planning_env, start_config)
        rtree = RRTTree(self.planning_env, goal_config)
        plan = []

        if self.visualize and hasattr(self.planning_env, 'InitializePlot'):
            self.planning_env.InitializePlot(goal_config)
        # TODO: Here you will implement the rrt connect planner
        #  The return path should be an array
        #  of dimension k x n where k is the number of waypoints
        #  and n is the dimension of the robots configuration space

        tree1 = ftree
        tree2 = rtree
        distance = self.planning_env.ComputeDistance(start_config, goal_config)

        while distance > epsilon:
            #extend tree1
            r = random()
            if r > self.planning_env.p:
                q_rand = self.planning_env.GenerateRandomConfiguration()
            else:
                q_rand = tree2.vertices[-1]
            cid, q = tree1.GetNearestVertex(q_rand)
            q_new = self.planning_env.Extend(q, q_rand)
            if q_new != None:
                nid = tree1.AddVertex(q_new)
                tree1.AddEdge(cid, nid)
                #self.planning_env.PlotEdge(tree1.vertices[cid], tree1.vertices[nid])
                oid, q_other = tree2.GetNearestVertex(q_new)
                distance = self.planning_env.ComputeDistance(q_new, q_other)
            if distance < epsilon:
                break
            #Swap the trees
            temptree = tree1
            tree1 = tree2
            tree2 = temptree

        plan.append(start_config)
        if numpy.array_equal(tree1.vertices[0], start_config):

            while nid != 0:
                plan.insert(0, tree1.vertices[nid])
                nid = tree1.edges[nid]
                #prev = tree1.vertices[nid]
            while oid != 0:
                plan.append(tree2.vertices[oid])  #Duplication might happen
                oid = tree2.edges[oid]
                #prev = tree2.vertices[oid]
        else:

            while nid != 0:
                plan.append(tree1.vertices[nid])
                nid = tree1.edges[nid]
                #prev = tree1.vertices[nid]
            while oid != 0:
                plan.insert(0, tree2.vertices[oid])
                oid = tree2.edges[oid]
                #prev = tree2.vertices[oid]

        plan.append(goal_config)

        return plan
Ejemplo n.º 9
0
class RRTConnectPlanner(object):
    def __init__(self, planning_env, visualize):
        self.planning_env = planning_env
        self.visualize = visualize

    def Plan(self, start_config, goal_config, epsilon=0.01):
        start_config = numpy.copy(start_config)
        goal_config = numpy.copy(goal_config)
        self.ftree = RRTTree(self.planning_env, start_config)
        self.rtree = RRTTree(self.planning_env, goal_config)
        plan = []

        #pdb.set_trace()

        if self.visualize and hasattr(self.planning_env, 'InitializePlot'):
            self.planning_env.InitializePlot(goal_config)
        # TODO: Here you will implement the rrt connect planner
        #  The return path should be an array
        #  of dimension k x n where k is the number of waypoints
        #  and n is the dimension of the robots configuration space
        self.ftree.AddEdge(self.ftree.GetRootId, self.ftree.GetRootId)
        self.rtree.AddEdge(self.rtree.GetRootId, self.rtree.GetRootId)
        q_nearest_f = start_config
        q_nearest_r = goal_config

        goal_index_f = 0
        goal_index_r = 0

        while (self.planning_env.ComputeConfigDistance(q_nearest_f,
                                                       q_nearest_r) > epsilon):

            #pdb.set_trace()

            q_target = self.planning_env.GenerateRandomConfiguration()

            vid_f, q_nearest_f = self.ftree.GetNearestVertex(q_target)
            vid_r, q_nearest_r = self.rtree.GetNearestVertex(q_target)

            q_extended_f = self.planning_env.ExtendN(q_nearest_f, q_target)
            q_extended_r = self.planning_env.ExtendN(q_nearest_r, q_target)

            if q_extended_f is not None:
                if numpy.array_equal(q_nearest_f, q_extended_f) == False:
                    self.ftree.AddVertex(q_extended_f)
                    self.ftree.AddEdge(vid_f, len(self.ftree.vertices) - 1)

                    #self.planning_env.PlotEdge(q_nearest_f,q_extended_f)
            if q_extended_r is not None:
                if numpy.array_equal(q_nearest_r, q_extended_r) == False:
                    self.rtree.AddVertex(q_extended_r)
                    self.rtree.AddEdge(vid_r, len(self.rtree.vertices) - 1)

                    #self.planning_env.PlotEdge(q_nearest_r,q_extended_r)

            if q_extended_f is not None and q_extended_r is not None:
                if numpy.array_equal(q_extended_f, q_extended_r):
                    goal_index_f = len(self.ftree.vertices) - 1
                    goal_index_r = len(self.rtree.vertices) - 1
                    break

        #build tree
        current_index_f = goal_index_f
        current_index_r = goal_index_r

        while current_index_f != 0:
            plan.append(self.ftree.vertices[current_index_f])
            current_index_f = self.ftree.edges[current_index_f]
        plan.append(self.ftree.vertices[current_index_f])
        plan = plan[::-1]

        while current_index_r != 0:
            plan.append(self.rtree.vertices[current_index_r])
            current_index_r = self.rtree.edges[current_index_r]
        plan.append(self.rtree.vertices[current_index_r])
        print "Tree Size: " + str(
            len(self.rtree.vertices) + len(self.ftree.vertices))
        return plan
class RRTConnectPlanner(object):

    def __init__(self, planning_env, visualize):
        self.planning_env = planning_env
        self.visualize = visualize
        self.tree1 = []
        self.tree2 = []
        self.path1 = []
        self.path2 = []
        self.result1 = []
        self.result2 = []


    def Plan(self, start_config, goal_config, epsilon = 0.5):
        
        self.tree1 = RRTTree(self.planning_env, start_config)
        self.tree2 = RRTTree(self.planning_env, goal_config)
        plan = []
        start_time = time.time()

        if self.visualize and hasattr(self.planning_env, 'InitializePlot'):
            self.planning_env.InitializePlot(goal_config)
        # TODO: Here you will implement the rrt connect planner
        #  The return path should be an array
        #  of dimension k x n where k is the number of waypoints
        #  and n is the dimension of the robots configuration space

        # plan.append(start_config)
        # plan.append(goal_config)

        # simple:
        # goal_tf = numpy.eye(4,dtype = float)
        # goal_tf[0,3] = goal_config[0]
        # goal_tf[1,3] = goal_config[1]
        #
        # start_tf = numpy.eye(4,dtype = float)
        # start_tf[0,3] = start_config[0]
        # start_tf[1,3] = start_config[1]

        self.tree1.vertices = []
        #simple:
        # self.tree1.AddVertex(start_tf)
        self.tree1.AddVertex(start_config)

        self.tree2.vertices = []
        # simple:
        # self.tree2.AddVertex(goal_tf)
        self.tree2.AddVertex(goal_config)

        count = 0

        while (True):
            count += 1

            # Generate random point
            qr = self.planning_env.GenerateRandomConfiguration()

            # Find the nearest point to the random point
            # qi: nearest point
            #simple:
            # if(numpy.shape(qr) != (4, 4)):
            if (numpy.shape(qr) != (1, 7)):

                qr = self.planning_env.GenerateRandomConfiguration()
                qi_id1, qi1 = self.tree1.GetNearestVertex(qr)
                qi_id2, qi2 = self.tree2.GetNearestVertex(qr)
            else:
                qi_id1, qi1 = self.tree1.GetNearestVertex(qr)
                qi_id2, qi2 = self.tree2.GetNearestVertex(qr)

            qc1 = self.planning_env.Extend(qi1, qr)
            qc2 = self.planning_env.Extend(qi2, qr)

            qc_id1 = self.tree1.AddVertex(qc1)
            qc_id2 = self.tree2.AddVertex(qc2)

            self.tree1.AddEdge(qi_id1, qc_id1)
            self.tree2.AddEdge(qi_id2, qc_id2)
            qc1_qc2_dist = self.planning_env.ComputeDistance(qc1, qc2)
            # when reach the goal, break the while loop
            if(qc1_qc2_dist < epsilon):
                print("Reach the goal is qc_1 {} and qc_2 {} with dist {}".format(qc_id1, qc_id2 , qc1_qc2_dist))
                break

        path1 = []
        plan1 = []
        level1 = 0
        visited1 = [False] * len(self.tree1.vertices)

        path2 = []
        plan2 = []
        level2 = 0
        visited2 = [False] * len(self.tree2.vertices)

        # use DFS to find the path from the start_config to the goal_config
        # print("Print all paths1 is {} ".format(self.tree1.vertices))
        # print("Print all paths2 is {} ".format(self.tree2.vertices))

        self.printAllPathsUtil1(0, qc_id1,visited1,path1,level1)

        self.printAllPathsUtil2(0, qc_id2, visited2, path2, level2)

        # Hacky way to truncate the extra path return by the DFS
        idx1 = 0
        while(self.path1[idx1] is not qc_id1):
            self.result1.append(self.path1[idx1])
            idx1 += 1
        self.result1.append(qc_id1)

        # Look up the vertices given the vertices' id
        for i in self.result1:
            v = self.tree1.vertices[i]
            #simple
            # plan1.append((v[0,3],v[1,3]))
            plan1.append(v)


        idx2 = 0
        while(self.path2[idx2] is not qc_id2):
            self.result2.append(self.path2[idx2])
            idx2 += 1
        self.result2.append(qc_id2)

        # Look up the vertices given the vertices' id
        for i in self.result2:
            v = self.tree2.vertices[i]
            #simple:
            # plan2.append((v[0,3],v[1,3]))
            plan2.append(v)

        # given two path from two trees, plan1 and plan2, concat plan1 with plan2 (reverse) to give the final path
        reversed_plan2 = plan2[::-1]
        all_plan = numpy.concatenate((plan1,reversed_plan2),0)
        step_dist = self.planning_env.step
        all_step_dist = numpy.sum(len(all_plan)*step_dist)

        elapsed_time = time.time() - start_time
        vertices = len(numpy.concatenate((self.tree1.vertices,self.tree2.vertices),0))
        print("RRT CONNECT: All step dist: {}, elapsed time is {} and vertices number {} ".format(all_step_dist, elapsed_time, vertices))

        return all_plan

    def printAllPathsUtil1(self, u, d, visited, path, level):
        level += 1
        visited[u] = True
        path.append(u)
        if u == d:
            print("---------------------------------------------")
            print("This is path1 {}".format(path))
            # self.result.append(path)
            self.path1 = path
        else:
            for i in self.tree1.edges[u]:
                if visited[i] == False:
                    print("level %d, val %d " % (level, i))
                    self.printAllPathsUtil1(i, d, visited, path, level)

    def printAllPathsUtil2(self, u, d, visited, path, level):
        level += 1
        visited[u] = True
        path.append(u)
        if u == d:
            print("---------------------------------------------")
            print("This is path2 {}".format(path))
            # self.result.append(path)
            self.path2 = path
        else:
            for i in self.tree2.edges[u]:
                if visited[i] == False:
                    print("level %d, val %d " % (level, i))
                    self.printAllPathsUtil2(i, d, visited, path, level)
Ejemplo n.º 11
0
    def Plan(self, start_config, goal_config, epsilon=0.001):
        start_time = time.time()
        ftree = RRTTree(self.planning_env, start_config)
        rtree = RRTTree(self.planning_env, goal_config)
        plan = []

        if self.visualize and hasattr(self.planning_env, 'InitializePlot'):
            self.planning_env.InitializePlot(goal_config)
        # TODO: Here you will implement the rrt connect planner
        #  The return path should be an array
        #  of dimension k x n where k is the number of waypoints
        #  and n is the dimension of the robots configuration space

        while (1):
            #import IPython
            #IPython.embed()
            #drop one vertex while
            v_drop = self.planning_env.GenerateRandomConfiguration()
            # compare the distance from ftree and the rtree
            i_nearst_f, v_nearst_f = ftree.GetNearestVertex(v_drop)
            i_nearst_r, v_nearst_r = rtree.GetNearestVertex(v_drop)
            ext_v_drop_to_f = self.planning_env.Extend(v_nearst_f, v_drop)
            ext_v_drop_to_r = self.planning_env.Extend(v_nearst_r, v_drop)

            if (ext_v_drop_to_f == None or ext_v_drop_to_r == None): continue

            dist_f = self.planning_env.ComputeDistance(ext_v_drop_to_f, v_drop)
            dist_r = self.planning_env.ComputeDistance(ext_v_drop_to_r, v_drop)

            # if the v_drop is close enough to both two tree,
            # add this vertice into both trees and then terminate.
            if (dist_f <= epsilon and dist_r <= epsilon):
                final_vid_v_drop_r = rtree.AddVertex(v_drop)
                rtree.AddEdge(i_nearst_r, final_vid_v_drop_r)
                if (len(v_nearst_r) == 2
                    ):  #make sure there is 2D config will show the plot
                    self.planning_env.PlotEdge(v_nearst_r, v_drop)

                final_vid_v_drop_f = ftree.AddVertex(v_drop)

                ftree.AddEdge(i_nearst_f, final_vid_v_drop_f)
                if (len(v_nearst_f) == 2
                    ):  #make sure there is 2D config will show the plot
                    self.planning_env.PlotEdge(v_nearst_f, v_drop)

                break
            elif (dist_f <= dist_r):  # v_drop more close to the ftree
                vid_v_drop_f = ftree.AddVertex(ext_v_drop_to_f)
                ftree.AddEdge(i_nearst_f, vid_v_drop_f)
                if (len(v_nearst_f) == 2):
                    self.planning_env.PlotEdge(v_nearst_f, ext_v_drop_to_f)

            else:  # v_drop more close to the rtree
                vid_v_drop_r = rtree.AddVertex(ext_v_drop_to_r)
                rtree.AddEdge(i_nearst_r, vid_v_drop_r)
                if (len(v_nearst_r) == 2):
                    self.planning_env.PlotEdge(v_nearst_r, ext_v_drop_to_r)
        #assert(v_drop != None)
        # Terminate condition : the distance from v_drop to both ftree and rtree is less than epsilon

        # use tree.edge one both tree to find the valid path

        # for ftree's path : [start_config -> v_drop)
        total_time = time.time() - start_time

        plan_ftree = self.find_path(ftree, 0, final_vid_v_drop_f)
        plan_ftree.reverse()

        # for rtree's path: [Goal_config -> v_drop) then reverse
        plan_rtree = self.find_path(rtree, 0, final_vid_v_drop_r)

        # combine ftree's path + v_drop + rtree's path
        for i in plan_ftree:
            plan.append(i)

        plan.append(v_drop)

        for i in plan_rtree:
            plan.append(i)

        dist_plan = self.planning_env.ComputePathLength(plan)
        print "total plan distance"
        print dist_plan

        print "total vertice in tree "
        print len(ftree.vertices) + len(rtree.vertices) - 1
        # end of implement
        print "total plan time = "
        print total_time
        print " "
        return plan
    def Plan(self, start_config, goal_config, epsilon = 0.001):
        
        ftree = RRTTree(self.planning_env, start_config)
        rtree = RRTTree(self.planning_env, goal_config)
        plan = []

        if self.visualize and hasattr(self.planning_env, 'InitializePlot'):
            self.planning_env.InitializePlot(goal_config)

        while True:
            sample = self.planning_env.GenerateRandomConfiguration()
            f_vid, f_vtx = ftree.GetNearestVertex(sample)
            r_vid, r_vtx = rtree.GetNearestVertex(sample)
            f_best = self.planning_env.Extend(f_vtx, sample)
            # grow towards f_best if possible
            sample = f_best if f_best != None else sample
            r_best = self.planning_env.Extend(r_vtx, sample)
            if f_best is not None:
                f_new_vid = ftree.AddVertex(f_best)
                ftree.AddEdge(f_vid, f_new_vid)
                self.planning_env.PlotEdge(f_vtx, f_best)
            if r_best is not None:
                r_new_vid = rtree.AddVertex(r_best)
                rtree.AddEdge(r_vid, r_new_vid)
                self.planning_env.PlotEdge(r_vtx, r_best)
            if f_best != None and r_best != None:
                dist = self.planning_env.ComputeDistance(f_best, r_best)
                if dist < epsilon:
                    # build plan here
                    cursor = f_new_vid
                    while(cursor != ftree.GetRootId()):
                        plan.append(ftree.vertices[cursor])
                        cursor = ftree.edges[cursor]
                    plan.append(ftree.vertices[cursor])
                    plan.reverse()
                    cursor = r_new_vid
                    while(cursor != rtree.GetRootId()):
                        cursor = rtree.edges[cursor]
                        plan.append(rtree.vertices[cursor])
                    break

        return plan
Ejemplo n.º 13
0
    def Plan(self, start_config, goal_config, epsilon=0.001):

        # count for executing timing
        import time
        t0 = time.clock()

        # ftree start from start_config
        ftree = RRTTree(self.planning_env, start_config)
        # rtree start from goal_config
        rtree = RRTTree(self.planning_env, goal_config)
        plan = []

        if self.visualize and hasattr(self.planning_env, 'InitializePlot'):
            self.planning_env.InitializePlot(goal_config)
        # TODO: Here you will implement the rrt connect planner
        #  The return path should be an array
        #  of dimension k x n where k is the number of waypoints
        #  and n is the dimension of the robots configuration space

# start the Bidirection RRT algorithm
# set up the number of iterations we want to try before we give up
        num_iter = 1000

        # if two trees, ftree and rtree suceeed to connect each other, make isFail = False
        isFail = True
        import random
        import time
        num_vertex = 0
        for i in range(num_iter):
            # generate random configuration, config_q
            config_q = self.planning_env.GenerateRandomConfiguration()

            # get the nearest neighbor from the ftree and rtree, based on config_q
            f_mid, f_mdist = ftree.GetNearestVertex(config_q)
            r_mid, r_mdist = rtree.GetNearestVertex(config_q)

            # get the nearest neighbor from ftree and rtree, f_config_m and r_config_m
            f_config_m = ftree.vertices[f_mid]
            r_config_m = rtree.vertices[r_mid]

            # append f_config_n/r_config_n to the tree ftree/rtree if they are addable
            # where f/r_config_n  is the extended node between f/r_config_m and config_q
            f_config_n = self.planning_env.Extend(f_config_m, config_q)
            r_config_n = self.planning_env.Extend(r_config_m, config_q)

            # add f_config_n to ftree if addable
            if not numpy.array_equal(f_config_n, f_config_m):
                num_vertex = num_vertex + 1
                ftree.AddVertex(f_config_n)
                ftree.AddEdge(f_mid,
                              len(ftree.vertices) -
                              1)  # id of config_n is the last one in vertices
                # draw the expended edge
                if len(f_config_m) == 2:
                    self.planning_env.PlotEdge(f_config_m, f_config_n)
# add r_config_n to rtree if addable
            if not numpy.array_equal(r_config_n, r_config_m):
                num_vertex = num_vertex + 1
                rtree.AddVertex(r_config_n)
                rtree.AddEdge(r_mid,
                              len(rtree.vertices) -
                              1)  # id of config_n is the last one in vertices
                # draw the expended edge
                if len(r_config_m) == 2:
                    self.planning_env.PlotEdge(r_config_m, r_config_n)
# break the loop if ftree and rtree connected
            if numpy.array_equal(
                    f_config_n, r_config_n) and not numpy.array_equal(
                        f_config_n, f_config_m) and not numpy.array_equal(
                            r_config_n, r_config_m):
                isFail = False
                f_goal_id = len(ftree.vertices) - 1
                r_goal_id = len(rtree.vertices) - 1
                break

# recursive append the waypoints to the tree based on the tree.edges information
# stop if we trace back to root, id = 0
# we need to reverse for ftree not for rtree

        print "number of vertices: %d" % (num_vertex)

        # start here
        if isFail:
            print "path length: 0"
            print "plan time: %f" % (time.clock() - t0)
            return []
        else:
            # start to append waypoints from ftree
            current_id = f_goal_id
            while current_id != 0:
                plan.append(ftree.vertices[current_id])
                current_id = ftree.edges[current_id]
            plan.append(
                ftree.vertices[current_id])  # add start config to the plan
            # reverse the order of plan
            plan = plan[::-1]
            # keep adding waypoints from rtree, and ignore the overlapped config
            current_id = rtree.edges[r_goal_id]
            while current_id != 0:
                plan.append(rtree.vertices[current_id])
                current_id = rtree.edges[current_id]
            plan.append(
                rtree.vertices[current_id])  # add goal config to the plan

        path_length = 0
        for i in xrange(len(plan) - 1):
            path_length = path_length + self.planning_env.ComputeDistance(
                plan[i], plan[i + 1])
        print "path length: %f" % (path_length)
        print "plan time: %f" % (time.clock() - t0)

        return plan
Ejemplo n.º 14
0
    def Plan(self, start_config, goal_config, epsilon=0.001):

        ftree = RRTTree(self.planning_env, start_config)
        rtree = RRTTree(self.planning_env, goal_config)
        plan = []

        if self.visualize and hasattr(self.planning_env, 'InitializePlot'):
            self.planning_env.InitializePlot(goal_config)
        # TODO: Here you will implement the rrt connect planner
        #  The return path should be an array
        #  of dimension k x n where k is the number of waypoints
        #  and n is the dimension of the robots configuration space

        # OUR TODOs:
        # 1) Intermediate nodes are not being added to the tree when making connection between the node of one tree with the other tree.
        #
        # 2) Path Shortening with linear interpolation in between two nodes
        #
        # 3) May have to think over the Extend function if we want to change this or not. Extend function currently is
        #    essentially taking a step size of infinity i.e. reach q_rand as much as possible with a specific resolution
        #    of 'max_step_size'. As a result, potentially not many intermediate nodes on an edge between q_rand and q_near.
        #
        # 4) Carry out more testings to validate the implementation. If collision with obstacle observed at corners or whatever, try
        #    decreasing 'max_step_size' in Extend function and test.

        self.q_id_parent_dict_ftree = {}
        self.q_id_config_dict_ftree = {}

        self.q_id_parent_dict_rtree = {}
        self.q_id_config_dict_rtree = {}

        q_goal_id = -1
        q_start_id = 0
        goal_found = False
        swap_trees = False

        NUM_ITERATIONS = 5000

        self.env = self.planning_env.robot.GetEnv()
        with self.env:
            with self.planning_env.robot.CreateRobotStateSaver():

                for k in range(0, NUM_ITERATIONS):
                    print "Iteration: " + str(k)

                    q_rand = self.planning_env.GenerateRandomConfiguration()

                    if (swap_trees == False):

                        #Picking q_near in the tree
                        q_near_id, q_near = ftree.GetNearestVertex(q_rand)

                        q_new = self.planning_env.Extend(q_near, q_rand)

                        if (q_new is not None):
                            q_new_id = ftree.AddVertex(q_new)
                            self.q_id_config_dict_ftree[q_new_id] = q_new

                            ftree.AddEdge(q_new_id, q_near_id)
                            self.q_id_parent_dict_ftree[q_new_id] = q_near_id
                            # self.planning_env.PlotEdge(q_near, q_new)

                            #Function 'Connect'
                            q_connect = q_new
                            q_connect_id = q_new_id

                            q_near_id_connect, q_near_connect = rtree.GetNearestVertex(
                                q_connect)
                            q_new_connect = self.planning_env.Extend(
                                q_near_connect, q_connect)

                            if (q_new_connect is not None):

                                q_new_id_connect = rtree.AddVertex(
                                    q_new_connect)
                                self.q_id_config_dict_rtree[
                                    q_new_id_connect] = q_new_connect

                                rtree.AddEdge(q_new_id_connect,
                                              q_near_id_connect)
                                self.q_id_parent_dict_rtree[
                                    q_new_id_connect] = q_near_id_connect
                                # self.planning_env.PlotEdge(q_near, q_new)

                                if (self.planning_env.ComputeDistance(
                                        q_new_connect, q_connect) < epsilon):
                                    print "Path Found!"
                                    goal_found = True
                                    # self.planning_env.PlotEdge(q_connect, q_near_connect)

                                    q_ftree_connect_id = q_connect_id
                                    q_rtree_connect_id = q_near_id_connect
                                    plan = self.getPlan(
                                        q_ftree_connect_id, start_config,
                                        q_rtree_connect_id, goal_config)
                                    break

                                else:
                                    swap_trees = True

                            else:
                                swap_trees = True

                        else:
                            swap_trees = True

                    else:
                        #Picking q_near in the tree
                        q_near_id, q_near = rtree.GetNearestVertex(q_rand)

                        q_new = self.planning_env.Extend(q_near, q_rand)

                        if (q_new is not None):
                            q_new_id = rtree.AddVertex(q_new)
                            self.q_id_config_dict_rtree[q_new_id] = q_new

                            rtree.AddEdge(q_new_id, q_near_id)
                            self.q_id_parent_dict_rtree[q_new_id] = q_near_id
                            # self.planning_env.PlotEdge(q_near, q_new)

                            #Function 'Connect'
                            q_connect = q_new
                            q_connect_id = q_new_id

                            q_near_id_connect, q_near_connect = ftree.GetNearestVertex(
                                q_connect)
                            q_new_connect = self.planning_env.Extend(
                                q_near_connect, q_connect)

                            if (q_new_connect is not None):

                                q_new_id_connect = ftree.AddVertex(
                                    q_new_connect)
                                self.q_id_config_dict_ftree[
                                    q_new_id_connect] = q_new_connect

                                ftree.AddEdge(q_new_id_connect,
                                              q_near_id_connect)
                                self.q_id_parent_dict_ftree[
                                    q_new_id_connect] = q_near_id_connect
                                # self.planning_env.PlotEdge(q_near, q_new)

                                if (self.planning_env.ComputeDistance(
                                        q_new_connect, q_connect) < epsilon):
                                    print "Path Found!"
                                    goal_found = True
                                    # self.planning_env.PlotEdge(q_connect, q_near_connect)

                                    q_rtree_connect_id = q_connect_id
                                    q_ftree_connect_id = q_near_id_connect
                                    plan = self.getPlan(
                                        q_ftree_connect_id, start_config,
                                        q_rtree_connect_id, goal_config)
                                    break

                                else:
                                    swap_trees = False

                            else:
                                swap_trees = False

                        else:
                            swap_trees = False

                if (not goal_found):
                    print "Goal not found in " + str(
                        NUM_ITERATIONS) + "iterations."
                else:
                    num_vertices = len(plan)
                    print "Number of Vertices: " + str(
                        num_vertices) + " nodes."

                return plan, num_vertices
Ejemplo n.º 15
0
    def Plan(self, start_config, goal_config, epsilon=0.5):

        ftree = RRTTree(self.planning_env, start_config)
        rtree = RRTTree(self.planning_env, goal_config)
        plan = []

        # if self.visualize and hasattr(self.planning_env, 'InitializePlot'):
        #     self.planning_env.InitializePlot(goal_config)
        # # TODO: Here you will implement the rrt connect planner
        # #  The return path should be an array
        # #  of dimension k x n where k is the number of waypoints
        # #  and n is the dimension of the robots configuration space

        # initial conditions
        ftree.AddVertex(start_config)
        rtree.AddVertex(goal_config)

        while (True):

            # generate 2 points, one for each side
            new_f = self.planning_env.GenerateRandomConfiguration()

            # find nearest vertex
            f_id, f_vert = ftree.GetNearestVertex(new_f)

            # try to extend
            pot_f = self.planning_env.Extend(f_vert, new_f)

            if (pot_f != None):
                dist_f = self.planning_env.ComputeDistance(pot_f, start_config)

                # add tree elements
                temp = ftree.AddVertex(pot_f)
                ftree.AddEdge(f_id, temp)

                self.planning_env.PlotEdge(f_vert, pot_f)

            new_r = self.planning_env.GenerateRandomConfiguration()
            r_id, r_vert = rtree.GetNearestVertex(new_r)
            pot_r = self.planning_env.Extend(r_vert, new_r)

            if (pot_r != None):
                dist_r = self.planning_env.ComputeDistance(pot_r, goal_config)

                # add tree elements
                temp = rtree.AddVertex(pot_r)
                rtree.AddEdge(r_id, temp)

                self.planning_env.PlotEdge(r_vert, pot_r)

            if (dist_f <= epsilon
                    and dist_r <= epsilon) or self.planning_env.Extend(
                        f_vert, r_vert) != None:
                break

        # back prop, from middle to the front
        get_keys = ftree.edges.keys()
        tree_key = get_keys[len(ftree.edges) - 1]

        while (True):

            plan.append(ftree.vertices[tree_key])
            tree_key = ftree.edges.get(tree_key)

            if (tree_key == 0):
                break

        plan.append(start_config)
        plan.reverse()  # now it's from beginning to the middle

        # from the middle to end, no need to reverse
        get_keys = rtree.edges.keys()
        tree_key = get_keys[len(rtree.edges) - 1]

        while (True):
            plan.append(rtree.vertices[tree_key])
            tree_key = rtree.edges.get(tree_key)

            if (tree_key == 0):
                break

        plan.append(goal_config)

        return plan
Ejemplo n.º 16
0
    def Plan(self, start_config, goal_config, epsilon = 0.001):

        ftree = RRTTree(self.planning_env, start_config)
        rtree = RRTTree(self.planning_env, goal_config)
        plan = []

        if self.visualize and hasattr(self.planning_env, 'InitializePlot'):
            self.planning_env.InitializePlot(goal_config)
        # TODO: Here you will implement the rrt connect planner
        #  The return path should be an array
        #  of dimension k x n where k is the number of waypoints
        #  and n is the dimension of the robots configuration space

        #plan.append(start_config)

        #RRT
        dist = float('inf')
        count = 0
        while dist > epsilon:
            # Bias Sampling with P of sampling towards the Goal = 0.1
            if not count % 2:
                p = random.random()
                if p < 0.1:
                    f_q_r = goal_config
                else:
                    f_q_r = self.planning_env.GenerateRandomConfiguration()
            else:
                f_q_r = numpy.copy(r_q_c)
            # Get the Vertex closest to q_r
            f_sid, f_q_n = ftree.GetNearestVertex(f_q_r)

            # Using linear interpolation to get the furthest vertex without collision
            f_q_c = self.planning_env.Extend(f_q_n, f_q_r)

            # Add vertex to the tree
            f_eid = ftree.AddVertex(f_q_c)

            # Add an edge on the tree
            ftree.AddEdge(f_sid, f_eid)

            if self.visualize:
                self.planning_env.PlotEdge(f_q_n, f_q_c)

            if count % 2:
                p = random.random()
                if p < 0.1:
                    r_q_r = start_config
                else:
                    r_q_r = self.planning_env.GenerateRandomConfiguration()
            else:
                r_q_r = numpy.copy(f_q_c)

            # r_q_r = numpy.copy(f_q_c)
            #for reverse tree
            r_sid, r_q_n = rtree.GetNearestVertex(r_q_r)

            # Using linear interpolation to get the furthest vertex without collision
            r_q_c = self.planning_env.Extend(r_q_n, r_q_r)

            if(numpy.array_equal(r_q_n,r_q_c)):
                print("collision")


            # Add vertex to the r tree
            r_eid = rtree.AddVertex(r_q_c)

            # Add an edge on the r tree
            rtree.AddEdge(r_sid, r_eid)


            # Check how close we are to the goal
            dist = self.planning_env.ComputeDistance(f_q_c, r_q_c)
            count += 1
            print(dist)
            # print q_n
            print f_q_c, f_q_n, r_q_c, r_q_n, r_q_r
            print rtree, ftree
            if self.visualize:
                self.planning_env.PlotEdge(r_q_n, r_q_c)

        print("trees constructed")
        vid = f_eid
        while (vid != ftree.GetRootId()):
            plan = [ftree.vertices[vid]] + plan
            vid = ftree.edges[vid]

        vid = r_eid
        while (vid != rtree.GetRootId()):
            vid = rtree.edges[vid]
            plan = plan + [rtree.vertices[vid]]

        plan.append(goal_config)
        print("finished adding plan")
        print plan
        return plan