Ejemplo n.º 1
0
def topk(topk_data: TopkData,
         score_fn: Callable[[Dict[str, List[int]]], List[float]],
         ks=[10, 36, 100]):
    precisions, recalls = topk_evaluate(topk_data, score_fn, ks)
    for k, precision, recall in zip(ks, precisions, recalls):
        f1 = 2. * precision * recall / pr if (pr := precision + recall) else 0
        print('[k=%d, precision=%.3f%%, recall=%.3f%%, f1=%.3f%%]' %
              (k, 100. * precision, 100. * recall, 100. * f1),
              end='')
Ejemplo n.º 2
0
 def topk():
     ks = [10, 36, 100]
     precisions, recalls = topk_evaluate(
         topk_data, lambda ui: fast_model(tf.constant(ui)).numpy(),
         ks)
     for k, precision, recall in zip(ks, precisions, recalls):
         tf.print(
             '[k=%d, precision=%.3f%%, recall=%.3f%%, f1=%.3f%%]' %
             (k, 100 * precision, 100 * recall,
              200 * precision * recall / (precision + recall)),
             end='')
     tf.print()
Ejemplo n.º 3
0
            if W[i][j] != 0:
                Wi[j] = W[i][j]
        most_similar_items.append(set(x[0] for x in sorted(Wi.items(), key=lambda x: x[1], reverse=True)[:N]))

    scores = [[0 for _ in range(n_item)] for _ in range(n_user)]  # scores[u][i]是用户u对物品i的评分
    for user_id in range(n_user):
        user_item_set = train_user_items[user_id]
        for i in user_item_set:
            for j in most_similar_items[i]:
                if j not in user_item_set:
                    scores[user_id][j] += W[i][j]
        #for i in set(range(n_item)) - user_item_set:
        #    for j in user_item_set & most_similar_items[i]:
        #        scores[user_id][i] += W[i][j]

    print('(耗时', time.time() - start_time, '秒)', sep='')
    return scores


if __name__ == '__main__':
    n_user, n_item, train_data, test_data, topk_data = data_process.pack(data_loader.ml1m, negative_sample_ratio=0)

    W = _item_similarity(train_data, n_user, n_item)
    scores = _user_item_score(train_data, n_user, n_item, W, N=10)

    ks = [10, 36, 100]
    precisions, recalls = topk_evaluate(topk_data, lambda uis: [scores[u][i] for u, i in uis], ks)
    for k, precision, recall in zip(ks, precisions, recalls):
        print('[k=%d, precision=%.3f%%, recall=%.3f%%, f1=%.3f%%]' %
              (k, 100 * precision, 100 * recall, 200 * precision * recall / (precision + recall)))