def __init__(self, **kwargs): infits = kwargs.get('infits', '/Users/khamren/M31_Research/splash_data/DiskSample.fits') self.d31 = 41.269 self.r31 = 10.68 #Read in Data hdu = pyfits.open(infits) cols = hdu[1].columns.names data = hdu[1].data #We're only going to deal with stars that have colors and valid positions f4 = data.F475W f8 = data.F814W good = (f4 < 99) & (f8 < 99) & (f4 == f4) & (f8 == f8) & (data.RA != '00:00:00') self.f475w = f4[good] self.f814w = f8[good] data_good = data[good] self.params = {} for c in cols: self.params[c] = data_good.field(c) # self.lbin = data_good.LBIN # self.spec = data_good.SPEC # self.ivar = data_good.IVAR # self.ssnr = data_good.SSNR self.cntio = data_good.CN - data_good.TIO self.dm = 24.41 self.cid = data_good.CID self.ev = data_good.EVSTAGE pos = [hms2deg(ra,dec) for ra, dec in zip(data_good.RA, data_good.DEC)] self.ra = np.array([p[0] for p in pos]) self.dec = np.array([p[1] for p in pos]) self.createColors() self.getMbols() self.getCMDefs() self.getOtherDefs() self.specialSSN()
def string2radec(string): ra = string[0:10] dec = string[13:] radeg, decdeg = hms2deg(ra,dec) return radeg, decdeg
b17=np.asarray([ 12059, 11.48855, 42.02423, 11.22291, 42.05568, 11.19909, 41.94492, 11.46456, 41.91363]) b18=np.asarray([ 12108, 11.75272, 41.99292, 11.48736, 42.02497, 11.46310, 41.91427, 11.72830, 41.88238]) b19=np.asarray([ 12110, 11.62005, 42.12072, 11.35409, 42.15246, 11.33001, 42.04174, 11.59581, 42.01015]) b20=np.asarray([ 12112, 11.88344, 42.08995, 11.61776, 42.12230, 11.59324, 42.01163, 11.85876, 41.97944]) b21=np.asarray([ 12055, 11.68571, 42.22514, 11.41935, 42.25704, 11.39512, 42.14633, 11.66131, 42.11460]) b22=np.asarray([ 12076, 11.95062, 42.19503, 11.68455, 42.22754, 11.65987, 42.11690, 11.92579, 42.08456]) b23=np.asarray([ 12070, 11.86064, 42.31678, 11.59401, 42.34909, 11.56944, 42.23843, 11.83591, 42.20629]) b = [b1,b2,b3,b4,b5,b6,b7,b8,b9,b10,b11,b12,b13,b14,b15,b16,b17,b18,b19,b20,b21,b22,b23] #---------Get HII Region data-------------------------- ID, hh, hm, hs, dd, dm, ds = np.genfromtxt('/Users/khamren/M31_Research/Metallicity/Sanders2012_Basic.txt', usecols = (0,2,3,4,5,6,7), dtype = str, unpack = True) rasxg = np.array(['%s:%s:%s' %(h,m,s) for h, m, s in zip(hh, hm, hs)]) decsxg = np.array(['%s:%s:%s' %(d,m,s) for d,m,s in zip(dd, dm, ds)]) ra = np.array([hms2deg(r,d)[0] for r, d in zip(rasxg, decsxg)]) dec = np.array([hms2deg(r,d)[1] for r, d in zip(rasxg, decsxg)]) #fhii = open('/Users/khamren/M31_Research/Metallicity/Sanders2012_allHII_errors.txt','r') #fpne = open('/Users/khamren/M31_Research/Metallicity/Sanders2012_HII_allO.txt', 'r') fpne = open('/Users/khamren/M31_Research/Metallicity/Sanders2012_strongline_OH.txt','r') obj_id = [] obj_oh = [] obj_eoh = [] for line in fpne: if line[0] != '#': cols = line.strip().split() if len(cols) > 1: obj_id.append(cols[0])
# term2 = np.sum(1/(sig_guess**2 + sigarr**2)) # v_guess = term1/term2 hdu = pyfits.open('/Users/khamren/M31_Research/splash_data/subMasterSPLASH_zerr.fits') data = hdu[1].data cstars = data[(data.CID == 'c') & (data.FIELDTYPE == 'disk') & (data.RA != '00:00:00')] agb = data[((data.EVSTAGE == 'AGB') | (data.EVSTAGE == 'agb')) & (data.FIELDTYPE == 'disk') & (data.RA != '00:00:00')] agb_noc = data[((data.EVSTAGE == 'AGB') | (data.EVSTAGE == 'agb')) & (data.FIELDTYPE == 'disk') & (data.RA != '00:00:00') & (data.CID != 'c')] #cvel = (cstars.Z*c) - (cstars.ABAND*c) - helcorr(keck_long,keck_lat,keck_alt,cra, cdec,cstars.MJD)[0] cra = np.array([hms2deg(r,d)[0] for r,d in zip(cstars.RA, cstars.DEC)]) cra2 = cra*cosdg(d31) cdec = np.array([hms2deg(r,d)[1] for r,d in zip(cstars.RA, cstars.DEC)]) cdist = computeDist(cra, cdec) ara = np.array([hms2deg(r,d)[0] for r,d in zip(agb_noc.RA, agb_noc.DEC)]) ara2 = ara*cosdg(d31) adec = np.array([hms2deg(r,d)[1] for r,d in zip(agb_noc.RA, agb_noc.DEC)]) ara_all = np.array([hms2deg(r,d)[0] for r,d in zip(agb.RA, agb.DEC)]) ara2_all = ara_all*cosdg(d31) adec_all = np.array([hms2deg(r,d)[1] for r,d in zip(agb.RA, agb.DEC)]) cvel = np.array([((z*c) - (aband*c) - helcorr(keck_long,keck_lat,keck_alt,r,d, mjd)[0]) for z, aband, r, d, mjd in zip(cstars.Z, cstars.ABAND, cra, cdec, cstars.MJD)]) avel = np.array([((z*c) - (aband*c) - helcorr(keck_long, keck_lat,keck_alt, r,d, mjd)[0]) for z, aband, r, d, mjd in zip(agb_noc.Z, agb_noc.ABAND, ara, adec, agb_noc.MJD)])