Ejemplo n.º 1
0
	def test_score_option_change(self):
		ass=self.assignments
		score_bmrb1=ScoreFunction(bmrb=1)
		#what happens if we change the score options
		orig_score=score_bmrb1(ass)

		#prepare change of options
		from methods.BmrbShiftScore import BmrbShiftScoreOptions
		x0=score_bmrb1.methods['bmrb'].options.x0
		new_options=BmrbShiftScoreOptions(x0/2)

		#change options in place
		score_bmrb1.methods['bmrb'].options=new_options
		self.assertNotEqual(orig_score,score_bmrb1(ass))
		score_with_x0half=score_bmrb1(ass)

		#try illegal change of options in place
		def do_bad():
			score_bmrb1.methods['bmrb'].options.x0=new_options.x0
		self.assertRaises(TypeError, do_bad )

		#now change it by differently
		from methods.BmrbShiftScore import BmrbShiftScore
		new_method=BmrbShiftScore(BmrbShiftScoreOptions(x0*2))
		score_bmrb1.append(new_method,1.0)
		self.assertNotEqual(orig_score,score_bmrb1(ass))
		self.assertNotEqual(score_with_x0half,score_bmrb1(ass))
Ejemplo n.º 2
0
	def test_local_weights(self):
		ass=self.assignments
		score_bmrb1=ScoreFunction(bmrb=1)
		score_sym1=ScoreFunction(symmetry=1)
		score_cons1=ScoreFunction(consistency=1)
		#apply scores to fill local score-info
		score_bmrb1(ass)
		score_sym1(ass)
		score_cons1(ass)

		cache=ass.scores.atomic
		key=cache.keys()[0]
		self.assertEqual(0,score_sym1.evaluate_local_scores(cache[key]))
		self.assertNotEqual(0,score_bmrb1.evaluate_local_scores(cache[key]))
		cache=ass.scores.assignments
		#find a non-zero symmetry entry
		for key in cache.iterkeys():
			if cache[key]['symmetry'].score!=0:
				break
		self.assertNotEqual(0,score_sym1.evaluate_local_scores(cache[key]))
		self.assertEqual(0,score_bmrb1.evaluate_local_scores(cache[key]))

		cache=ass.scores.atomic
		key=cache.keys()[0]
		bmrb1=score_bmrb1.evaluate_local_scores(cache[key])
		cons1=score_cons1.evaluate_local_scores(cache[key])
		self.assertEqual(bmrb1*0.2+cons1*3.2,ScoreFunction(bmrb=0.2,consistency=3.2).evaluate_local_scores(cache[key]))
		self.assertEqual(-bmrb1+cons1*3.2,ScoreFunction(bmrb=-1,consistency=3.2).evaluate_local_scores(cache[key]))
Ejemplo n.º 3
0
    parser.add_argument("--starts_with", type=str, help="")
    parser.add_argument(
        "--dump_results", default="mc_sampling_results.pickle", type=str, help="results will be dumped as a pickle file"
    )

    # you might need to change it in the future
    parser.add_argument("--mer", default=9, type=int, help="")

    parser.add_argument("--verbose", default=False, action="store_true", help="")
    args = parser.parse_args()

    print print_args(args)

    Wts = Weights(args.density_score_wt, args.overlap_score_wt, args.closab_score_wt, args.clash_score_wt)
    Scorefxn = ScoreFunction(
        args.density_scorefile, args.overlap_scorefile, args.nonoverlap_scorefile, Wts, args.null_frag_score
    )

    for each_round in range(1, args.round + 1):

        Pose = Pose()
        Pose.initialization(Scorefxn.density_score_dict)  # default initialize by random

        Scorefxn.update_pose(Pose)

        working_temp = args.temperature

        for each_step in range(args.steps):
            print "round: %s  cycle: %s" % (each_round, each_step)

            pos = random.sample(Pose.dict.keys(), 1)[0]  # pick a residue number to start with
Ejemplo n.º 4
0
    pos_list  = list( set([ tag[1] for tag in overlap_score_Dict.keys() ]) )

    # inital placement
    '''selected_frags_Dict = { residue_number : ( ( mer, pos, picker_rank, SHD_rank ),
                                                  ( boltzmann_prob, total_score ), 
                                                  ( density_score, rmsd ) )              '''


    ''' after the first round, every position has a fragment assigned, 
        now we can start do Monte Carlo sampling ''' 
    #selected_frags_Dict = {}

    # three object are being created
    etable = ScoreTable( density_score_Dict, overlap_score_Dict, nonoverlap_score_Dict )     
    wts = Weights( args.density_score_wt, args.overlap_score_wt, args.closab_score_wt, args.clash_score_wt )
    scorefxn = ScoreFunction( etable, wts, args.null_frag_score )

    for each_round in range( 1, args.round+1 ):
        scorefxn.clean_selected_frags_dict()
        #mypose = Pose()

        if args.starts_with:
            assert not args.dump_results == args.starts_with
            print "Initialize with %s" % args.starts_with
            pkl = open( args.starts_with , "rb" )
            scorefxn.selected_frags_dict = pickle.load( pkl )
        else:
            scorefxn.initialize( args.initialization )

        for each_step in range( args.steps ):
            print "round: %s  cycle: %s" %( each_round, each_step )
Ejemplo n.º 5
0
    pos_list  = list( set([ tag[1] for tag in overlap_score_Dict.keys() ]) )

    # inital placement
    '''selected_frags_Dict = { residue_number : ( ( mer, pos, picker_rank, SHD_rank ),
                                                  ( boltzmann_prob, total_score ), 
                                                  ( density_score, rmsd ) )              '''


    ''' after the first round, every position has a fragment assigned, 
        now we can start do Monte Carlo sampling ''' 
    #selected_frags_Dict = {}

    # three object are being created
    etable = ScoreTable( density_score_Dict, overlap_score_Dict, nonoverlap_score_Dict )     
    wts = Weights( args.density_score_wt, args.overlap_score_wt, args.closab_score_wt, args.clash_score_wt )
    scorefxn = ScoreFunction( etable, wts, args.null_frag_score )

    for each_round in range( 1, args.round+1 ):
        scorefxn.clean_selected_frags_dict()

        if args.starts_with:
            assert not args.dump_results == args.starts_with
            print "Initialize with %s" % args.starts_with
            pkl = open( args.starts_with , "rb" )
            scorefxn.selected_frags_dict = pickle.load( pkl )
        else:
            if args.initialization == "lowdens": scorefxn.lowest_density_score_placements()
            elif args.initialization == "random": scorefxn.randomize_initial_placements()

        for each_step in range( args.steps ):
            print "round: %s  cycle: %s" %( each_round, each_step )