Ejemplo n.º 1
0
    def setUp(self):
        np.random.seed(0)
        H0 = (50000.0, 90.0, 0.0)

        # The magnetization is set along a different
        # direction (induced + remanence)
        M = np.array([45.0, 90.0])

        # Create grid of points for topography
        # Lets create a simple Gaussian topo
        # and set the active cells
        [xx, yy] = np.meshgrid(np.linspace(-200, 200, 50),
                               np.linspace(-200, 200, 50))
        b = 100
        A = 50
        zz = A * np.exp(-0.5 * ((xx / b)**2.0 + (yy / b)**2.0))

        # We would usually load a topofile
        topo = np.c_[utils.mkvc(xx), utils.mkvc(yy), utils.mkvc(zz)]

        # Create and array of observation points
        xr = np.linspace(-100.0, 100.0, 20)
        yr = np.linspace(-100.0, 100.0, 20)
        X, Y = np.meshgrid(xr, yr)
        Z = A * np.exp(-0.5 * ((X / b)**2.0 + (Y / b)**2.0)) + 5

        # Create a MAGsurvey
        xyzLoc = np.c_[utils.mkvc(X.T), utils.mkvc(Y.T), utils.mkvc(Z.T)]
        rxLoc = mag.Point(xyzLoc)
        srcField = mag.SourceField([rxLoc], parameters=H0)
        survey = mag.Survey(srcField)

        # Create a mesh
        h = [5, 5, 5]
        padDist = np.ones((3, 2)) * 100

        mesh = mesh_builder_xyz(xyzLoc,
                                h,
                                padding_distance=padDist,
                                depth_core=100,
                                mesh_type="tree")
        mesh = refine_tree_xyz(mesh,
                               topo,
                               method="surface",
                               octree_levels=[4, 4],
                               finalize=True)
        self.mesh = mesh
        # Define an active cells from topo
        actv = utils.surface2ind_topo(mesh, topo)
        nC = int(actv.sum())

        model = np.zeros((mesh.nC, 3))

        # Convert the inclination declination to vector in Cartesian
        M_xyz = utils.mat_utils.dip_azimuth2cartesian(M[0], M[1])

        # Get the indicies of the magnetized block
        ind = utils.model_builder.getIndicesBlock(
            np.r_[-20, -20, -10],
            np.r_[20, 20, 25],
            mesh.gridCC,
        )[0]

        # Assign magnetization values
        model[ind, :] = np.kron(np.ones((ind.shape[0], 1)), M_xyz * 0.05)

        # Remove air cells
        self.model = model[actv, :]

        # Create active map to go from reduce set to full
        self.actvMap = maps.InjectActiveCells(mesh, actv, np.nan)

        # Creat reduced identity map
        idenMap = maps.IdentityMap(nP=nC * 3)

        # Create the forward model operator
        sim = mag.Simulation3DIntegral(
            self.mesh,
            survey=survey,
            modelType="vector",
            chiMap=idenMap,
            actInd=actv,
            store_sensitivities="disk",
        )
        self.sim = sim

        # Compute some data and add some random noise
        data = sim.make_synthetic_data(utils.mkvc(self.model),
                                       relative_error=0.0,
                                       noise_floor=5.0,
                                       add_noise=True)

        # This Mapping connects the regularizations for the three-component
        # vector model
        wires = maps.Wires(("p", nC), ("s", nC), ("t", nC))

        # Create three regularization for the different components
        # of magnetization
        reg_p = regularization.Sparse(mesh, indActive=actv, mapping=wires.p)
        reg_p.mref = np.zeros(3 * nC)

        reg_s = regularization.Sparse(mesh, indActive=actv, mapping=wires.s)
        reg_s.mref = np.zeros(3 * nC)

        reg_t = regularization.Sparse(mesh, indActive=actv, mapping=wires.t)
        reg_t.mref = np.zeros(3 * nC)

        reg = reg_p + reg_s + reg_t
        reg.mref = np.zeros(3 * nC)

        # Data misfit function
        dmis = data_misfit.L2DataMisfit(simulation=sim, data=data)
        # dmis.W = 1./survey.std

        # Add directives to the inversion
        opt = optimization.ProjectedGNCG(maxIter=10,
                                         lower=-10,
                                         upper=10.0,
                                         maxIterLS=5,
                                         maxIterCG=5,
                                         tolCG=1e-4)

        invProb = inverse_problem.BaseInvProblem(dmis, reg, opt)

        # A list of directive to control the inverson
        betaest = directives.BetaEstimate_ByEig(beta0_ratio=1e1)

        # Here is where the norms are applied
        # Use pick a treshold parameter empirically based on the distribution of
        #  model parameters
        IRLS = directives.Update_IRLS(f_min_change=1e-3,
                                      max_irls_iterations=0,
                                      beta_tol=5e-1)

        # Pre-conditioner
        update_Jacobi = directives.UpdatePreconditioner()
        sensitivity_weights = directives.UpdateSensitivityWeights(
            everyIter=False)
        inv = inversion.BaseInversion(
            invProb,
            directiveList=[sensitivity_weights, IRLS, update_Jacobi, betaest])

        # Run the inversion
        m0 = np.ones(3 * nC) * 1e-4  # Starting model
        mrec_MVIC = inv.run(m0)

        sim.chiMap = maps.SphericalSystem(nP=nC * 3)
        self.mstart = sim.chiMap.inverse(mrec_MVIC)
        dmis.simulation.model = self.mstart
        beta = invProb.beta

        # Create a block diagonal regularization
        wires = maps.Wires(("amp", nC), ("theta", nC), ("phi", nC))

        # Create a Combo Regularization
        # Regularize the amplitude of the vectors
        reg_a = regularization.Sparse(mesh, indActive=actv, mapping=wires.amp)
        reg_a.norms = np.c_[0.0, 0.0, 0.0,
                            0.0]  # Sparse on the model and its gradients
        reg_a.mref = np.zeros(3 * nC)

        # Regularize the vertical angle of the vectors
        reg_t = regularization.Sparse(mesh,
                                      indActive=actv,
                                      mapping=wires.theta)
        reg_t.alpha_s = 0.0  # No reference angle
        reg_t.space = "spherical"
        reg_t.norms = np.c_[2.0, 0.0, 0.0, 0.0]  # Only norm on gradients used

        # Regularize the horizontal angle of the vectors
        reg_p = regularization.Sparse(mesh, indActive=actv, mapping=wires.phi)
        reg_p.alpha_s = 0.0  # No reference angle
        reg_p.space = "spherical"
        reg_p.norms = np.c_[2.0, 0.0, 0.0, 0.0]  # Only norm on gradients used

        reg = reg_a + reg_t + reg_p
        reg.mref = np.zeros(3 * nC)

        Lbound = np.kron(np.asarray([0, -np.inf, -np.inf]), np.ones(nC))
        Ubound = np.kron(np.asarray([10, np.inf, np.inf]), np.ones(nC))

        # Add directives to the inversion
        opt = optimization.ProjectedGNCG(
            maxIter=5,
            lower=Lbound,
            upper=Ubound,
            maxIterLS=5,
            maxIterCG=5,
            tolCG=1e-3,
            stepOffBoundsFact=1e-3,
        )
        opt.approxHinv = None

        invProb = inverse_problem.BaseInvProblem(dmis, reg, opt, beta=beta)

        # Here is where the norms are applied
        IRLS = directives.Update_IRLS(
            f_min_change=1e-4,
            max_irls_iterations=5,
            minGNiter=1,
            beta_tol=0.5,
            coolingRate=1,
            coolEps_q=True,
            sphericalDomain=True,
        )

        # Special directive specific to the mag amplitude problem. The sensitivity
        # weights are update between each iteration.
        ProjSpherical = directives.ProjectSphericalBounds()
        sensitivity_weights = directives.UpdateSensitivityWeights()
        update_Jacobi = directives.UpdatePreconditioner()

        self.inv = inversion.BaseInversion(
            invProb,
            directiveList=[
                ProjSpherical, IRLS, sensitivity_weights, update_Jacobi
            ],
        )
Ejemplo n.º 2
0
def run(plotIt=True, cleanAfterRun=True):

    # Start by downloading files from the remote repository
    # directory where the downloaded files are

    url = "https://storage.googleapis.com/simpeg/Chile_GRAV_4_Miller/Chile_GRAV_4_Miller.tar.gz"
    downloads = download(url, overwrite=True)
    basePath = downloads.split(".")[0]

    # unzip the tarfile
    tar = tarfile.open(downloads, "r")
    tar.extractall()
    tar.close()

    input_file = basePath + os.path.sep + "LdM_input_file.inp"
    # %% User input
    # Plotting parameters, max and min densities in g/cc
    vmin = -0.6
    vmax = 0.6

    # weight exponent for default weighting
    wgtexp = 3.0
    # %%
    # Read in the input file which included all parameters at once
    # (mesh, topo, model, survey, inv param, etc.)
    driver = GravityDriver_Inv(input_file)
    # %%
    # Now we need to create the survey and model information.

    # Access the mesh and survey information
    mesh = driver.mesh  #
    survey = driver.survey
    data_object = driver.data
    # [survey, data_object] = driver.survey

    # define gravity survey locations
    rxLoc = survey.source_field.receiver_list[0].locations

    # define gravity data and errors
    d = data_object.dobs

    # Get the active cells
    active = driver.activeCells
    nC = len(active)  # Number of active cells

    # Create active map to go from reduce set to full
    activeMap = maps.InjectActiveCells(mesh, active, -100)

    # Create static map
    static = driver.staticCells
    dynamic = driver.dynamicCells

    staticCells = maps.InjectActiveCells(None,
                                         dynamic,
                                         driver.m0[static],
                                         nC=nC)
    mstart = driver.m0[dynamic]

    # Get index of the center
    midx = int(mesh.nCx / 2)
    # %%
    # Now that we have a model and a survey we can build the linear system ...
    # Create the forward model operator
    simulation = gravity.simulation.Simulation3DIntegral(survey=survey,
                                                         mesh=mesh,
                                                         rhoMap=staticCells,
                                                         actInd=active)

    # %% Create inversion objects
    reg = regularization.Sparse(mesh,
                                indActive=active,
                                mapping=staticCells,
                                gradientType="total")
    reg.mref = driver.mref[dynamic]

    reg.norms = np.c_[0.0, 1.0, 1.0, 1.0]
    # reg.norms = driver.lpnorms

    # Specify how the optimization will proceed
    opt = optimization.ProjectedGNCG(
        maxIter=20,
        lower=driver.bounds[0],
        upper=driver.bounds[1],
        maxIterLS=10,
        maxIterCG=20,
        tolCG=1e-4,
    )

    # Define misfit function (obs-calc)
    dmis = data_misfit.L2DataMisfit(data=data_object, simulation=simulation)

    # create the default L2 inverse problem from the above objects
    invProb = inverse_problem.BaseInvProblem(dmis, reg, opt)

    # Specify how the initial beta is found
    betaest = directives.BetaEstimate_ByEig(beta0_ratio=1e-2)

    # IRLS sets up the Lp inversion problem
    # Set the eps parameter parameter in Line 11 of the
    # input file based on the distribution of model (DEFAULT = 95th %ile)
    IRLS = directives.Update_IRLS(f_min_change=1e-4,
                                  max_irls_iterations=40,
                                  coolEpsFact=1.5,
                                  beta_tol=5e-1)

    # Preconditioning refreshing for each IRLS iteration
    update_Jacobi = directives.UpdatePreconditioner()
    sensitivity_weights = directives.UpdateSensitivityWeights()

    # Create combined the L2 and Lp problem
    inv = inversion.BaseInversion(
        invProb,
        directiveList=[sensitivity_weights, IRLS, update_Jacobi, betaest])

    # %%
    # Run L2 and Lp inversion
    mrec = inv.run(mstart)

    if cleanAfterRun:
        os.remove(downloads)
        shutil.rmtree(basePath)

    # %%
    if plotIt:
        # Plot observed data
        # The sign of the data is flipped here for the change of convention
        # between Cartesian coordinate system (internal SimPEG format that
        # expects "positive up" gravity signal) and traditional gravity data
        # conventions (positive down). For example a traditional negative
        # gravity anomaly is described as "positive up" in Cartesian coordinates
        # and hence the sign needs to be flipped for use in SimPEG.
        plot2Ddata(rxLoc, -d)

        # %%
        # Write output model and data files and print misfit stats.

        # reconstructing l2 model mesh with air cells and active dynamic cells
        L2out = activeMap * invProb.l2model

        # reconstructing lp model mesh with air cells and active dynamic cells
        Lpout = activeMap * mrec

        # %%
        # Plot out sections and histograms of the smooth l2 model.
        # The ind= parameter is the slice of the model from top down.
        yslice = midx + 1
        L2out[L2out == -100] = np.nan  # set "air" to nan

        plt.figure(figsize=(10, 7))
        plt.suptitle("Smooth Inversion: Depth weight = " + str(wgtexp))
        ax = plt.subplot(221)
        dat1 = mesh.plotSlice(
            L2out,
            ax=ax,
            normal="Z",
            ind=-16,
            clim=(vmin, vmax),
            pcolorOpts={"cmap": "bwr"},
        )
        plt.plot(
            np.array([mesh.vectorCCx[0], mesh.vectorCCx[-1]]),
            np.array([mesh.vectorCCy[yslice], mesh.vectorCCy[yslice]]),
            c="gray",
            linestyle="--",
        )
        plt.scatter(rxLoc[0:, 0], rxLoc[0:, 1], color="k", s=1)
        plt.title("Z: " + str(mesh.vectorCCz[-16]) + " m")
        plt.xlabel("Easting (m)")
        plt.ylabel("Northing (m)")
        plt.gca().set_aspect("equal", adjustable="box")
        cb = plt.colorbar(dat1[0],
                          orientation="vertical",
                          ticks=np.linspace(vmin, vmax, 4))
        cb.set_label("Density (g/cc$^3$)")

        ax = plt.subplot(222)
        dat = mesh.plotSlice(
            L2out,
            ax=ax,
            normal="Z",
            ind=-27,
            clim=(vmin, vmax),
            pcolorOpts={"cmap": "bwr"},
        )
        plt.plot(
            np.array([mesh.vectorCCx[0], mesh.vectorCCx[-1]]),
            np.array([mesh.vectorCCy[yslice], mesh.vectorCCy[yslice]]),
            c="gray",
            linestyle="--",
        )
        plt.scatter(rxLoc[0:, 0], rxLoc[0:, 1], color="k", s=1)
        plt.title("Z: " + str(mesh.vectorCCz[-27]) + " m")
        plt.xlabel("Easting (m)")
        plt.ylabel("Northing (m)")
        plt.gca().set_aspect("equal", adjustable="box")
        cb = plt.colorbar(dat1[0],
                          orientation="vertical",
                          ticks=np.linspace(vmin, vmax, 4))
        cb.set_label("Density (g/cc$^3$)")

        ax = plt.subplot(212)
        mesh.plotSlice(
            L2out,
            ax=ax,
            normal="Y",
            ind=yslice,
            clim=(vmin, vmax),
            pcolorOpts={"cmap": "bwr"},
        )
        plt.title("Cross Section")
        plt.xlabel("Easting(m)")
        plt.ylabel("Elevation")
        plt.gca().set_aspect("equal", adjustable="box")
        cb = plt.colorbar(
            dat1[0],
            orientation="vertical",
            ticks=np.linspace(vmin, vmax, 4),
            cmap="bwr",
        )
        cb.set_label("Density (g/cc$^3$)")

        # %%
        # Make plots of Lp model
        yslice = midx + 1
        Lpout[Lpout == -100] = np.nan  # set "air" to nan

        plt.figure(figsize=(10, 7))
        plt.suptitle("Compact Inversion: Depth weight = " + str(wgtexp) +
                     ": $\epsilon_p$ = " + str(round(reg.eps_p, 1)) +
                     ": $\epsilon_q$ = " + str(round(reg.eps_q, 2)))
        ax = plt.subplot(221)
        dat = mesh.plotSlice(
            Lpout,
            ax=ax,
            normal="Z",
            ind=-16,
            clim=(vmin, vmax),
            pcolorOpts={"cmap": "bwr"},
        )
        plt.plot(
            np.array([mesh.vectorCCx[0], mesh.vectorCCx[-1]]),
            np.array([mesh.vectorCCy[yslice], mesh.vectorCCy[yslice]]),
            c="gray",
            linestyle="--",
        )
        plt.scatter(rxLoc[0:, 0], rxLoc[0:, 1], color="k", s=1)
        plt.title("Z: " + str(mesh.vectorCCz[-16]) + " m")
        plt.xlabel("Easting (m)")
        plt.ylabel("Northing (m)")
        plt.gca().set_aspect("equal", adjustable="box")
        cb = plt.colorbar(dat[0],
                          orientation="vertical",
                          ticks=np.linspace(vmin, vmax, 4))
        cb.set_label("Density (g/cc$^3$)")

        ax = plt.subplot(222)
        dat = mesh.plotSlice(
            Lpout,
            ax=ax,
            normal="Z",
            ind=-27,
            clim=(vmin, vmax),
            pcolorOpts={"cmap": "bwr"},
        )
        plt.plot(
            np.array([mesh.vectorCCx[0], mesh.vectorCCx[-1]]),
            np.array([mesh.vectorCCy[yslice], mesh.vectorCCy[yslice]]),
            c="gray",
            linestyle="--",
        )
        plt.scatter(rxLoc[0:, 0], rxLoc[0:, 1], color="k", s=1)
        plt.title("Z: " + str(mesh.vectorCCz[-27]) + " m")
        plt.xlabel("Easting (m)")
        plt.ylabel("Northing (m)")
        plt.gca().set_aspect("equal", adjustable="box")
        cb = plt.colorbar(dat[0],
                          orientation="vertical",
                          ticks=np.linspace(vmin, vmax, 4))
        cb.set_label("Density (g/cc$^3$)")

        ax = plt.subplot(212)
        dat = mesh.plotSlice(
            Lpout,
            ax=ax,
            normal="Y",
            ind=yslice,
            clim=(vmin, vmax),
            pcolorOpts={"cmap": "bwr"},
        )
        plt.title("Cross Section")
        plt.xlabel("Easting (m)")
        plt.ylabel("Elevation (m)")
        plt.gca().set_aspect("equal", adjustable="box")
        cb = plt.colorbar(dat[0],
                          orientation="vertical",
                          ticks=np.linspace(vmin, vmax, 4))
        cb.set_label("Density (g/cc$^3$)")
Ejemplo n.º 3
0
def run(plotIt=True, saveFig=False):

    # Set up cylindrically symmeric mesh
    cs, ncx, ncz, npad = 10.0, 15, 25, 13  # padded cyl mesh
    hx = [(cs, ncx), (cs, npad, 1.3)]
    hz = [(cs, npad, -1.3), (cs, ncz), (cs, npad, 1.3)]
    mesh = discretize.CylMesh([hx, 1, hz], "00C")

    # Conductivity model
    layerz = np.r_[-200.0, -100.0]
    layer = (mesh.vectorCCz >= layerz[0]) & (mesh.vectorCCz <= layerz[1])
    active = mesh.vectorCCz < 0.0
    sig_half = 1e-2  # Half-space conductivity
    sig_air = 1e-8  # Air conductivity
    sig_layer = 5e-2  # Layer conductivity
    sigma = np.ones(mesh.nCz) * sig_air
    sigma[active] = sig_half
    sigma[layer] = sig_layer

    # Mapping
    actMap = maps.InjectActiveCells(mesh, active, np.log(1e-8), nC=mesh.nCz)
    mapping = maps.ExpMap(mesh) * maps.SurjectVertical1D(mesh) * actMap
    mtrue = np.log(sigma[active])

    # ----- FDEM problem & survey ----- #
    rxlocs = utils.ndgrid([np.r_[50.0], np.r_[0], np.r_[0.0]])
    bzr = FDEM.Rx.PointMagneticFluxDensitySecondary(rxlocs, "z", "real")
    bzi = FDEM.Rx.PointMagneticFluxDensitySecondary(rxlocs, "z", "imag")

    freqs = np.logspace(2, 3, 5)
    srcLoc = np.array([0.0, 0.0, 0.0])

    print(
        "min skin depth = ",
        500.0 / np.sqrt(freqs.max() * sig_half),
        "max skin depth = ",
        500.0 / np.sqrt(freqs.min() * sig_half),
    )
    print(
        "max x ",
        mesh.vectorCCx.max(),
        "min z ",
        mesh.vectorCCz.min(),
        "max z ",
        mesh.vectorCCz.max(),
    )

    srcList = [
        FDEM.Src.MagDipole([bzr, bzi], freq, srcLoc, orientation="Z")
        for freq in freqs
    ]

    surveyFD = FDEM.Survey(srcList)
    prbFD = FDEM.Simulation3DMagneticFluxDensity(mesh,
                                                 survey=surveyFD,
                                                 sigmaMap=mapping,
                                                 solver=Solver)
    rel_err = 0.03
    dataFD = prbFD.make_synthetic_data(mtrue,
                                       relative_error=rel_err,
                                       add_noise=True)
    dataFD.noise_floor = np.linalg.norm(dataFD.dclean) * 1e-5

    # FDEM inversion
    np.random.seed(1)
    dmisfit = data_misfit.L2DataMisfit(simulation=prbFD, data=dataFD)
    regMesh = discretize.TensorMesh([mesh.hz[mapping.maps[-1].indActive]])
    reg = regularization.Simple(regMesh)
    opt = optimization.InexactGaussNewton(maxIterCG=10)
    invProb = inverse_problem.BaseInvProblem(dmisfit, reg, opt)

    # Inversion Directives
    beta = directives.BetaSchedule(coolingFactor=4, coolingRate=3)
    betaest = directives.BetaEstimate_ByEig(beta0_ratio=1.0, seed=518936)
    target = directives.TargetMisfit()
    directiveList = [beta, betaest, target]

    inv = inversion.BaseInversion(invProb, directiveList=directiveList)
    m0 = np.log(np.ones(mtrue.size) * sig_half)
    reg.alpha_s = 5e-1
    reg.alpha_x = 1.0
    prbFD.counter = opt.counter = utils.Counter()
    opt.remember("xc")
    moptFD = inv.run(m0)

    # TDEM problem
    times = np.logspace(-4, np.log10(2e-3), 10)
    print(
        "min diffusion distance ",
        1.28 * np.sqrt(times.min() / (sig_half * mu_0)),
        "max diffusion distance ",
        1.28 * np.sqrt(times.max() / (sig_half * mu_0)),
    )
    rx = TDEM.Rx.PointMagneticFluxDensity(rxlocs, times, "z")
    src = TDEM.Src.MagDipole(
        [rx],
        waveform=TDEM.Src.StepOffWaveform(),
        loc=srcLoc,  # same src location as FDEM problem
    )

    surveyTD = TDEM.Survey([src])
    prbTD = TDEM.Simulation3DMagneticFluxDensity(mesh,
                                                 survey=surveyTD,
                                                 sigmaMap=mapping,
                                                 Solver=Solver)
    prbTD.time_steps = [(5e-5, 10), (1e-4, 10), (5e-4, 10)]

    rel_err = 0.03
    dataTD = prbTD.make_synthetic_data(mtrue,
                                       relative_error=rel_err,
                                       add_noise=True)
    dataTD.noise_floor = np.linalg.norm(dataTD.dclean) * 1e-5

    # TDEM inversion
    dmisfit = data_misfit.L2DataMisfit(simulation=prbTD, data=dataTD)
    regMesh = discretize.TensorMesh([mesh.hz[mapping.maps[-1].indActive]])
    reg = regularization.Simple(regMesh)
    opt = optimization.InexactGaussNewton(maxIterCG=10)
    invProb = inverse_problem.BaseInvProblem(dmisfit, reg, opt)

    # directives
    beta = directives.BetaSchedule(coolingFactor=4, coolingRate=3)
    betaest = directives.BetaEstimate_ByEig(beta0_ratio=1.0, seed=518936)
    target = directives.TargetMisfit()
    directiveList = [beta, betaest, target]

    inv = inversion.BaseInversion(invProb, directiveList=directiveList)
    m0 = np.log(np.ones(mtrue.size) * sig_half)
    reg.alpha_s = 5e-1
    reg.alpha_x = 1.0
    prbTD.counter = opt.counter = utils.Counter()
    opt.remember("xc")
    moptTD = inv.run(m0)

    # Plot the results
    if plotIt:
        plt.figure(figsize=(10, 8))
        ax0 = plt.subplot2grid((2, 2), (0, 0), rowspan=2)
        ax1 = plt.subplot2grid((2, 2), (0, 1))
        ax2 = plt.subplot2grid((2, 2), (1, 1))

        fs = 13  # fontsize
        matplotlib.rcParams["font.size"] = fs

        # Plot the model
        # z_true = np.repeat(mesh.vectorCCz[active][1:], 2, axis=0)
        # z_true = np.r_[mesh.vectorCCz[active][0], z_true, mesh.vectorCCz[active][-1]]
        activeN = mesh.vectorNz <= 0.0 + cs / 2.0
        z_true = np.repeat(mesh.vectorNz[activeN][1:-1], 2, axis=0)
        z_true = np.r_[mesh.vectorNz[activeN][0], z_true,
                       mesh.vectorNz[activeN][-1]]
        sigma_true = np.repeat(sigma[active], 2, axis=0)

        ax0.semilogx(sigma_true, z_true, "k-", lw=2, label="True")

        ax0.semilogx(
            np.exp(moptFD),
            mesh.vectorCCz[active],
            "bo",
            ms=6,
            markeredgecolor="k",
            markeredgewidth=0.5,
            label="FDEM",
        )
        ax0.semilogx(
            np.exp(moptTD),
            mesh.vectorCCz[active],
            "r*",
            ms=10,
            markeredgecolor="k",
            markeredgewidth=0.5,
            label="TDEM",
        )
        ax0.set_ylim(-700, 0)
        ax0.set_xlim(5e-3, 1e-1)

        ax0.set_xlabel("Conductivity (S/m)", fontsize=fs)
        ax0.set_ylabel("Depth (m)", fontsize=fs)
        ax0.grid(which="both",
                 color="k",
                 alpha=0.5,
                 linestyle="-",
                 linewidth=0.2)
        ax0.legend(fontsize=fs, loc=4)

        # plot the data misfits - negative b/c we choose positive to be in the
        # direction of primary

        ax1.plot(freqs, -dataFD.dobs[::2], "k-", lw=2, label="Obs (real)")
        ax1.plot(freqs, -dataFD.dobs[1::2], "k--", lw=2, label="Obs (imag)")

        dpredFD = prbFD.dpred(moptTD)
        ax1.loglog(
            freqs,
            -dpredFD[::2],
            "bo",
            ms=6,
            markeredgecolor="k",
            markeredgewidth=0.5,
            label="Pred (real)",
        )
        ax1.loglog(freqs,
                   -dpredFD[1::2],
                   "b+",
                   ms=10,
                   markeredgewidth=2.0,
                   label="Pred (imag)")

        ax2.loglog(times, dataTD.dobs, "k-", lw=2, label="Obs")
        ax2.loglog(
            times,
            prbTD.dpred(moptTD),
            "r*",
            ms=10,
            markeredgecolor="k",
            markeredgewidth=0.5,
            label="Pred",
        )
        ax2.set_xlim(times.min() - 1e-5, times.max() + 1e-4)

        # Labels, gridlines, etc
        ax2.grid(which="both", alpha=0.5, linestyle="-", linewidth=0.2)
        ax1.grid(which="both", alpha=0.5, linestyle="-", linewidth=0.2)

        ax1.set_xlabel("Frequency (Hz)", fontsize=fs)
        ax1.set_ylabel("Vertical magnetic field (-T)", fontsize=fs)

        ax2.set_xlabel("Time (s)", fontsize=fs)
        ax2.set_ylabel("Vertical magnetic field (T)", fontsize=fs)

        ax2.legend(fontsize=fs, loc=3)
        ax1.legend(fontsize=fs, loc=3)
        ax1.set_xlim(freqs.max() + 1e2, freqs.min() - 1e1)

        ax0.set_title("(a) Recovered Models", fontsize=fs)
        ax1.set_title("(b) FDEM observed vs. predicted", fontsize=fs)
        ax2.set_title("(c) TDEM observed vs. predicted", fontsize=fs)

        plt.tight_layout(pad=1.5)

        if saveFig is True:
            plt.savefig("example1.png", dpi=600)
Ejemplo n.º 4
0
regT = regularization.Simple(mesh,
                             indActive=actind,
                             alpha_s=1e-6,
                             alpha_x=1.0,
                             alpha_y=1.0,
                             alpha_z=1.0)

# Optimization Scheme
opt = optimization.InexactGaussNewton(maxIter=10)

# Form the problem
opt.remember("xc")
invProb = inverse_problem.BaseInvProblem(dmis, regT, opt)

# Directives for Inversions
beta = directives.BetaEstimate_ByEig(beta0_ratio=1.0)
Target = directives.TargetMisfit()
betaSched = directives.BetaSchedule(coolingFactor=5.0, coolingRate=2)

inv = inversion.BaseInversion(invProb, directiveList=[beta, Target, betaSched])
# Run Inversion
minv = inv.run(m0)

# Final Plot
############

fig, ax = plt.subplots(2, 2, figsize=(12, 6))
ax = utils.mkvc(ax)

cyl0v = getCylinderPoints(x0, z0, r0)
cyl1v = getCylinderPoints(x1, z1, r1)
Ejemplo n.º 5
0
    def setUp(self):
        # We will assume a vertical inducing field
        H0 = (50000.0, 90.0, 0.0)

        # The magnetization is set along a different direction (induced + remanence)
        M = np.array([45.0, 90.0])

        # Block with an effective susceptibility
        chi_e = 0.05

        # Create grid of points for topography
        # Lets create a simple Gaussian topo and set the active cells
        [xx, yy] = np.meshgrid(np.linspace(-200, 200, 50),
                               np.linspace(-200, 200, 50))
        b = 100
        A = 50
        zz = A * np.exp(-0.5 * ((xx / b)**2.0 + (yy / b)**2.0))
        topo = np.c_[mkvc(xx), mkvc(yy), mkvc(zz)]

        # Create an array of observation points
        xr = np.linspace(-100.0, 100.0, 20)
        yr = np.linspace(-100.0, 100.0, 20)
        X, Y = np.meshgrid(xr, yr)
        Z = A * np.exp(-0.5 * ((X / b)**2.0 + (Y / b)**2.0)) + 10

        # Create a MAGsurvey
        rxLoc = np.c_[mkvc(X.T), mkvc(Y.T), mkvc(Z.T)]
        rxList = magnetics.receivers.Point(rxLoc)
        srcField = magnetics.sources.SourceField(receiver_list=[rxList],
                                                 parameters=H0)
        survey = magnetics.survey.Survey(srcField)

        ###############################################################################
        # Inversion Mesh

        # Create a mesh
        h = [5, 5, 5]
        padDist = np.ones((3, 2)) * 100

        mesh = mesh_builder_xyz(rxLoc,
                                h,
                                padding_distance=padDist,
                                depth_core=100,
                                mesh_type="tree")
        mesh = refine_tree_xyz(mesh,
                               topo,
                               method="surface",
                               octree_levels=[4, 4],
                               finalize=True)

        # Define an active cells from topo
        actv = utils.surface2ind_topo(mesh, topo)
        nC = int(actv.sum())

        # Convert the inclination declination to vector in Cartesian
        M_xyz = utils.mat_utils.dip_azimuth2cartesian(
            np.ones(nC) * M[0],
            np.ones(nC) * M[1])

        # Get the indicies of the magnetized block
        ind = utils.model_builder.getIndicesBlock(
            np.r_[-20, -20, -10],
            np.r_[20, 20, 25],
            mesh.gridCC,
        )[0]

        # Assign magnetization value, inducing field strength will
        # be applied in by the :class:`SimPEG.PF.Magnetics` problem
        model = np.zeros(mesh.nC)
        model[ind] = chi_e

        # Remove air cells
        model = model[actv]

        # Creat reduced identity map
        idenMap = maps.IdentityMap(nP=nC)

        # Create the forward model operator
        simulation = magnetics.Simulation3DIntegral(
            survey=survey,
            mesh=mesh,
            chiMap=idenMap,
            actInd=actv,
            store_sensitivities="forward_only",
        )
        simulation.M = M_xyz

        # Compute some data and add some random noise
        synthetic_data = simulation.dpred(model)

        # Split the data in components
        nD = rxLoc.shape[0]

        std = 5  # nT
        synthetic_data += np.random.randn(nD) * std
        wd = np.ones(nD) * std

        # Assigne data and uncertainties to the survey
        data_object = data.Data(survey, dobs=synthetic_data, noise_floor=wd)

        ######################################################################
        # Equivalent Source

        # Get the active cells for equivalent source is the top only
        surf = utils.model_utils.surface_layer_index(mesh, topo)
        nC = np.count_nonzero(surf)  # Number of active cells
        mstart = np.ones(nC) * 1e-4

        # Create active map to go from reduce set to full
        surfMap = maps.InjectActiveCells(mesh, surf, np.nan)

        # Create identity map
        idenMap = maps.IdentityMap(nP=nC)

        # Create static map
        simulation = magnetics.simulation.Simulation3DIntegral(
            mesh=mesh,
            survey=survey,
            chiMap=idenMap,
            actInd=surf,
            store_sensitivities="ram",
        )
        simulation.model = mstart

        # Create a regularization function, in this case l2l2
        reg = regularization.Sparse(mesh,
                                    indActive=surf,
                                    mapping=maps.IdentityMap(nP=nC),
                                    alpha_z=0)
        reg.mref = np.zeros(nC)

        # Specify how the optimization will proceed, set susceptibility bounds to inf
        opt = optimization.ProjectedGNCG(
            maxIter=10,
            lower=-np.inf,
            upper=np.inf,
            maxIterLS=5,
            maxIterCG=5,
            tolCG=1e-3,
        )

        # Define misfit function (obs-calc)
        dmis = data_misfit.L2DataMisfit(simulation=simulation,
                                        data=data_object)

        # Create the default L2 inverse problem from the above objects
        invProb = inverse_problem.BaseInvProblem(dmis, reg, opt)

        # Specify how the initial beta is found
        betaest = directives.BetaEstimate_ByEig(beta0_ratio=2)

        # Target misfit to stop the inversion,
        # try to fit as much as possible of the signal, we don't want to lose anything
        IRLS = directives.Update_IRLS(f_min_change=1e-3,
                                      minGNiter=1,
                                      beta_tol=1e-1,
                                      max_irls_iterations=5)
        update_Jacobi = directives.UpdatePreconditioner()
        # Put all the parts together
        inv = inversion.BaseInversion(
            invProb, directiveList=[betaest, IRLS, update_Jacobi])

        # Run the equivalent source inversion
        print("Solving for Equivalent Source")
        mrec = inv.run(mstart)

        ########################################################
        # Forward Amplitude Data
        # ----------------------
        #
        # Now that we have an equialent source layer, we can forward model alh three
        # components of the field and add them up: :math:`|B| = \sqrt{( Bx^2 + Bx^2 + Bx^2 )}`
        #

        rxList = magnetics.receivers.Point(rxLoc,
                                           components=["bx", "by", "bz"])
        srcField = magnetics.sources.SourceField(receiver_list=[rxList],
                                                 parameters=H0)
        surveyAmp = magnetics.survey.Survey(srcField)

        simulation = magnetics.simulation.Simulation3DIntegral(
            mesh=mesh,
            survey=surveyAmp,
            chiMap=idenMap,
            actInd=surf,
            is_amplitude_data=True,
            store_sensitivities="forward_only",
        )

        bAmp = simulation.fields(mrec)

        ######################################################################
        # Amplitude Inversion
        # -------------------
        #
        # Now that we have amplitude data, we can invert for an effective
        # susceptibility. This is a non-linear inversion.
        #

        # Create active map to go from reduce space to full
        actvMap = maps.InjectActiveCells(mesh, actv, -100)
        nC = int(actv.sum())

        # Create identity map
        idenMap = maps.IdentityMap(nP=nC)

        mstart = np.ones(nC) * 1e-4

        # Create the forward model operator
        simulation = magnetics.simulation.Simulation3DIntegral(
            survey=surveyAmp,
            mesh=mesh,
            chiMap=idenMap,
            actInd=actv,
            is_amplitude_data=True,
        )

        data_obj = data.Data(survey, dobs=bAmp, noise_floor=wd)

        # Create a sparse regularization
        reg = regularization.Sparse(mesh, indActive=actv, mapping=idenMap)
        reg.norms = np.c_[1, 0, 0, 0]
        reg.mref = np.zeros(nC)

        # Data misfit function
        dmis = data_misfit.L2DataMisfit(simulation=simulation, data=data_obj)

        # Add directives to the inversion
        opt = optimization.ProjectedGNCG(maxIter=10,
                                         lower=0.0,
                                         upper=1.0,
                                         maxIterLS=5,
                                         maxIterCG=5,
                                         tolCG=1e-3)

        invProb = inverse_problem.BaseInvProblem(dmis, reg, opt)

        # Here is the list of directives
        betaest = directives.BetaEstimate_ByEig(beta0_ratio=1)

        # Specify the sparse norms
        IRLS = directives.Update_IRLS(
            max_irls_iterations=5,
            f_min_change=1e-3,
            minGNiter=1,
            coolingRate=1,
            beta_search=False,
        )

        # Special directive specific to the mag amplitude problem. The sensitivity
        # weights are update between each iteration.
        update_SensWeight = directives.UpdateSensitivityWeights()
        update_Jacobi = directives.UpdatePreconditioner()

        # Put all together
        self.inv = inversion.BaseInversion(
            invProb,
            directiveList=[update_SensWeight, betaest, IRLS, update_Jacobi])

        self.mstart = mstart
        self.model = model
        self.sim = simulation
Ejemplo n.º 6
0
def run(plotIt=True, survey_type="dipole-dipole", p=0.0, qx=2.0, qz=2.0):
    np.random.seed(1)
    # Initiate I/O class for DC
    IO = DC.IO()
    # Obtain ABMN locations

    xmin, xmax = 0.0, 200.0
    ymin, ymax = 0.0, 0.0
    zmin, zmax = 0, 0
    endl = np.array([[xmin, ymin, zmin], [xmax, ymax, zmax]])
    # Generate DC survey object
    survey = gen_DCIPsurvey(endl,
                            survey_type=survey_type,
                            dim=2,
                            a=10,
                            b=10,
                            n=10)
    survey = IO.from_ambn_locations_to_survey(
        survey.locations_a,
        survey.locations_b,
        survey.locations_m,
        survey.locations_n,
        survey_type,
        data_dc_type="volt",
    )

    # Obtain 2D TensorMesh
    mesh, actind = IO.set_mesh()
    topo, mesh1D = genTopography(mesh, -10, 0, its=100)
    actind = utils.surface2ind_topo(mesh, np.c_[mesh1D.vectorCCx, topo])
    survey.drape_electrodes_on_topography(mesh, actind, option="top")

    # Build a conductivity model
    blk_inds_c = utils.model_builder.getIndicesSphere(np.r_[60.0, -25.0], 12.5,
                                                      mesh.gridCC)
    blk_inds_r = utils.model_builder.getIndicesSphere(np.r_[140.0, -25.0],
                                                      12.5, mesh.gridCC)
    layer_inds = mesh.gridCC[:, 1] > -5.0
    sigma = np.ones(mesh.nC) * 1.0 / 100.0
    sigma[blk_inds_c] = 1.0 / 10.0
    sigma[blk_inds_r] = 1.0 / 1000.0
    sigma[~actind] = 1.0 / 1e8
    rho = 1.0 / sigma

    # Show the true conductivity model
    if plotIt:
        fig = plt.figure(figsize=(12, 3))
        ax = plt.subplot(111)
        temp = rho.copy()
        temp[~actind] = np.nan
        out = mesh.plotImage(
            temp,
            grid=True,
            ax=ax,
            gridOpts={"alpha": 0.2},
            clim=(10, 1000),
            pcolorOpts={
                "cmap": "viridis",
                "norm": colors.LogNorm()
            },
        )
        ax.plot(survey.electrode_locations[:, 0],
                survey.electrode_locations[:, 1], "k.")
        ax.set_xlim(IO.grids[:, 0].min(), IO.grids[:, 0].max())
        ax.set_ylim(-IO.grids[:, 1].max(), IO.grids[:, 1].min())
        cb = plt.colorbar(out[0])
        cb.set_label("Resistivity (ohm-m)")
        ax.set_aspect("equal")
        plt.show()

    # Use Exponential Map: m = log(rho)
    actmap = maps.InjectActiveCells(mesh,
                                    indActive=actind,
                                    valInactive=np.log(1e8))
    mapping = maps.ExpMap(mesh) * actmap

    # Generate mtrue
    mtrue = np.log(rho[actind])

    # Generate 2.5D DC problem
    # "N" means potential is defined at nodes
    prb = DC.Simulation2DNodal(mesh,
                               survey=survey,
                               rhoMap=mapping,
                               storeJ=True,
                               Solver=Solver,
                               verbose=True)

    # Make synthetic DC data with 5% Gaussian noise
    data = prb.make_synthetic_data(mtrue, relative_error=0.05, add_noise=True)

    IO.data_dc = data.dobs
    # Show apparent resisitivty pseudo-section
    if plotIt:
        IO.plotPseudoSection(data=data.dobs / IO.G,
                             data_type="apparent_resistivity")

    # Show apparent resisitivty histogram
    if plotIt:
        fig = plt.figure()
        out = hist(data.dobs / IO.G, bins=20)
        plt.xlabel("Apparent Resisitivty ($\Omega$m)")
        plt.show()

    # Set initial model based upon histogram
    m0 = np.ones(actmap.nP) * np.log(100.0)

    # Set standard_deviation
    # floor
    eps = 10**(-3.2)
    # percentage
    relative = 0.05
    dmisfit = data_misfit.L2DataMisfit(simulation=prb, data=data)
    uncert = abs(data.dobs) * relative + eps
    dmisfit.standard_deviation = uncert

    # Map for a regularization
    regmap = maps.IdentityMap(nP=int(actind.sum()))

    # Related to inversion
    reg = regularization.Sparse(mesh,
                                indActive=actind,
                                mapping=regmap,
                                gradientType="components")
    #     gradientType = 'components'
    reg.norms = np.c_[p, qx, qz, 0.0]
    IRLS = directives.Update_IRLS(max_irls_iterations=20,
                                  minGNiter=1,
                                  beta_search=False,
                                  fix_Jmatrix=True)

    opt = optimization.InexactGaussNewton(maxIter=40)
    invProb = inverse_problem.BaseInvProblem(dmisfit, reg, opt)
    beta = directives.BetaSchedule(coolingFactor=5, coolingRate=2)
    betaest = directives.BetaEstimate_ByEig(beta0_ratio=1e0)
    target = directives.TargetMisfit()
    update_Jacobi = directives.UpdatePreconditioner()
    inv = inversion.BaseInversion(invProb, directiveList=[betaest, IRLS])
    prb.counter = opt.counter = utils.Counter()
    opt.LSshorten = 0.5
    opt.remember("xc")

    # Run inversion
    mopt = inv.run(m0)

    rho_est = mapping * mopt
    rho_est_l2 = mapping * invProb.l2model
    rho_est[~actind] = np.nan
    rho_est_l2[~actind] = np.nan
    rho_true = rho.copy()
    rho_true[~actind] = np.nan

    # show recovered conductivity
    if plotIt:
        vmin, vmax = rho.min(), rho.max()
        fig, ax = plt.subplots(3, 1, figsize=(20, 9))
        out1 = mesh.plotImage(
            rho_true,
            clim=(10, 1000),
            pcolorOpts={
                "cmap": "viridis",
                "norm": colors.LogNorm()
            },
            ax=ax[0],
        )
        out2 = mesh.plotImage(
            rho_est_l2,
            clim=(10, 1000),
            pcolorOpts={
                "cmap": "viridis",
                "norm": colors.LogNorm()
            },
            ax=ax[1],
        )
        out3 = mesh.plotImage(
            rho_est,
            clim=(10, 1000),
            pcolorOpts={
                "cmap": "viridis",
                "norm": colors.LogNorm()
            },
            ax=ax[2],
        )

        out = [out1, out2, out3]
        titles = ["True", "L2", ("L%d, Lx%d, Lz%d") % (p, qx, qz)]
        for i in range(3):
            ax[i].plot(survey.electrode_locations[:, 0],
                       survey.electrode_locations[:, 1], "kv")
            ax[i].set_xlim(IO.grids[:, 0].min(), IO.grids[:, 0].max())
            ax[i].set_ylim(-IO.grids[:, 1].max(), IO.grids[:, 1].min())
            cb = plt.colorbar(out[i][0], ax=ax[i])
            cb.set_label("Resistivity ($\Omega$m)")
            ax[i].set_xlabel("Northing (m)")
            ax[i].set_ylabel("Elevation (m)")
            ax[i].set_aspect("equal")
            ax[i].set_title(titles[i])
        plt.tight_layout()
        plt.show()
Ejemplo n.º 7
0
# `alpha_s, alpha_x, alpha_y` as input arguments when the regularization is
# created. The default reference model in the regularization is the starting
# model. To set something different, you can input an `mref` into the
# regularization.
#
# We estimate the trade-off parameter, beta, between the data
# misfit and regularization by the largest eigenvalue of the data misfit and
# the regularization. Here, we use a fixed beta, but could alternatively
# employ a beta-cooling schedule using :class:`SimPEG.directives.BetaSchedule`

dmisfit = data_misfit.L2DataMisfit(simulation=prob, data=data)
reg = regularization.Simple(inversion_mesh)
opt = optimization.InexactGaussNewton(maxIterCG=10, remember="xc")
invProb = inverse_problem.BaseInvProblem(dmisfit, reg, opt)

betaest = directives.BetaEstimate_ByEig(beta0_ratio=0.05, n_pw_iter=1, seed=1)
target = directives.TargetMisfit()

directiveList = [betaest, target]
inv = inversion.BaseInversion(invProb, directiveList=directiveList)

print("The target misfit is {:1.2f}".format(target.target))

###############################################################################
# Run the inversion
# ------------------
#
# We start from a half-space equal to the deep conductivity.

m0 = np.log(sigma_deep) * np.ones(inversion_mesh.nC)
def run(plotIt=True, survey_type="dipole-dipole"):
    np.random.seed(1)
    # Initiate I/O class for DC
    IO = DC.IO()
    # Obtain ABMN locations

    xmin, xmax = 0.0, 200.0
    ymin, ymax = 0.0, 0.0
    zmin, zmax = 0, 0
    endl = np.array([[xmin, ymin, zmin], [xmax, ymax, zmax]])
    # Generate DC survey object
    survey = gen_DCIPsurvey(endl,
                            survey_type=survey_type,
                            dim=2,
                            a=10,
                            b=10,
                            n=10)
    survey = IO.from_abmn_locations_to_survey(
        survey.locations_a,
        survey.locations_b,
        survey.locations_m,
        survey.locations_n,
        survey_type,
        data_dc_type="volt",
    )

    # Obtain 2D TensorMesh
    mesh, actind = IO.set_mesh()
    topo, mesh1D = genTopography(mesh, -10, 0, its=100)
    actind = utils.surface2ind_topo(mesh, np.c_[mesh1D.vectorCCx, topo])
    survey.drape_electrodes_on_topography(mesh, actind, option="top")

    # Build a conductivity model
    blk_inds_c = utils.model_builder.getIndicesSphere(np.r_[60.0, -25.0], 12.5,
                                                      mesh.gridCC)
    blk_inds_r = utils.model_builder.getIndicesSphere(np.r_[140.0, -25.0],
                                                      12.5, mesh.gridCC)
    layer_inds = mesh.gridCC[:, 1] > -5.0
    sigma = np.ones(mesh.nC) * 1.0 / 100.0
    sigma[blk_inds_c] = 1.0 / 10.0
    sigma[blk_inds_r] = 1.0 / 1000.0
    sigma[~actind] = 1.0 / 1e8
    rho = 1.0 / sigma

    # Show the true conductivity model
    if plotIt:
        fig = plt.figure(figsize=(12, 3))
        ax = plt.subplot(111)
        temp = rho.copy()
        temp[~actind] = np.nan
        out = mesh.plotImage(
            temp,
            grid=True,
            ax=ax,
            gridOpts={"alpha": 0.2},
            clim=(10, 1000),
            pcolorOpts={
                "cmap": "viridis",
                "norm": colors.LogNorm()
            },
        )
        ax.plot(survey.electrode_locations[:, 0],
                survey.electrode_locations[:, 1], "k.")
        ax.set_xlim(IO.grids[:, 0].min(), IO.grids[:, 0].max())
        ax.set_ylim(-IO.grids[:, 1].max(), IO.grids[:, 1].min())
        cb = plt.colorbar(out[0])
        cb.set_label("Resistivity (ohm-m)")
        ax.set_aspect("equal")
        plt.show()

    # Use Exponential Map: m = log(rho)
    actmap = maps.InjectActiveCells(mesh,
                                    indActive=actind,
                                    valInactive=np.log(1e8))
    mapping = maps.ExpMap(mesh) * actmap

    # Generate mtrue
    mtrue = np.log(rho[actind])

    # Generate 2.5D DC problem
    # "N" means potential is defined at nodes
    prb = DC.Simulation2DNodal(mesh,
                               survey=survey,
                               rhoMap=mapping,
                               storeJ=True,
                               Solver=Solver,
                               verbose=True)

    geometric_factor = survey.set_geometric_factor(
        data_type="apparent_resistivity",
        survey_type="dipole-dipole",
        space_type="half-space",
    )

    # Make synthetic DC data with 5% Gaussian noise
    data = prb.make_synthetic_data(mtrue, relative_error=0.05, add_noise=True)

    IO.data_dc = data.dobs
    # Show apparent resisitivty pseudo-section
    if plotIt:
        IO.plotPseudoSection(data=data.dobs, data_type="apparent_resistivity")

    # Show apparent resisitivty histogram
    if plotIt:
        fig = plt.figure()
        out = hist(data.dobs, bins=20)
        plt.xlabel("Apparent Resisitivty ($\Omega$m)")
        plt.show()

    # Set initial model based upon histogram
    m0 = np.ones(actmap.nP) * np.log(100.0)

    # Set standard_deviation
    # floor (10 ohm-m)
    eps = 1.0
    # percentage
    relative = 0.05
    dmisfit = data_misfit.L2DataMisfit(simulation=prb, data=data)
    uncert = abs(data.dobs) * relative + eps
    dmisfit.standard_deviation = uncert

    # Map for a regularization
    regmap = maps.IdentityMap(nP=int(actind.sum()))

    # Related to inversion
    reg = regularization.Sparse(mesh, indActive=actind, mapping=regmap)
    opt = optimization.InexactGaussNewton(maxIter=15)
    invProb = inverse_problem.BaseInvProblem(dmisfit, reg, opt)
    beta = directives.BetaSchedule(coolingFactor=5, coolingRate=2)
    betaest = directives.BetaEstimate_ByEig(beta0_ratio=1e0)
    target = directives.TargetMisfit()
    updateSensW = directives.UpdateSensitivityWeights()
    update_Jacobi = directives.UpdatePreconditioner()
    inv = inversion.BaseInversion(
        invProb,
        directiveList=[beta, target, updateSensW, betaest, update_Jacobi])
    prb.counter = opt.counter = utils.Counter()
    opt.LSshorten = 0.5
    opt.remember("xc")

    # Run inversion
    mopt = inv.run(m0)

    # Get diag(JtJ)
    mask_inds = np.ones(mesh.nC, dtype=bool)
    jtj = np.sqrt(updateSensW.JtJdiag[0])
    jtj /= jtj.max()
    temp = np.ones_like(jtj, dtype=bool)
    temp[jtj > 0.005] = False
    mask_inds[actind] = temp
    actind_final = np.logical_and(actind, ~mask_inds)
    jtj_cc = np.ones(mesh.nC) * np.nan
    jtj_cc[actind] = jtj

    # Show the sensitivity
    if plotIt:
        fig = plt.figure(figsize=(12, 3))
        ax = plt.subplot(111)
        temp = rho.copy()
        temp[~actind] = np.nan
        out = mesh.plotImage(
            jtj_cc,
            grid=True,
            ax=ax,
            gridOpts={"alpha": 0.2},
            clim=(0.005, 0.5),
            pcolorOpts={
                "cmap": "viridis",
                "norm": colors.LogNorm()
            },
        )
        ax.plot(survey.electrode_locations[:, 0],
                survey.electrode_locations[:, 1], "k.")
        ax.set_xlim(IO.grids[:, 0].min(), IO.grids[:, 0].max())
        ax.set_ylim(-IO.grids[:, 1].max(), IO.grids[:, 1].min())
        cb = plt.colorbar(out[0])
        cb.set_label("Sensitivity")
        ax.set_aspect("equal")
        plt.show()

    # Convert obtained inversion model to resistivity
    # rho = M(m), where M(.) is a mapping

    rho_est = mapping * mopt
    rho_est[~actind_final] = np.nan
    rho_true = rho.copy()
    rho_true[~actind_final] = np.nan

    # show recovered conductivity
    if plotIt:
        vmin, vmax = rho.min(), rho.max()
        fig, ax = plt.subplots(2, 1, figsize=(20, 6))
        out1 = mesh.plotImage(
            rho_true,
            clim=(10, 1000),
            pcolorOpts={
                "cmap": "viridis",
                "norm": colors.LogNorm()
            },
            ax=ax[0],
        )
        out2 = mesh.plotImage(
            rho_est,
            clim=(10, 1000),
            pcolorOpts={
                "cmap": "viridis",
                "norm": colors.LogNorm()
            },
            ax=ax[1],
        )
        out = [out1, out2]
        for i in range(2):
            ax[i].plot(survey.electrode_locations[:, 0],
                       survey.electrode_locations[:, 1], "kv")
            ax[i].set_xlim(IO.grids[:, 0].min(), IO.grids[:, 0].max())
            ax[i].set_ylim(-IO.grids[:, 1].max(), IO.grids[:, 1].min())
            cb = plt.colorbar(out[i][0], ax=ax[i])
            cb.set_label("Resistivity ($\Omega$m)")
            ax[i].set_xlabel("Northing (m)")
            ax[i].set_ylabel("Elevation (m)")
            ax[i].set_aspect("equal")
        plt.tight_layout()
        plt.show()
Ejemplo n.º 9
0
mtrue[mesh.cell_centers_x > 0.3] = 1.0
mtrue[mesh.cell_centers_x > 0.45] = -0.5
mtrue[mesh.cell_centers_x > 0.6] = 0

# SimPEG problem and survey
prob = simulation.LinearSimulation(mesh, G=G, model_map=maps.IdentityMap())
std = 0.01
survey = prob.make_synthetic_data(mtrue, relative_error=std, add_noise=True)

# Setup the inverse problem
reg = regularization.Tikhonov(mesh, alpha_s=1.0, alpha_x=1.0)
dmis = data_misfit.L2DataMisfit(data=survey, simulation=prob)
opt = optimization.ProjectedGNCG(maxIter=10, maxIterCG=50, tolCG=1e-4)
invProb = inverse_problem.BaseInvProblem(dmis, reg, opt)
directiveslist = [
    directives.BetaEstimate_ByEig(beta0_ratio=1e-5),
    directives.BetaSchedule(coolingFactor=10.0, coolingRate=2),
    directives.TargetMisfit(),
]

inv = inversion.BaseInversion(invProb, directiveList=directiveslist)
m0 = np.zeros_like(mtrue)

mnormal = inv.run(m0)

#########################################
# Petrophysically constrained inversion #
#########################################

# fit a Gaussian Mixture Model with n components
# on the true model to simulate the laboratory
Ejemplo n.º 10
0
    def setUp(self):

        np.random.seed(0)

        # Define the inducing field parameter
        H0 = (50000, 90, 0)

        # Create a mesh
        dx = 5.0

        hxind = [(dx, 5, -1.3), (dx, 5), (dx, 5, 1.3)]
        hyind = [(dx, 5, -1.3), (dx, 5), (dx, 5, 1.3)]
        hzind = [(dx, 5, -1.3), (dx, 6)]

        self.mesh = discretize.TensorMesh([hxind, hyind, hzind], "CCC")

        # Get index of the center
        midx = int(self.mesh.nCx / 2)
        midy = int(self.mesh.nCy / 2)

        # Lets create a simple Gaussian topo and set the active cells
        [xx, yy] = np.meshgrid(self.mesh.vectorNx, self.mesh.vectorNy)
        zz = -np.exp((xx**2 + yy**2) / 75**2) + self.mesh.vectorNz[-1]

        # Go from topo to actv cells
        topo = np.c_[utils.mkvc(xx), utils.mkvc(yy), utils.mkvc(zz)]
        actv = utils.surface2ind_topo(self.mesh, topo, "N")
        actv = np.where(actv)[0]

        # Create active map to go from reduce space to full
        self.actvMap = maps.InjectActiveCells(self.mesh, actv, -100)
        nC = len(actv)

        # Create and array of observation points
        xr = np.linspace(-20.0, 20.0, 20)
        yr = np.linspace(-20.0, 20.0, 20)
        X, Y = np.meshgrid(xr, yr)

        # Move the observation points 5m above the topo
        Z = -np.exp((X**2 + Y**2) / 75**2) + self.mesh.vectorNz[-1] + 5.0

        # Create a MAGsurvey
        rxLoc = np.c_[utils.mkvc(X.T), utils.mkvc(Y.T), utils.mkvc(Z.T)]
        rxLoc = mag.Point(rxLoc)
        srcField = mag.SourceField([rxLoc], parameters=H0)
        survey = mag.Survey(srcField)

        # We can now create a susceptibility model and generate data
        # Here a simple block in half-space
        model = np.zeros((self.mesh.nCx, self.mesh.nCy, self.mesh.nCz))
        model[(midx - 2):(midx + 2), (midy - 2):(midy + 2), -6:-2] = 0.02
        model = utils.mkvc(model)
        self.model = model[actv]

        # Create active map to go from reduce set to full
        self.actvMap = maps.InjectActiveCells(self.mesh, actv, -100)

        # Creat reduced identity map
        idenMap = maps.IdentityMap(nP=nC)

        # Create the forward model operator
        sim = mag.Simulation3DIntegral(
            self.mesh,
            survey=survey,
            chiMap=idenMap,
            actInd=actv,
            store_sensitivities="disk",
        )
        self.sim = sim

        # Compute linear forward operator and compute some data
        data = sim.make_synthetic_data(self.model,
                                       relative_error=0.0,
                                       noise_floor=1.0,
                                       add_noise=True)

        # Create a regularization
        reg = regularization.Sparse(self.mesh, indActive=actv, mapping=idenMap)
        reg.norms = np.c_[0, 0, 0, 0]
        reg.gradientType = "component"
        # reg.eps_p, reg.eps_q = 1e-3, 1e-3

        # Data misfit function
        dmis = data_misfit.L2DataMisfit(simulation=sim, data=data)
        # dmis.W = 1/wd

        # Add directives to the inversion
        opt = optimization.ProjectedGNCG(maxIter=100,
                                         lower=0.0,
                                         upper=1.0,
                                         maxIterLS=20,
                                         maxIterCG=10,
                                         tolCG=1e-3)

        invProb = inverse_problem.BaseInvProblem(dmis, reg, opt)
        betaest = directives.BetaEstimate_ByEig()

        # Here is where the norms are applied
        IRLS = directives.Update_IRLS(f_min_change=1e-4, minGNiter=1)
        update_Jacobi = directives.UpdatePreconditioner()
        sensitivity_weights = directives.UpdateSensitivityWeights(
            everyIter=False)
        self.inv = inversion.BaseInversion(
            invProb,
            directiveList=[IRLS, sensitivity_weights, betaest, update_Jacobi])
Ejemplo n.º 11
0
def run(plotIt=True):

    M = discretize.TensorMesh([np.ones(40)], x0="N")
    M.setCellGradBC("dirichlet")
    # We will use the haverkamp empirical model with parameters from Celia1990
    k_fun, theta_fun = richards.empirical.haverkamp(
        M,
        A=1.1750e06,
        gamma=4.74,
        alpha=1.6110e06,
        theta_s=0.287,
        theta_r=0.075,
        beta=3.96,
    )

    # Here we are making saturated hydraulic conductivity
    # an exponential mapping to the model (defined below)
    k_fun.KsMap = maps.ExpMap(nP=M.nC)

    # Setup the boundary and initial conditions
    bc = np.array([-61.5, -20.7])
    h = np.zeros(M.nC) + bc[0]
    prob = richards.SimulationNDCellCentered(
        M,
        hydraulic_conductivity=k_fun,
        water_retention=theta_fun,
        boundary_conditions=bc,
        initial_conditions=h,
        do_newton=False,
        method="mixed",
        debug=False,
    )
    prob.time_steps = [(5, 25, 1.1), (60, 40)]

    # Create the survey
    locs = -np.arange(2, 38, 4.0).reshape(-1, 1)
    times = np.arange(30, prob.time_mesh.vectorCCx[-1], 60)
    rxSat = richards.receivers.Saturation(locs, times)
    survey = richards.Survey([rxSat])
    prob.survey = survey

    # Create a simple model for Ks
    Ks = 1e-3
    mtrue = np.ones(M.nC) * np.log(Ks)
    mtrue[15:20] = np.log(5e-2)
    mtrue[20:35] = np.log(3e-3)
    mtrue[35:40] = np.log(1e-2)
    m0 = np.ones(M.nC) * np.log(Ks)

    # Create some synthetic data and fields
    relative = 0.02  # The standard deviation for the noise
    Hs = prob.fields(mtrue)
    data = prob.make_synthetic_data(mtrue,
                                    relative_error=relative,
                                    f=Hs,
                                    add_noise=True)

    # Setup a pretty standard inversion
    reg = regularization.Tikhonov(M, alpha_s=1e-1)
    dmis = data_misfit.L2DataMisfit(simulation=prob, data=data)
    opt = optimization.InexactGaussNewton(maxIter=20, maxIterCG=10)
    invProb = inverse_problem.BaseInvProblem(dmis, reg, opt)
    beta = directives.BetaSchedule(coolingFactor=4)
    betaest = directives.BetaEstimate_ByEig(beta0_ratio=1e2)
    target = directives.TargetMisfit()
    dir_list = [beta, betaest, target]
    inv = inversion.BaseInversion(invProb, directiveList=dir_list)

    mopt = inv.run(m0)

    Hs_opt = prob.fields(mopt)

    if plotIt:
        plt.figure(figsize=(14, 9))

        ax = plt.subplot(121)
        plt.semilogx(np.exp(np.c_[mopt, mtrue]), M.gridCC)
        plt.xlabel("Saturated Hydraulic Conductivity, $K_s$")
        plt.ylabel("Depth, cm")
        plt.semilogx([10**-3.9] * len(locs), locs, "ro")
        plt.legend(("$m_{rec}$", "$m_{true}$", "Data locations"), loc=4)

        ax = plt.subplot(222)
        mesh2d = discretize.TensorMesh([prob.time_mesh.hx / 60, prob.mesh.hx],
                                       "0N")
        sats = [theta_fun(_) for _ in Hs]
        clr = mesh2d.plotImage(np.c_[sats][1:, :], ax=ax)
        cmap0 = matplotlib.cm.RdYlBu_r
        clr[0].set_cmap(cmap0)
        c = plt.colorbar(clr[0])
        c.set_label("Saturation $\\theta$")
        plt.xlabel("Time, minutes")
        plt.ylabel("Depth, cm")
        plt.title("True saturation over time")

        ax = plt.subplot(224)
        mesh2d = discretize.TensorMesh([prob.time_mesh.hx / 60, prob.mesh.hx],
                                       "0N")
        sats = [theta_fun(_) for _ in Hs_opt]
        clr = mesh2d.plotImage(np.c_[sats][1:, :], ax=ax)
        cmap0 = matplotlib.cm.RdYlBu_r
        clr[0].set_cmap(cmap0)
        c = plt.colorbar(clr[0])
        c.set_label("Saturation $\\theta$")
        plt.xlabel("Time, minutes")
        plt.ylabel("Depth, cm")
        plt.title("Recovered saturation over time")

        plt.tight_layout()
Ejemplo n.º 12
0
def run(plotIt=True):

    H0 = (50000.0, 90.0, 0.0)

    # Create a mesh
    dx = 5.0

    hxind = [(dx, 5, -1.3), (dx, 10), (dx, 5, 1.3)]
    hyind = [(dx, 5, -1.3), (dx, 10), (dx, 5, 1.3)]
    hzind = [(dx, 5, -1.3), (dx, 10)]

    mesh = discretize.TensorMesh([hxind, hyind, hzind], "CCC")

    # Lets create a simple Gaussian topo and set the active cells
    [xx, yy] = np.meshgrid(mesh.vectorNx, mesh.vectorNy)
    zz = -np.exp((xx ** 2 + yy ** 2) / 75 ** 2) + mesh.vectorNz[-1]

    # We would usually load a topofile
    topo = np.c_[utils.mkvc(xx), utils.mkvc(yy), utils.mkvc(zz)]

    # Go from topo to array of indices of active cells
    actv = utils.surface2ind_topo(mesh, topo, "N")
    actv = np.where(actv)[0]

    # Create and array of observation points
    xr = np.linspace(-20.0, 20.0, 20)
    yr = np.linspace(-20.0, 20.0, 20)
    X, Y = np.meshgrid(xr, yr)

    # Move the observation points 5m above the topo
    Z = -np.exp((X ** 2 + Y ** 2) / 75 ** 2) + mesh.vectorNz[-1] + 5.0

    # Create a MAGsurvey
    rxLoc = np.c_[utils.mkvc(X.T), utils.mkvc(Y.T), utils.mkvc(Z.T)]
    rxLoc = magnetics.Point(rxLoc)
    srcField = magnetics.SourceField([rxLoc], parameters=H0)
    survey = magnetics.Survey(srcField)

    # We can now create a susceptibility model and generate data
    model = np.zeros(mesh.nC)

    # Change values in half the domain
    model[mesh.gridCC[:, 0] < 0] = 0.01

    # Add a block in half-space
    model = utils.model_builder.addBlock(
        mesh.gridCC, model, np.r_[-10, -10, 20], np.r_[10, 10, 40], 0.05
    )

    model = utils.mkvc(model)
    model = model[actv]

    # Create active map to go from reduce set to full
    actvMap = maps.InjectActiveCells(mesh, actv, np.nan)

    # Create reduced identity map
    idenMap = maps.IdentityMap(nP=len(actv))

    # Create the forward model operator
    prob = magnetics.Simulation3DIntegral(
        mesh,
        survey=survey,
        chiMap=idenMap,
        actInd=actv,
        store_sensitivities="forward_only",
    )

    # Compute linear forward operator and compute some data
    data = prob.make_synthetic_data(
        model, relative_error=0.0, noise_floor=1, add_noise=True
    )

    # Create a homogenous maps for the two domains
    domains = [mesh.gridCC[actv, 0] < 0, mesh.gridCC[actv, 0] >= 0]
    homogMap = maps.SurjectUnits(domains)

    # Create a wire map for a second model space, voxel based
    wires = maps.Wires(("h**o", len(domains)), ("hetero", len(actv)))

    # Create Sum map
    sumMap = maps.SumMap([homogMap * wires.h**o, wires.hetero])

    # Create the forward model operator
    prob = magnetics.Simulation3DIntegral(
        mesh, survey=survey, chiMap=sumMap, actInd=actv, store_sensitivities="ram"
    )

    # Make depth weighting
    wr = np.zeros(sumMap.shape[1])
    print(prob.nC)
    # print(prob.M.shape) # why does this reset nC
    G = prob.G

    # Take the cell number out of the scaling.
    # Want to keep high sens for large volumes
    scale = utils.sdiag(
        np.r_[utils.mkvc(1.0 / homogMap.P.sum(axis=0)), np.ones_like(actv)]
    )

    for ii in range(survey.nD):
        wr += (
            (prob.G[ii, :] * prob.chiMap.deriv(np.ones(sumMap.shape[1]) * 1e-4) * scale)
            / data.standard_deviation[ii]
        ) ** 2.0

    # Scale the model spaces independently
    wr[wires.h**o.index] /= np.max((wires.h**o * wr))
    wr[wires.hetero.index] /= np.max(wires.hetero * wr)
    wr = wr ** 0.5

    ## Create a regularization
    # For the homogeneous model
    regMesh = discretize.TensorMesh([len(domains)])

    reg_m1 = regularization.Sparse(regMesh, mapping=wires.h**o)
    reg_m1.cell_weights = wires.h**o * wr
    reg_m1.norms = np.c_[0, 2, 2, 2]
    reg_m1.mref = np.zeros(sumMap.shape[1])

    # Regularization for the voxel model
    reg_m2 = regularization.Sparse(mesh, indActive=actv, mapping=wires.hetero)
    reg_m2.cell_weights = wires.hetero * wr
    reg_m2.norms = np.c_[0, 1, 1, 1]
    reg_m2.mref = np.zeros(sumMap.shape[1])

    reg = reg_m1 + reg_m2

    # Data misfit function
    dmis = data_misfit.L2DataMisfit(simulation=prob, data=data)

    # Add directives to the inversion
    opt = optimization.ProjectedGNCG(
        maxIter=100,
        lower=0.0,
        upper=1.0,
        maxIterLS=20,
        maxIterCG=10,
        tolCG=1e-3,
        tolG=1e-3,
        eps=1e-6,
    )
    invProb = inverse_problem.BaseInvProblem(dmis, reg, opt)
    betaest = directives.BetaEstimate_ByEig()

    # Here is where the norms are applied
    # Use pick a threshold parameter empirically based on the distribution of
    #  model parameters
    IRLS = directives.Update_IRLS(f_min_change=1e-3, minGNiter=1)
    update_Jacobi = directives.UpdatePreconditioner()
    inv = inversion.BaseInversion(invProb, directiveList=[IRLS, betaest, update_Jacobi])

    # Run the inversion
    m0 = np.ones(sumMap.shape[1]) * 1e-4  # Starting model
    prob.model = m0
    mrecSum = inv.run(m0)
    if plotIt:

        mesh.plot_3d_slicer(
            actvMap * model,
            aspect="equal",
            zslice=30,
            pcolorOpts={"cmap": "inferno_r"},
            transparent="slider",
        )

        mesh.plot_3d_slicer(
            actvMap * sumMap * mrecSum,
            aspect="equal",
            zslice=30,
            pcolorOpts={"cmap": "inferno_r"},
            transparent="slider",
        )
invProb = inverse_problem.BaseInvProblem(dmis, reg_simple, opt)

# directives
scales = directives.ScalingMultipleDataMisfits_ByEig(chi0_ratio=np.r_[1.0,
                                                                      1.0],
                                                     verbose=True,
                                                     n_pw_iter=10)
scaling_schedule = directives.JointScalingSchedule(verbose=True)
alpha0_ratio = np.r_[np.zeros(len(reg_simple.objfcts[0].objfcts)),
                     100.0 * np.ones(len(reg_simple.objfcts[1].objfcts)),
                     1.0 * np.ones(len(reg_simple.objfcts[2].objfcts)), ]
alphas = directives.AlphasSmoothEstimate_ByEig(alpha0_ratio=alpha0_ratio,
                                               n_pw_iter=10,
                                               verbose=True)
beta = directives.BetaEstimate_ByEig(beta0_ratio=1e-5, n_pw_iter=10)
betaIt = directives.PGI_BetaAlphaSchedule(
    verbose=True,
    coolingFactor=2.0,
    progress=0.2,
)
targets = directives.MultiTargetMisfits(verbose=True)
petrodir = directives.PGI_UpdateParameters(update_gmm=False)

# Setup Inversion
inv = inversion.BaseInversion(
    invProb,
    directiveList=[
        alphas, scales, beta, petrodir, targets, betaIt, scaling_schedule
    ],
)
Ejemplo n.º 14
0
    def run_inversion(
        self,
        maxIter=60,
        m0=0.0,
        mref=0.0,
        percentage=5,
        floor=0.1,
        chifact=1,
        beta0_ratio=1.0,
        coolingFactor=1,
        n_iter_per_beta=1,
        alpha_s=1.0,
        alpha_x=1.0,
        alpha_z=1.0,
        use_target=False,
        use_tikhonov=True,
        use_irls=False,
        p_s=2,
        p_x=2,
        p_y=2,
        p_z=2,
        beta_start=None,
    ):

        self.uncertainty = percentage * abs(self.data_prop.dobs) * 0.01 + floor

        m0 = np.ones(self.mesh_prop.nC) * m0
        mref = np.ones(self.mesh_prop.nC) * mref

        if ~use_tikhonov:
            reg = regularization.Sparse(
                self.mesh_prop,
                alpha_s=alpha_s,
                alpha_x=alpha_x,
                alpha_y=alpha_z,
                mref=mref,
                mapping=maps.IdentityMap(self.mesh_prop),
                cell_weights=self.mesh_prop.vol,
            )
        else:
            reg = regularization.Tikhonov(
                self.mesh_prop,
                alpha_s=alpha_s,
                alpha_x=alpha_x,
                alpha_y=alpha_z,
                mref=mref,
                mapping=maps.IdentityMap(self.mesh_prop),
            )
        dataObj = data.Data(self.survey_prop,
                            dobs=self.dobs,
                            noise_floor=self.uncertainty)
        dmis = data_misfit.L2DataMisfit(simulation=self.simulation_prop,
                                        data=dataObj)
        dmis.W = 1.0 / self.uncertainty

        opt = optimization.ProjectedGNCG(maxIter=maxIter, maxIterCG=20)
        opt.lower = 0.0
        opt.remember("xc")
        opt.tolG = 1e-10
        opt.eps = 1e-10
        invProb = inverse_problem.BaseInvProblem(dmis, reg, opt)

        beta_schedule = directives.BetaSchedule(coolingFactor=coolingFactor,
                                                coolingRate=n_iter_per_beta)

        save = directives.SaveOutputEveryIteration()
        print(chifact)

        if use_irls:
            IRLS = directives.Update_IRLS(
                f_min_change=1e-4,
                minGNiter=1,
                silent=False,
                max_irls_iterations=40,
                beta_tol=5e-1,
                coolEpsFact=1.3,
                chifact_start=chifact,
            )

            if beta_start is None:
                directives_list = [
                    directives.BetaEstimate_ByEig(beta0_ratio=beta0_ratio),
                    IRLS,
                    save,
                ]
            else:
                directives_list = [IRLS, save]
                invProb.beta = beta_start
            reg.norms = np.c_[p_s, p_x, p_z, 2]
        else:
            target = directives.TargetMisfit(chifact=chifact)
            directives_list = [
                directives.BetaEstimate_ByEig(beta0_ratio=beta0_ratio),
                beta_schedule,
                save,
            ]
            if use_target:
                directives_list.append(target)

        inv = inversion.BaseInversion(invProb, directiveList=directives_list)
        mopt = inv.run(m0)
        model = opt.recall("xc")
        model.append(mopt)
        pred = []
        for m in model:
            pred.append(self.simulation_prop.dpred(m))
        return model, pred, save
Ejemplo n.º 15
0
idenMap = maps.IdentityMap(nP=nC)

# Create a regularization
reg = regularization.Sparse(mesh, indActive=activeCells, mapping=idenMap)

m0 = np.ones(nC) * 1e-4  # Starting model

# Add directives to the inversion
opt = optimization.ProjectedGNCG(maxIter=100,
                                 lower=-1.0,
                                 upper=1.0,
                                 maxIterLS=20,
                                 maxIterCG=10,
                                 tolCG=1e-3)
invProb = inverse_problem.BaseInvProblem(global_misfit, reg, opt)
betaest = directives.BetaEstimate_ByEig(beta0_ratio=1e-1)

# Here is where the norms are applied
# Use pick a threshold parameter empirically based on the distribution of
# model parameters
update_IRLS = directives.Update_IRLS(
    f_min_change=1e-4,
    max_irls_iterations=0,
    coolEpsFact=1.5,
    beta_tol=1e-2,
)
saveDict = directives.SaveOutputEveryIteration(save_txt=False)
update_Jacobi = directives.UpdatePreconditioner()
sensitivity_weights = directives.UpdateSensitivityWeights(everyIter=False)
inv = inversion.BaseInversion(
    invProb,
Ejemplo n.º 16
0
# Here we define the inverse problem that is to be solved
inv_prob = inverse_problem.BaseInvProblem(dmis, reg, opt)

#######################################################################
# Define Inversion Directives
# ---------------------------
#
# Here we define any directiveas that are carried out during the inversion. This
# includes the cooling schedule for the trade-off parameter (beta), stopping
# criteria for the inversion and saving inversion results at each iteration.
#

# Defining a starting value for the trade-off parameter (beta) between the data
# misfit and the regularization.
starting_beta = directives.BetaEstimate_ByEig(beta0_ratio=10)

# Defining the fractional decrease in beta and the number of Gauss-Newton solves
# for each beta value.
beta_schedule = directives.BetaSchedule(coolingFactor=10, coolingRate=3)

# Options for outputting recovered models and predicted data for each beta.
save_iteration = directives.SaveOutputEveryIteration(save_txt=False)

# Setting a stopping criteria for the inversion.
target_misfit = directives.TargetMisfit(chifact=1)

# The directives are defined as a list.
directives_list = [starting_beta, beta_schedule, save_iteration, target_misfit]

#####################################################################
Ejemplo n.º 17
0
def run_inversion(
    m0,
    simulation,
    data,
    actind,
    mesh,
    maxIter=15,
    beta0_ratio=1e0,
    coolingFactor=5,
    coolingRate=2,
    upper=np.inf,
    lower=-np.inf,
    use_sensitivity_weight=False,
    alpha_s=1e-4,
    alpha_x=1.0,
    alpha_y=1.0,
    alpha_z=1.0,
):
    """
    Run IP inversion
    """
    dmisfit = data_misfit.L2DataMisfit(simulation=simulation, data=data)
    # Map for a regularization
    regmap = maps.IdentityMap(nP=int(actind.sum()))
    # Related to inversion
    if use_sensitivity_weight:
        reg = regularization.Sparse(mesh, indActive=actind, mapping=regmap)
        reg.alpha_s = alpha_s
        reg.alpha_x = alpha_x
        reg.alpha_y = alpha_y
        reg.alpha_z = alpha_z
    else:
        reg = regularization.Sparse(mesh,
                                    indActive=actind,
                                    mapping=regmap,
                                    cell_weights=mesh.vol[actind])
        reg.alpha_s = alpha_s
        reg.alpha_x = alpha_x
        reg.alpha_y = alpha_y
        reg.alpha_z = alpha_z
    opt = optimization.ProjectedGNCG(maxIter=maxIter, upper=upper, lower=lower)
    invProb = inverse_problem.BaseInvProblem(dmisfit, reg, opt)
    beta = directives.BetaSchedule(coolingFactor=coolingFactor,
                                   coolingRate=coolingRate)
    betaest = directives.BetaEstimate_ByEig(beta0_ratio=beta0_ratio)
    target = directives.TargetMisfit()

    # Need to have basice saving function
    if use_sensitivity_weight:
        updateSensW = directives.UpdateSensitivityWeights()
        update_Jacobi = directives.UpdatePreconditioner()
        directiveList = [beta, betaest, target, update_Jacobi]
    else:
        directiveList = [beta, betaest, target]
    inv = inversion.BaseInversion(invProb, directiveList=directiveList)
    opt.LSshorten = 0.5
    opt.remember("xc")

    # Run inversion
    mopt = inv.run(m0)
    return mopt, invProb.dpred