Ejemplo n.º 1
0
    def test_Tile(self):
        """
        Test for TileMap
        """
        rxLocs = np.random.randn(3, 3) * 20
        h = [5, 5, 5]
        padDist = np.ones((3, 2)) * 100

        local_meshes = []

        for ii in range(rxLocs.shape[0]):

            local_mesh = mesh_builder_xyz(rxLocs,
                                          h,
                                          padding_distance=padDist,
                                          mesh_type="tree")
            local_mesh = refine_tree_xyz(
                local_mesh,
                rxLocs[ii, :].reshape((1, -1)),
                method="radial",
                octree_levels=[1],
                finalize=True,
            )

            local_meshes.append(local_mesh)

        mesh = mesh_builder_xyz(rxLocs,
                                h,
                                padding_distance=padDist,
                                mesh_type="tree")

        # This garantees that the local meshes are always coarser or equal
        for local_mesh in local_meshes:
            mesh.insert_cells(
                local_mesh.gridCC,
                local_mesh.cell_levels_by_index(np.arange(local_mesh.nC)),
                finalize=False,
            )
        mesh.finalize()

        # Define an active cells from topo
        activeCells = utils.surface2ind_topo(mesh, rxLocs)

        model = np.random.randn(int(activeCells.sum()))
        total_mass = (model * mesh.vol[activeCells]).sum()

        for local_mesh in local_meshes:

            tile_map = maps.TileMap(
                mesh,
                activeCells,
                local_mesh,
            )

            local_mass = ((tile_map * model) *
                          local_mesh.vol[tile_map.local_active]).sum()

            self.assertTrue((local_mass - total_mass) / total_mass < 1e-8)
Ejemplo n.º 2
0
# Add noise and uncertainties
# We add some random Gaussian noise (1nT)
synthetic_data = d + np.random.randn(len(d)) * 1e-3
wd = np.ones(len(synthetic_data)) * 1e-3  # Assign flat uncertainties

###############################################################
# Tiled misfits
#
#
#
#
local_misfits = []
for ii, local_survey in enumerate(local_surveys):

    tile_map = maps.TileMap(mesh, activeCells, local_meshes[ii])

    local_actives = tile_map.local_active

    # Create the forward simulation
    simulation = gravity.simulation.Simulation3DIntegral(
        survey=local_survey,
        mesh=local_meshes[ii],
        rhoMap=tile_map,
        actInd=local_actives,
        sensitivity_path=f"Inversion\Tile{ii}.zarr",
    )

    data_object = data.Data(
        local_survey,
        dobs=synthetic_data[local_indices[ii]],