Ejemplo n.º 1
0
    def test_basic_inversion(self):
        """
        Test to see if inversion recovers model
        """

        h = [(2, 30)]
        meshObj = Mesh.TensorMesh((h, h, [(2, 10)]), x0='CCN')

        mod = 0.00025 * np.ones(meshObj.nC)
        mod[(meshObj.gridCC[:, 0] > -4.) & (meshObj.gridCC[:, 1] > -4.) &
            (meshObj.gridCC[:, 0] < 4.) & (meshObj.gridCC[:, 1] < 4.)] = 0.001

        times = np.logspace(-4, -2, 5)
        waveObj = VRM.WaveformVRM.SquarePulse(0.02)

        x, y = np.meshgrid(np.linspace(-17, 17, 16), np.linspace(-17, 17, 16))
        x, y, z = mkvc(x), mkvc(y), 0.5 * np.ones(np.size(x))
        rxList = [VRM.Rx.Point(np.c_[x, y, z], times, 'dbdt', 'z')]

        txNodes = np.array([[-20, -20, 0.001], [20, -20,
                                                0.001], [20, 20, 0.001],
                            [-20, 20, 0.01], [-20, -20, 0.001]])
        txList = [VRM.Src.LineCurrent(rxList, txNodes, 1., waveObj)]

        Survey = VRM.Survey(txList)
        Problem = VRM.Problem_Linear(meshObj, refFact=2)
        Problem.pair(Survey)
        Survey.makeSyntheticData(mod)
        Survey.eps = 1e-11

        dmis = DataMisfit.l2_DataMisfit(Survey)
        W = mkvc((np.sum(np.array(Problem.A)**2, axis=0)))**0.25
        reg = Regularization.Simple(meshObj,
                                    alpha_s=0.01,
                                    alpha_x=1.,
                                    alpha_y=1.,
                                    alpha_z=1.,
                                    cell_weights=W)
        opt = Optimization.ProjectedGNCG(maxIter=20,
                                         lower=0.,
                                         upper=1e-2,
                                         maxIterLS=20,
                                         tolCG=1e-4)
        invProb = InvProblem.BaseInvProblem(dmis, reg, opt)
        directives = [
            Directives.BetaSchedule(coolingFactor=2, coolingRate=1),
            Directives.TargetMisfit()
        ]
        inv = Inversion.BaseInversion(invProb, directiveList=directives)

        m0 = 1e-6 * np.ones(len(mod))
        mrec = inv.run(m0)

        dmis_final = np.sum(
            (dmis.W.diagonal() * (Survey.dobs - Problem.fields(mrec)))**2)
        mod_err_2 = np.sqrt(np.sum((mrec - mod)**2)) / np.size(mod)
        mod_err_inf = np.max(np.abs(mrec - mod))

        self.assertTrue(dmis_final < Survey.nD and mod_err_2 < 5e-6
                        and mod_err_inf < np.max(mod))
Ejemplo n.º 2
0
    def fit_colecole_with_se(self, eta_cc=0.8, tau_cc=0.003, c_cc=0.6):
        def ColeColeSeigel(f, sigmaInf, eta, tau, c):
            w = 2 * np.pi * f
            return sigmaInf * (1 - eta / (1 + (1j * w * tau)**c))

        # Step1: Fit Cole-Cole with Stretched Exponential function
        time = np.logspace(-6, np.log10(0.01), 41)
        wt, tbase, omega_int = DigFilter.setFrequency(time)
        frequency = omega_int / (2 * np.pi)
        # Cole-Cole parameters
        siginf = 1.
        self.eta_cc = eta_cc
        self.tau_cc = tau_cc
        self.c_cc = c_cc

        sigma = ColeColeSeigel(frequency, siginf, eta_cc, tau_cc, c_cc)
        sigTCole = DigFilter.transFiltImpulse(sigma,
                                              wt,
                                              tbase,
                                              omega_int,
                                              time,
                                              tol=1e-12)
        wires = Maps.Wires(('eta', 1), ('tau', 1), ('c', 1))
        taumap = Maps.ExpMap(nP=1) * wires.tau
        survey = SESurvey()
        dtrue = -sigTCole
        survey.dobs = dtrue
        m1D = Mesh.TensorMesh([np.ones(3)])
        prob = SEInvImpulseProblem(m1D,
                                   etaMap=wires.eta,
                                   tauMap=taumap,
                                   cMap=wires.c)
        update_sens = Directives.UpdateSensitivityWeights()
        prob.time = time
        prob.pair(survey)
        m0 = np.r_[eta_cc, np.log(tau_cc), c_cc]
        perc = 0.05
        dmisfitpeta = DataMisfit.l2_DataMisfit(survey)
        dmisfitpeta.W = 1 / (abs(survey.dobs) * perc)
        reg = regularization.Simple(m1D)
        opt = Optimization.ProjectedGNCG(maxIter=10)
        invProb = InvProblem.BaseInvProblem(dmisfitpeta, reg, opt)
        # Create an inversion object
        target = Directives.TargetMisfit()
        invProb.beta = 0.
        inv = Inversion.BaseInversion(invProb, directiveList=[target])
        reg.mref = 0. * m0
        prob.counter = opt.counter = Utils.Counter()
        opt.LSshorten = 0.5
        opt.remember('xc')
        opt.tolX = 1e-20
        opt.tolF = 1e-20
        opt.tolG = 1e-20
        opt.eps = 1e-20
        mopt = inv.run(m0)
        return mopt
Ejemplo n.º 3
0
    def solve(self):
        # Tikhonov Inversion
        ####################

        # Initial model values
        m0 = np.median(self.ln_sigback) * np.ones(self.mapping.nP)
        m0 += np.random.randn(m0.size)

        # Misfit functional
        dmis = DataMisfit.l2_DataMisfit(self.survey.simpeg_survey)
        # Regularization functional
        regT = Regularization.Simple(self.mesh,
                                     alpha_s=10.0,
                                     alpha_x=10.0,
                                     alpha_y=10.0,
                                     alpha_z=10.0,
                                     indActive=self.actind)

        # Personal preference for this solver with a Jacobi preconditioner
        opt = Optimization.ProjectedGNCG(maxIter=8, tolX=1, maxIterCG=30)
        #opt = Optimization.ProjectedGradient(maxIter=100, tolX=1e-2,
        #                                 maxIterLS=20, maxIterCG=30, tolCG=1e-4)

        opt.printers.append(Optimization.IterationPrinters.iterationLS)
        #print(opt.printersLS)

        # Optimization class keeps value of 'xc'. Seems to be solution for the model parameters
        opt.remember('xc')
        invProb = InvProblem.BaseInvProblem(dmis, regT, opt)

        # Options for the inversion algorithm in particular selection of Beta weight for regularization.

        # How to choose initial estimate for beta
        beta = Directives.BetaEstimate_ByEig(beta0_ratio=1.)
        Target = Directives.TargetMisfit()
        # Beta changing algorithm.
        betaSched = Directives.BetaSchedule(coolingFactor=5., coolingRate=2)
        # Change model weights, seems sensitivity of conductivity ?? Not sure.
        updateSensW = Directives.UpdateSensitivityWeights(threshold=1e-3)
        # Use Jacobi preconditioner ( the only available).
        update_Jacobi = Directives.UpdatePreconditioner()

        inv = Inversion.BaseInversion(invProb,
                                      directiveList=[
                                          beta, Target, betaSched, updateSensW,
                                          update_Jacobi
                                      ])

        self.minv = inv.run(m0)
Ejemplo n.º 4
0
    def setUp(self):
        mesh = Mesh.TensorMesh([4, 4, 4])

        # Magnetic inducing field parameter (A,I,D)
        B = [50000, 90, 0]

        # Create a MAGsurvey
        rx = PF.BaseMag.RxObs(
            np.vstack([[0.25, 0.25, 0.25], [-0.25, -0.25, 0.25]]))
        srcField = PF.BaseMag.SrcField([rx], param=(B[0], B[1], B[2]))
        survey = PF.BaseMag.LinearSurvey(srcField)

        # Create the forward model operator
        prob = PF.Magnetics.MagneticIntegral(mesh,
                                             chiMap=Maps.IdentityMap(mesh))

        # Pair the survey and problem
        survey.pair(prob)

        # Compute forward model some data
        m = np.random.rand(mesh.nC)
        survey.makeSyntheticData(m)

        reg = Regularization.Sparse(mesh)
        reg.mref = np.zeros(mesh.nC)

        wr = np.sum(prob.G**2., axis=0)**0.5
        reg.cell_weights = wr
        reg.norms = [0, 1, 1, 1]
        reg.eps_p, reg.eps_q = 1e-3, 1e-3

        # Data misfit function
        dmis = DataMisfit.l2_DataMisfit(survey)
        dmis.W = 1. / survey.std

        # Add directives to the inversion
        opt = Optimization.ProjectedGNCG(maxIter=2,
                                         lower=-10.,
                                         upper=10.,
                                         maxIterCG=2)

        invProb = InvProblem.BaseInvProblem(dmis, reg, opt)

        self.mesh = mesh
        self.invProb = invProb
Ejemplo n.º 5
0
                                  alpha_y=alphas[10],
                                  alpha_z=alphas[11])

    reg_t.alphas = alphas[8:]
    reg_t.cell_weights = (wires.t * global_weights)
    reg_t.norms = np.c_[2, 2, 2, 2]
    reg_t.mref = mref

    # Assemble the 3-component regularizations
    reg = reg_p + reg_s + reg_t
    reg.mref = mref

# Specify how the optimization will proceed, set susceptibility bounds to inf
opt = Optimization.ProjectedGNCG(maxIter=25,
                                 lower=-np.inf,
                                 upper=np.inf,
                                 maxIterLS=20,
                                 maxIterCG=30,
                                 tolCG=1e-3)

# Create the default L2 inverse problem from the above objects
invProb = InvProblem.BaseInvProblem(global_misfit, reg, opt)

# Specify how the initial beta is found
# if input_dict["inversion_type"].lower() in ['mvi', 'mvis']:
betaest = Directives.BetaEstimate_ByEig(beta0_ratio=1e+1)

# Pre-conditioner
update_Jacobi = Directives.UpdatePreconditioner()

IRLS = Directives.Update_IRLS(f_min_change=1e-3,
                              minGNiter=1,
Ejemplo n.º 6
0
    def setUp(self):

        ndv = -100
        # Create a mesh
        dx = 5.

        hxind = [(dx, 5, -1.3), (dx, 5), (dx, 5, 1.3)]
        hyind = [(dx, 5, -1.3), (dx, 5), (dx, 5, 1.3)]
        hzind = [(dx, 5, -1.3), (dx, 6)]

        mesh = Mesh.TensorMesh([hxind, hyind, hzind], 'CCC')

        # Get index of the center
        midx = int(mesh.nCx/2)
        midy = int(mesh.nCy/2)

        # Lets create a simple Gaussian topo and set the active cells
        [xx, yy] = np.meshgrid(mesh.vectorNx, mesh.vectorNy)
        zz = -np.exp((xx**2 + yy**2) / 75**2) + mesh.vectorNz[-1]

        # Go from topo to actv cells
        topo = np.c_[Utils.mkvc(xx), Utils.mkvc(yy), Utils.mkvc(zz)]
        actv = Utils.surface2ind_topo(mesh, topo, 'N')
        actv = np.asarray([inds for inds, elem in enumerate(actv, 1)
                          if elem], dtype=int) - 1

        # Create active map to go from reduce space to full
        actvMap = Maps.InjectActiveCells(mesh, actv, -100)
        nC = len(actv)

        # Create and array of observation points
        xr = np.linspace(-20., 20., 20)
        yr = np.linspace(-20., 20., 20)
        X, Y = np.meshgrid(xr, yr)

        # Move the observation points 5m above the topo
        Z = -np.exp((X**2 + Y**2) / 75**2) + mesh.vectorNz[-1] + 5.

        # Create a MAGsurvey
        locXYZ = np.c_[Utils.mkvc(X.T), Utils.mkvc(Y.T), Utils.mkvc(Z.T)]
        rxLoc = PF.BaseGrav.RxObs(locXYZ)
        srcField = PF.BaseGrav.SrcField([rxLoc])
        survey = PF.BaseGrav.LinearSurvey(srcField)

        # We can now create a density model and generate data
        # Here a simple block in half-space
        model = np.zeros((mesh.nCx, mesh.nCy, mesh.nCz))
        model[(midx-2):(midx+2), (midy-2):(midy+2), -6:-2] = 0.5
        model = Utils.mkvc(model)
        self.model = model[actv]

        # Create active map to go from reduce set to full
        actvMap = Maps.InjectActiveCells(mesh, actv, ndv)

        # Create reduced identity map
        idenMap = Maps.IdentityMap(nP=nC)

        # Create the forward model operator
        prob = PF.Gravity.GravityIntegral(
            mesh,
            rhoMap=idenMap,
            actInd=actv
        )

        # Pair the survey and problem
        survey.pair(prob)

        # Compute linear forward operator and compute some data
        d = prob.fields(self.model)

        # Add noise and uncertainties (1nT)
        data = d + np.random.randn(len(d))*0.001
        wd = np.ones(len(data))*.001

        survey.dobs = data
        survey.std = wd

        # PF.Gravity.plot_obs_2D(survey.srcField.rxList[0].locs, d=data)

        # Create sensitivity weights from our linear forward operator
        wr = PF.Magnetics.get_dist_wgt(mesh, locXYZ, actv, 2., 2.)
        wr = wr**2.

        # Create a regularization
        reg = Regularization.Sparse(mesh, indActive=actv, mapping=idenMap)
        reg.cell_weights = wr
        reg.norms = [0, 1, 1, 1]
        reg.eps_p, reg.eps_q = 5e-2, 1e-2

        # Data misfit function
        dmis = DataMisfit.l2_DataMisfit(survey)
        dmis.W = 1/wd

        # Add directives to the inversion
        opt = Optimization.ProjectedGNCG(maxIter=100, lower=-1., upper=1.,
                                         maxIterLS=20, maxIterCG=10,
                                         tolCG=1e-3)
        invProb = InvProblem.BaseInvProblem(dmis, reg, opt, beta=1e+8)

        # Here is where the norms are applied
        IRLS = Directives.Update_IRLS(f_min_change=1e-3,
                                      minGNiter=3)
        update_Jacobi = Directives.Update_lin_PreCond(mapping=idenMap)

        self.inv = Inversion.BaseInversion(invProb,
                                           directiveList=[IRLS,
                                                          update_Jacobi])
Ejemplo n.º 7
0
def run(plotIt=True):

    nC = 40
    de = 1.
    h = np.ones(nC) * de / nC
    M = Mesh.TensorMesh([h, h])

    y = np.linspace(M.vectorCCy[0], M.vectorCCx[-1], int(np.floor(nC / 4)))
    rlocs = np.c_[0 * y + M.vectorCCx[-1], y]
    rx = StraightRay.Rx(rlocs, None)

    srcList = [
        StraightRay.Src(loc=np.r_[M.vectorCCx[0], yi], rxList=[rx]) for yi in y
    ]

    # phi model
    phi0 = 0
    phi1 = 0.65
    phitrue = Utils.ModelBuilder.defineBlock(M.gridCC, [0.4, 0.6], [0.6, 0.4],
                                             [phi1, phi0])

    knownVolume = np.sum(phitrue * M.vol)
    print('True Volume: {}'.format(knownVolume))

    # Set up true conductivity model and plot the model transform
    sigma0 = np.exp(1)
    sigma1 = 1e4

    if plotIt:
        fig, ax = plt.subplots(1, 1)
        sigmaMapTest = Maps.SelfConsistentEffectiveMedium(nP=1000,
                                                          sigma0=sigma0,
                                                          sigma1=sigma1,
                                                          rel_tol=1e-1,
                                                          maxIter=150)
        testphis = np.linspace(0., 1., 1000)

        sigetest = sigmaMapTest * testphis
        ax.semilogy(testphis, sigetest)
        ax.set_title('Model Transform')
        ax.set_xlabel('$\\varphi$')
        ax.set_ylabel('$\sigma$')

    sigmaMap = Maps.SelfConsistentEffectiveMedium(M,
                                                  sigma0=sigma0,
                                                  sigma1=sigma1)

    # scale the slowness so it is on a ~linear scale
    slownessMap = Maps.LogMap(M) * sigmaMap

    # set up the true sig model and log model dobs
    sigtrue = sigmaMap * phitrue

    # modt = Model.BaseModel(M);
    slownesstrue = slownessMap * phitrue  # true model (m = log(sigma))

    # set up the problem and survey
    survey = StraightRay.Survey(srcList)
    problem = StraightRay.Problem(M, slownessMap=slownessMap)
    problem.pair(survey)

    if plotIt:
        fig, ax = plt.subplots(1, 1)
        cb = plt.colorbar(M.plotImage(phitrue, ax=ax)[0], ax=ax)
        survey.plot(ax=ax)
        cb.set_label('$\\varphi$')

    # get observed data
    dobs = survey.makeSyntheticData(phitrue, std=0.03, force=True)
    dpred = survey.dpred(np.zeros(M.nC))

    # objective function pieces
    reg = Regularization.Tikhonov(M)
    dmis = DataMisfit.l2_DataMisfit(survey)
    dmisVol = Volume(mesh=M, knownVolume=knownVolume)
    beta = 0.25
    maxIter = 15

    # without the volume regularization
    opt = Optimization.ProjectedGNCG(maxIter=maxIter, lower=0.0, upper=1.0)
    opt.remember('xc')
    invProb = InvProblem.BaseInvProblem(dmis, reg, opt, beta=beta)
    inv = Inversion.BaseInversion(invProb)

    mopt1 = inv.run(np.zeros(M.nC) + 1e-16)
    print('\nTotal recovered volume (no vol misfit term in inversion): '
          '{}'.format(dmisVol(mopt1)))

    # with the volume regularization
    vol_multiplier = 9e4
    reg2 = reg
    dmis2 = dmis + vol_multiplier * dmisVol
    opt2 = Optimization.ProjectedGNCG(maxIter=maxIter, lower=0.0, upper=1.0)
    opt2.remember('xc')
    invProb2 = InvProblem.BaseInvProblem(dmis2, reg2, opt2, beta=beta)
    inv2 = Inversion.BaseInversion(invProb2)

    mopt2 = inv2.run(np.zeros(M.nC) + 1e-16)
    print('\nTotal volume (vol misfit term in inversion): {}'.format(
        dmisVol(mopt2)))

    # plot results

    if plotIt:

        fig, ax = plt.subplots(1, 1)
        ax.plot(dobs)
        ax.plot(dpred)
        ax.plot(survey.dpred(mopt1), 'o')
        ax.plot(survey.dpred(mopt2), 's')
        ax.legend(['dobs', 'dpred0', 'dpred w/o Vol', 'dpred with Vol'])

        fig, ax = plt.subplots(1, 3, figsize=(16, 4))
        cb0 = plt.colorbar(M.plotImage(phitrue, ax=ax[0])[0], ax=ax[0])
        cb1 = plt.colorbar(M.plotImage(mopt1, ax=ax[1])[0], ax=ax[1])
        cb2 = plt.colorbar(M.plotImage(mopt2, ax=ax[2])[0], ax=ax[2])

        for cb in [cb0, cb1, cb2]:
            cb.set_clim([0., phi1])

        ax[0].set_title('true, vol: {:1.3e}'.format(knownVolume))
        ax[1].set_title('recovered(no Volume term), vol: {:1.3e} '.format(
            dmisVol(mopt1)))
        ax[2].set_title('recovered(with Volume term), vol: {:1.3e} '.format(
            dmisVol(mopt2)))

        plt.tight_layout()
Ejemplo n.º 8
0
idenMap = Maps.IdentityMap(nP=nC)

# Create static map
prob = PF.Magnetics.MagneticIntegral(mesh, chiMap=idenMap, actInd=surf, equiSourceLayer=True)
prob.solverOpts['accuracyTol'] = 1e-4

# Pair the survey and problem
survey.pair(prob)

# Create a regularization function, in this case l2l2
reg = Regularization.Simple(mesh, indActive=surf)
reg.mref = np.zeros(nC)

# Specify how the optimization will proceed, set susceptibility bounds to inf
opt = Optimization.ProjectedGNCG(maxIter=25, lower=-np.inf,
                                 upper=np.inf, maxIterLS=20,
                                 maxIterCG=20, tolCG=1e-3)

# Define misfit function (obs-calc)
dmis = DataMisfit.l2_DataMisfit(survey)
dmis.W = 1./survey.std

# Create the default L2 inverse problem from the above objects
invProb = InvProblem.BaseInvProblem(dmis, reg, opt)

# Specify how the initial beta is found
betaest = Directives.BetaEstimate_ByEig()

# Beta schedule for inversion
betaSchedule = Directives.BetaSchedule(coolingFactor=2., coolingRate=1)
Ejemplo n.º 9
0
def run_inversion(
    m0, survey, actind, mesh,
    std, eps,
    maxIter=15, beta0_ratio=1e0,
    coolingFactor=5, coolingRate=2,
    upper=np.inf, lower=-np.inf,
    use_sensitivity_weight=False,
    alpha_s=1e-4,
    alpha_x=1.,
    alpha_y=1.,
    alpha_z=1.,
):
    """
    Run IP inversion
    """
    dmisfit = DataMisfit.l2_DataMisfit(survey)
    uncert = abs(survey.dobs) * std + eps
    dmisfit.W = 1./uncert
    # Map for a regularization
    regmap = Maps.IdentityMap(nP=int(actind.sum()))
    # Related to inversion
    if use_sensitivity_weight:
        reg = Regularization.Sparse(
            mesh, indActive=actind, mapping=regmap
        )
        reg.alpha_s = alpha_s
        reg.alpha_x = alpha_x
        reg.alpha_y = alpha_y
        reg.alpha_z = alpha_z
    else:
        reg = Regularization.Sparse(
            mesh, indActive=actind, mapping=regmap,
            cell_weights=mesh.vol[actind]
        )
        reg.alpha_s = alpha_s
        reg.alpha_x = alpha_x
        reg.alpha_y = alpha_y
        reg.alpha_z = alpha_z
    opt = Optimization.ProjectedGNCG(maxIter=maxIter, upper=upper, lower=lower)
    invProb = InvProblem.BaseInvProblem(dmisfit, reg, opt)
    beta = Directives.BetaSchedule(
        coolingFactor=coolingFactor, coolingRate=coolingRate
    )
    betaest = Directives.BetaEstimate_ByEig(beta0_ratio=beta0_ratio)
    target = Directives.TargetMisfit()

    # Need to have basice saving function
    if use_sensitivity_weight:
        updateSensW = Directives.UpdateSensitivityWeights()
        update_Jacobi = Directives.UpdatePreconditioner()
        directiveList = [
            beta, betaest, target, update_Jacobi
        ]
    else:
        directiveList = [
            beta, betaest, target
        ]
    inv = Inversion.BaseInversion(
        invProb, directiveList=directiveList
        )
    opt.LSshorten = 0.5
    opt.remember('xc')

    # Run inversion
    mopt = inv.run(m0)
    return mopt, invProb.dpred
problem.Solver = Solver

survey.dpred(mtrue[actind])
survey.makeSyntheticData(mtrue[actind], std=0.05, force=True)

# Tikhonov Inversion
####################

m0 = np.median(ln_sigback) * np.ones(mapping.nP)
dmis = DataMisfit.l2_DataMisfit(survey)
regT = Regularization.Simple(mesh, indActive=actind)

# Personal preference for this solver with a Jacobi preconditioner
opt = Optimization.ProjectedGNCG(maxIter=20,
                                 lower=-10,
                                 upper=10,
                                 maxIterLS=20,
                                 maxIterCG=30,
                                 tolCG=1e-4)

opt.remember('xc')
invProb = InvProblem.BaseInvProblem(dmis, regT, opt)

beta = Directives.BetaEstimate_ByEig(beta0_ratio=1.)
Target = Directives.TargetMisfit()
betaSched = Directives.BetaSchedule(coolingFactor=5., coolingRate=2)
updateSensW = Directives.UpdateSensitivityWeights(threshold=1e-3)
update_Jacobi = Directives.UpdatePreconditioner()

inv = Inversion.BaseInversion(
    invProb,
    directiveList=[beta, Target, betaSched, updateSensW, update_Jacobi])
Ejemplo n.º 11
0
        alpha_y=alphas[10],
        alpha_z=alphas[11]
    )

    reg_t.cell_weights = (regularization_map.t * global_weights)
    reg_t.norms = np.c_[model_norms].T
    reg_t.mref = mref

    # Assemble the 3-component regularizations
    reg = reg_p + reg_s + reg_t

# Specify how the optimization will proceed, set susceptibility bounds to inf
opt = Optimization.ProjectedGNCG(
    maxIter=max_global_iterations,
    lower=lower_bound, upper=upper_bound,
    maxIterLS=20, maxIterCG=30, tolCG=1e-3,
    stepOffBoundsFact=1e-8,
    LSshorten=0.25
)

# Create the default L2 inverse problem from the above objects
invProb = InvProblem.BaseInvProblem(global_misfit, reg, opt, beta=initial_beta)

# Add a list of directives to the inversion
directiveList = []

if vector_property:
    # chifact_target (MVIS-only) should be higher than target_chi.
    # If MVIS has problems, try increasing chifact_target.
    directiveList.append(Directives.VectorInversion(
        inversion_type=input_dict["inversion_type"],
Ejemplo n.º 12
0
    def setUp(self):
        # We will assume a vertical inducing field
        H0 = (50000., 90., 0.)

        # The magnetization is set along a different direction (induced + remanence)
        M = np.array([90., 0.])

        # Block with an effective susceptibility
        chi_e = 0.05

        # Create grid of points for topography
        # Lets create a simple Gaussian topo and set the active cells
        [xx, yy] = np.meshgrid(np.linspace(-200, 200, 50),
                               np.linspace(-200, 200, 50))
        b = 100
        A = 50
        zz = A * np.exp(-0.5 * ((xx / b)**2. + (yy / b)**2.))
        topo = np.c_[Utils.mkvc(xx), Utils.mkvc(yy), Utils.mkvc(zz)]

        # Create and array of observation points
        xr = np.linspace(-100., 100., 20)
        yr = np.linspace(-100., 100., 20)
        X, Y = np.meshgrid(xr, yr)
        Z = A * np.exp(-0.5 * ((X / b)**2. + (Y / b)**2.)) + 5

        # Create a MAGsurvey
        rxLoc = np.c_[Utils.mkvc(X.T), Utils.mkvc(Y.T), Utils.mkvc(Z.T)]
        Rx = PF.BaseMag.RxObs(rxLoc)
        srcField = PF.BaseMag.SrcField([Rx], param=H0)
        survey = PF.BaseMag.LinearSurvey(srcField)

        # Create a mesh
        h = [5, 5, 5]
        padDist = np.ones((3, 2)) * 100
        nCpad = [4, 4, 2]

        # Get extent of points
        limx = np.r_[topo[:, 0].max(), topo[:, 0].min()]
        limy = np.r_[topo[:, 1].max(), topo[:, 1].min()]
        limz = np.r_[topo[:, 2].max(), topo[:, 2].min()]

        # Get center of the mesh
        midX = np.mean(limx)
        midY = np.mean(limy)
        midZ = np.mean(limz)

        nCx = int(limx[0] - limx[1]) / h[0]
        nCy = int(limy[0] - limy[1]) / h[1]
        nCz = int(limz[0] - limz[1] + int(np.min(np.r_[nCx, nCy]) / 3)) / h[2]

        # Figure out full extent required from input
        extent = np.max(np.r_[nCx * h[0] + padDist[0, :].sum(),
                              nCy * h[1] + padDist[1, :].sum(),
                              nCz * h[2] + padDist[2, :].sum()])

        maxLevel = int(np.log2(extent / h[0])) + 1

        # Number of cells at the small octree level
        # For now equal in 3D
        nCx, nCy, nCz = 2**(maxLevel), 2**(maxLevel), 2**(maxLevel)

        # Define the mesh and origin
        mesh = Mesh.TreeMesh(
            [np.ones(nCx) * h[0],
             np.ones(nCx) * h[1],
             np.ones(nCx) * h[2]])

        # Set origin
        mesh.x0 = np.r_[-nCx * h[0] / 2. + midX, -nCy * h[1] / 2. + midY,
                        -nCz * h[2] / 2. + midZ]

        # Refine the mesh around topography
        # Get extent of points
        F = NearestNDInterpolator(topo[:, :2], topo[:, 2])
        zOffset = 0
        # Cycle through the first 3 octree levels
        for ii in range(3):

            dx = mesh.hx.min() * 2**ii

            nCx = int((limx[0] - limx[1]) / dx)
            nCy = int((limy[0] - limy[1]) / dx)

            # Create a grid at the octree level in xy
            CCx, CCy = np.meshgrid(np.linspace(limx[1], limx[0], nCx),
                                   np.linspace(limy[1], limy[0], nCy))

            z = F(mkvc(CCx), mkvc(CCy))

            # level means number of layers in current OcTree level
            for level in range(int(nCpad[ii])):

                mesh.insert_cells(np.c_[mkvc(CCx),
                                        mkvc(CCy), z - zOffset],
                                  np.ones_like(z) * maxLevel - ii,
                                  finalize=False)

                zOffset += dx

        mesh.finalize()

        # Define an active cells from topo
        actv = Utils.surface2ind_topo(mesh, topo)
        nC = int(actv.sum())

        # Convert the inclination declination to vector in Cartesian
        M_xyz = Utils.matutils.dip_azimuth2cartesian(
            np.ones(nC) * M[0],
            np.ones(nC) * M[1])

        # Get the indicies of the magnetized block
        ind = Utils.ModelBuilder.getIndicesBlock(
            np.r_[-20, -20, -10],
            np.r_[20, 20, 25],
            mesh.gridCC,
        )[0]

        # Assign magnetization value, inducing field strength will
        # be applied in by the :class:`SimPEG.PF.Magnetics` problem
        model = np.zeros(mesh.nC)
        model[ind] = chi_e

        # Remove air cells
        self.model = model[actv]

        # Create active map to go from reduce set to full
        self.actvPlot = Maps.InjectActiveCells(mesh, actv, np.nan)

        # Creat reduced identity map
        idenMap = Maps.IdentityMap(nP=nC)

        # Create the forward model operator
        prob = PF.Magnetics.MagneticIntegral(mesh,
                                             M=M_xyz,
                                             chiMap=idenMap,
                                             actInd=actv)

        # Pair the survey and problem
        survey.pair(prob)

        # Compute some data and add some random noise
        data = prob.fields(self.model)

        # Split the data in components
        nD = rxLoc.shape[0]

        std = 5  # nT
        data += np.random.randn(nD) * std
        wd = np.ones(nD) * std

        # Assigne data and uncertainties to the survey
        survey.dobs = data
        survey.std = wd

        ######################################################################
        # Equivalent Source

        # Get the active cells for equivalent source is the top only
        surf = Utils.modelutils.surface_layer_index(mesh, topo)

        # Get the layer of cells directyl below topo
        nC = np.count_nonzero(surf)  # Number of active cells

        # Create active map to go from reduce set to full
        surfMap = Maps.InjectActiveCells(mesh, surf, np.nan)

        # Create identity map
        idenMap = Maps.IdentityMap(nP=nC)

        # Create static map
        prob = PF.Magnetics.MagneticIntegral(mesh,
                                             chiMap=idenMap,
                                             actInd=surf,
                                             parallelized=False,
                                             equiSourceLayer=True)

        prob.solverOpts['accuracyTol'] = 1e-4

        # Pair the survey and problem
        if survey.ispaired:
            survey.unpair()
        survey.pair(prob)

        # Create a regularization function, in this case l2l2
        reg = Regularization.Sparse(mesh,
                                    indActive=surf,
                                    mapping=Maps.IdentityMap(nP=nC),
                                    scaledIRLS=False)
        reg.mref = np.zeros(nC)

        # Specify how the optimization will proceed,
        # set susceptibility bounds to inf
        opt = Optimization.ProjectedGNCG(maxIter=20,
                                         lower=-np.inf,
                                         upper=np.inf,
                                         maxIterLS=20,
                                         maxIterCG=20,
                                         tolCG=1e-3)

        # Define misfit function (obs-calc)
        dmis = DataMisfit.l2_DataMisfit(survey)
        dmis.W = 1. / survey.std

        # Create the default L2 inverse problem from the above objects
        invProb = InvProblem.BaseInvProblem(dmis, reg, opt)

        # Specify how the initial beta is found
        betaest = Directives.BetaEstimate_ByEig()

        # Target misfit to stop the inversion,
        # try to fit as much as possible of the signal,
        # we don't want to lose anything
        IRLS = Directives.Update_IRLS(f_min_change=1e-3,
                                      minGNiter=1,
                                      beta_tol=1e-1)
        update_Jacobi = Directives.UpdatePreconditioner()
        # Put all the parts together
        inv = Inversion.BaseInversion(
            invProb, directiveList=[betaest, IRLS, update_Jacobi])

        # Run the equivalent source inversion
        mstart = np.ones(nC) * 1e-4
        mrec = inv.run(mstart)

        # Won't store the sensitivity and output 'xyz' data.
        prob.forwardOnly = True
        prob.rx_type = 'xyz'
        prob._G = None
        prob.modelType = 'amplitude'
        prob.model = mrec
        pred = prob.fields(mrec)

        bx = pred[:nD]
        by = pred[nD:2 * nD]
        bz = pred[2 * nD:]

        bAmp = (bx**2. + by**2. + bz**2.)**0.5

        # AMPLITUDE INVERSION
        # Create active map to go from reduce space to full
        actvMap = Maps.InjectActiveCells(mesh, actv, -100)
        nC = int(actv.sum())

        # Create identity map
        idenMap = Maps.IdentityMap(nP=nC)

        self.mstart = np.ones(nC) * 1e-4

        # Create the forward model operator
        prob = PF.Magnetics.MagneticIntegral(mesh,
                                             chiMap=idenMap,
                                             actInd=actv,
                                             modelType='amplitude',
                                             rx_type='xyz')
        prob.model = self.mstart
        # Change the survey to xyz components
        surveyAmp = PF.BaseMag.LinearSurvey(survey.srcField)

        # Pair the survey and problem
        surveyAmp.pair(prob)
        # Create a regularization function, in this case l2l2
        wr = np.sum(prob.G**2., axis=0)**0.5
        wr = (wr / np.max(wr))
        # Re-set the observations to |B|
        surveyAmp.dobs = bAmp
        surveyAmp.std = wd

        # Create a sparse regularization
        reg = Regularization.Sparse(mesh, indActive=actv, mapping=idenMap)
        reg.norms = np.c_[0, 0, 0, 0]
        reg.mref = np.zeros(nC)
        reg.cell_weights = wr
        # Data misfit function
        dmis = DataMisfit.l2_DataMisfit(surveyAmp)
        dmis.W = 1. / surveyAmp.std

        # Add directives to the inversion
        opt = Optimization.ProjectedGNCG(maxIter=30,
                                         lower=0.,
                                         upper=1.,
                                         maxIterLS=20,
                                         maxIterCG=20,
                                         tolCG=1e-3)

        invProb = InvProblem.BaseInvProblem(dmis, reg, opt)

        # Here is the list of directives
        betaest = Directives.BetaEstimate_ByEig()

        # Specify the sparse norms
        IRLS = Directives.Update_IRLS(f_min_change=1e-3,
                                      minGNiter=1,
                                      coolingRate=1,
                                      betaSearch=False)

        # The sensitivity weights are update between each iteration.
        update_SensWeight = Directives.UpdateSensitivityWeights()
        update_Jacobi = Directives.UpdatePreconditioner(threshold=1 - 3)

        # Put all together
        self.inv = Inversion.BaseInversion(
            invProb,
            directiveList=[betaest, IRLS, update_SensWeight, update_Jacobi])

        self.mesh = mesh
Ejemplo n.º 13
0
def run_inversion(
    m0,
    survey,
    actind,
    mesh,
    wires,
    std,
    eps,
    maxIter=15,
    beta0_ratio=1e0,
    coolingFactor=2,
    coolingRate=2,
    maxIterLS=20,
    maxIterCG=10,
    LSshorten=0.5,
    eta_lower=1e-5,
    eta_upper=1,
    tau_lower=1e-6,
    tau_upper=10.,
    c_lower=1e-2,
    c_upper=1.,
    is_log_tau=True,
    is_log_c=True,
    is_log_eta=True,
    mref=None,
    alpha_s=1e-4,
    alpha_x=1e0,
    alpha_y=1e0,
    alpha_z=1e0,
):
    """
    Run Spectral Spectral IP inversion
    """
    dmisfit = DataMisfit.l2_DataMisfit(survey)
    uncert = abs(survey.dobs) * std + eps
    dmisfit.W = 1. / uncert
    # Map for a regularization
    # Related to inversion

    # Set Upper and Lower bounds
    e = np.ones(actind.sum())

    if np.isscalar(eta_lower):
        eta_lower = e * eta_lower
    if np.isscalar(tau_lower):
        tau_lower = e * tau_lower
    if np.isscalar(c_lower):
        c_lower = e * c_lower

    if np.isscalar(eta_upper):
        eta_upper = e * eta_upper
    if np.isscalar(tau_upper):
        tau_upper = e * tau_upper
    if np.isscalar(c_upper):
        c_upper = e * c_upper

    if is_log_eta:
        eta_upper = np.log(eta_upper)
        eta_lower = np.log(eta_lower)

    if is_log_tau:
        tau_upper = np.log(tau_upper)
        tau_lower = np.log(tau_lower)

    if is_log_c:
        c_upper = np.log(c_upper)
        c_lower = np.log(c_lower)

    m_upper = np.r_[eta_upper, tau_upper, c_upper]
    m_lower = np.r_[eta_lower, tau_lower, c_lower]

    # Set up regularization
    reg_eta = Regularization.Tikhonov(mesh,
                                      mapping=wires.eta,
                                      indActive=actind)
    reg_tau = Regularization.Tikhonov(mesh,
                                      mapping=wires.tau,
                                      indActive=actind)

    reg_c = Regularization.Tikhonov(mesh, mapping=wires.c, indActive=actind)

    # Todo:

    reg_eta.alpha_s = alpha_s
    reg_tau.alpha_s = alpha_s
    reg_c.alpha_s = alpha_s

    reg_eta.alpha_x = alpha_x
    reg_tau.alpha_x = alpha_x
    reg_c.alpha_x = alpha_x

    reg_eta.alpha_y = alpha_y
    reg_tau.alpha_y = alpha_y
    reg_c.alpha_y = alpha_y

    reg_eta.alpha_z = alpha_z
    reg_tau.alpha_z = alpha_z
    reg_c.alpha_z = alpha_z

    reg = reg_eta + reg_tau + reg_c

    # Use Projected Gauss Newton scheme
    opt = Optimization.ProjectedGNCG(maxIter=maxIter,
                                     upper=m_upper,
                                     lower=m_lower,
                                     maxIterLS=maxIterLS,
                                     maxIterCG=maxIterCG,
                                     LSshorten=LSshorten)
    invProb = InvProblem.BaseInvProblem(dmisfit, reg, opt)
    beta = Directives.BetaSchedule(coolingFactor=coolingFactor,
                                   coolingRate=coolingRate)
    betaest = Directives.BetaEstimate_ByEig(beta0_ratio=beta0_ratio)
    target = Directives.TargetMisfit()

    directiveList = [beta, betaest, target]

    inv = Inversion.BaseInversion(invProb, directiveList=directiveList)
    opt.LSshorten = 0.5
    opt.remember('xc')

    # Run inversion
    mopt = inv.run(m0)
    return mopt, invProb.dpred
Ejemplo n.º 14
0
    def run_inversion(
        self,
        maxIter=60,
        m0=0.0,
        mref=0.0,
        percentage=5,
        floor=0.1,
        chifact=1,
        beta0_ratio=1.0,
        coolingFactor=1,
        n_iter_per_beta=1,
        alpha_s=1.0,
        alpha_x=1.0,
        alpha_z=1.0,
        use_target=False,
        use_tikhonov=True,
        use_irls=False,
        p_s=2,
        p_x=2,
        p_y=2,
        p_z=2,
        beta_start=None,
    ):

        self.uncertainty = percentage * abs(self.survey.dobs) * 0.01 + floor

        m0 = np.ones(self.mesh.nC) * m0
        mref = np.ones(self.mesh.nC) * mref

        if ~use_tikhonov:
            reg = Regularization.Sparse(
                self.mesh,
                alpha_s=alpha_s,
                alpha_x=alpha_x,
                alpha_y=alpha_z,
                mref=mref,
                mapping=Maps.IdentityMap(self.mesh),
                cell_weights=self.mesh.vol,
            )
        else:
            reg = Regularization.Tikhonov(
                self.mesh,
                alpha_s=alpha_s,
                alpha_x=alpha_x,
                alpha_y=alpha_z,
                mref=mref,
                mapping=Maps.IdentityMap(self.mesh),
            )
        dmis = DataMisfit.l2_DataMisfit(self.survey)
        dmis.W = 1.0 / self.uncertainty

        opt = Optimization.ProjectedGNCG(maxIter=maxIter, maxIterCG=20)
        opt.lower = 0.0
        opt.remember("xc")
        opt.tolG = 1e-10
        opt.eps = 1e-10
        invProb = InvProblem.BaseInvProblem(dmis, reg, opt)
        save = Directives.SaveOutputEveryIteration()
        beta_schedule = Directives.BetaSchedule(coolingFactor=coolingFactor,
                                                coolingRate=n_iter_per_beta)

        if use_irls:
            IRLS = Directives.Update_IRLS(
                f_min_change=1e-4,
                minGNiter=1,
                silent=False,
                maxIRLSiter=40,
                beta_tol=5e-1,
                coolEpsFact=1.3,
                chifact_start=chifact,
            )

            if beta_start is None:
                directives = [
                    Directives.BetaEstimate_ByEig(beta0_ratio=beta0_ratio),
                    IRLS,
                    save,
                ]
            else:
                directives = [IRLS, save]
                invProb.beta = beta_start
            reg.norms = np.c_[p_s, p_x, p_z, 2]
        else:
            target = Directives.TargetMisfit(chifact=chifact)
            directives = [
                Directives.BetaEstimate_ByEig(beta0_ratio=beta0_ratio),
                beta_schedule,
                save,
            ]
            if use_target:
                directives.append(target)

        inv = Inversion.BaseInversion(invProb, directiveList=directives)
        mopt = inv.run(m0)
        model = opt.recall("xc")
        model.append(mopt)
        pred = []
        for m in model:
            pred.append(self.survey.dpred(m))
        return model, pred, save
Ejemplo n.º 15
0
def fitWithStretchedExponetial(time, survey_ip, sources, Rho, start_time=None):
    if start_time is None:
        start_time = 0
    # Choose all time channels
    tinds = time > start_time
    nLoc = survey_ip.dobs.T[tinds, :].shape[1]
    # Setup wire for different properties
    wires = Maps.Wires(('eta', nLoc), ('tau', nLoc), ('c', nLoc))
    taumap = Maps.ExpMap(nP=nLoc) * wires.tau
    etamap = Maps.ExpMap(nP=nLoc) * wires.eta
    cmap = Maps.ExpMap(nP=nLoc) * wires.c

    # This is almost dummmy mesh and xyz loc at the moment
    # But, there is potential use later
    m1D = Mesh.TensorMesh([np.ones(nLoc)])

    # # Set survey
    survey = SEMultiSurvey(time[tinds] * 1e-3, sources[:, :], n_pulse=2, T=4)
    survey.dobs = (survey_ip.dobs.T[tinds, :]).flatten(order='F')
    # Set problem
    prob = SEMultiInvProblem(m1D, etaMap=etamap, tauMap=taumap, cMap=cmap)
    prob.pair(survey)

    # Set initial model
    eta0, tau0, c0 = abs(
        survey_ip.dobs.T[0, :].T), 1. * np.ones(nLoc), 1. * np.ones(nLoc)

    m0 = np.r_[np.log(eta0), np.log(tau0), np.log(c0)]
    std = 0.02

    plt.plot(survey.dpred(m0))
    plt.plot(survey.dobs, '.')
    plt.title("Obs & pred")
    plt.xlabel("data point")
    plt.ylabel("value")
    plt.show()

    mreg = Mesh.TensorMesh([len(m0)])
    dmisfit = DataMisfit.l2_DataMisfit(survey)
    uncert = (abs(survey.dobs) * std + 0.01) * 1.1
    dmisfit.W = 1. / uncert
    reg = Regularization.Simple(mreg)
    opt = Optimization.ProjectedGNCG(maxIter=20)
    invProb = InvProblem.BaseInvProblem(dmisfit, reg, opt)
    # Create an inversion object
    target = Directives.TargetMisfit()
    invProb.beta = 0.
    inv = Inversion.BaseInversion(invProb, directiveList=[target])
    # reg.mref = 0.*m0
    prob.counter = opt.counter = Utils.Counter()
    opt.LSshorten = 0.5
    opt.remember('xc')
    opt.tolX = 1e-20
    opt.tolF = 1e-20
    opt.tolG = 1e-20
    opt.eps = 1e-20
    m_upper = np.r_[np.ones_like(tau0) * np.log(200),
                    np.ones_like(tau0) * np.log(10.),
                    np.ones_like(tau0) * np.log(1.)]
    m_lower = np.r_[np.ones_like(tau0) * np.log(1),
                    np.ones_like(tau0) * np.log(1e-2),
                    np.ones_like(tau0) * np.log(0.1)]

    opt.lower = m_lower
    opt.upper = m_upper
    mopt = inv.run(m0)

    eta = etamap * mopt
    tau = taumap * mopt
    c = cmap * mopt
    DPRED = invProb.dpred.reshape((nLoc, time[tinds].size))
    DOBS = survey.dobs.reshape((nLoc, time[tinds].size))
    UNCERT = uncert.reshape((nLoc, time[tinds].size))
    error = ((eta * 1e-3) /
             np.sqrt(np.sum((DOBS - DPRED)**2, axis=1) / time[tinds].size))

    from matplotlib import colors
    fig = plt.figure(figsize=(6, 5))
    active_inds = (Rho[:, 0] > 10.) & (Rho[:, 0] < 1e3) & (abs(
        (DPRED - DOBS) / UNCERT).sum(axis=1) / time[tinds].size < 1.)
    out = plt.scatter(tau[active_inds],
                      c[active_inds],
                      c=eta[active_inds],
                      norm=colors.LogNorm(),
                      cmap="magma",
                      s=2)
    cb = plt.colorbar(out)
    plt.xscale('log')
    plt.yscale('log')
    plt.xlabel("Tau")
    plt.ylabel("c")
    cb.set_label("Eta (mV/V)")
    plt.show()

    inds = (abs((DPRED - DOBS) / UNCERT).sum(axis=1) / time[tinds].size < 20.)
    # print(inds)
    inds = np.arange(survey.n_location)[inds]
    out = plt.loglog(time[tinds], DPRED[inds[::2], :].T, 'r')
    out = plt.loglog(time[tinds], DOBS[inds[::2], :].T, 'kx')
    print(np.sum((DPRED - DOBS)**2) / time.size)

    fig, axs = plt.subplots(4, 1)
    properties = [
        Rho[:, 0][active_inds], eta[active_inds], tau[active_inds],
        c[active_inds]
    ]
    titles = ["$\\rho_{a}$", "$\\eta_{a}$", "$\\tau_{a}$", "$c_{a}$"]
    colors = ['#1f77b4', 'seagreen', 'crimson', 'gold']
    for i, ax in enumerate(axs):
        out = ax.hist(np.log10(properties[i]), bins=50, color=colors[i])
        ax.set_title(titles[i])
        ax.set_xticklabels([("%.1f") % (10**tick) for tick in ax.get_xticks()])
    plt.tight_layout()
    plt.show()

    return eta, tau, c, error
Ejemplo n.º 16
0
def run(plotIt=True):

    # Create a mesh
    dx = 5.

    hxind = [(dx, 5, -1.3), (dx, 15), (dx, 5, 1.3)]
    hyind = [(dx, 5, -1.3), (dx, 15), (dx, 5, 1.3)]
    hzind = [(dx, 5, -1.3), (dx, 7), (3.5, 1), (2, 5)]

    mesh = Mesh.TensorMesh([hxind, hyind, hzind], 'CCC')

    # Get index of the center
    midx = int(mesh.nCx/2)
    midy = int(mesh.nCy/2)

    # Lets create a simple Gaussian topo and set the active cells
    [xx, yy] = np.meshgrid(mesh.vectorNx, mesh.vectorNy)
    zz = -np.exp((xx**2 + yy**2) / 75**2) + mesh.vectorNz[-1]

    # We would usually load a topofile
    topo = np.c_[Utils.mkvc(xx), Utils.mkvc(yy), Utils.mkvc(zz)]

    # Go from topo to actv cells
    actv = Utils.surface2ind_topo(mesh, topo, 'N')
    actv = np.asarray([inds for inds, elem in enumerate(actv, 1) if elem],
                      dtype=int) - 1

    # Create active map to go from reduce space to full
    actvMap = Maps.InjectActiveCells(mesh, actv, -100)
    nC = len(actv)

    # Create and array of observation points
    xr = np.linspace(-30., 30., 20)
    yr = np.linspace(-30., 30., 20)
    X, Y = np.meshgrid(xr, yr)

    # Move the observation points 5m above the topo
    Z = -np.exp((X**2 + Y**2) / 75**2) + mesh.vectorNz[-1] + 0.1

    # Create a MAGsurvey
    rxLoc = np.c_[Utils.mkvc(X.T), Utils.mkvc(Y.T), Utils.mkvc(Z.T)]
    rxLoc = PF.BaseGrav.RxObs(rxLoc)
    srcField = PF.BaseGrav.SrcField([rxLoc])
    survey = PF.BaseGrav.LinearSurvey(srcField)

    # We can now create a susceptibility model and generate data
    # Here a simple block in half-space
    model = np.zeros((mesh.nCx, mesh.nCy, mesh.nCz))
    model[(midx-5):(midx-1), (midy-2):(midy+2), -10:-6] = 0.5
    model[(midx+1):(midx+5), (midy-2):(midy+2), -10:-6] = -0.5
    model = Utils.mkvc(model)
    model = model[actv]

    # Create active map to go from reduce set to full
    actvMap = Maps.InjectActiveCells(mesh, actv, -100)

    # Create reduced identity map
    idenMap = Maps.IdentityMap(nP=nC)

    # Create the forward model operator
    prob = PF.Gravity.GravityIntegral(mesh, rhoMap=idenMap, actInd=actv)

    # Pair the survey and problem
    survey.pair(prob)

    # Compute linear forward operator and compute some data
    d = prob.fields(model)

    # Add noise and uncertainties
    # We add some random Gaussian noise (1nT)
    data = d + np.random.randn(len(d))*1e-3
    wd = np.ones(len(data))*1e-3  # Assign flat uncertainties

    survey.dobs = data
    survey.std = wd
    survey.mtrue = model

    # Create sensitivity weights from our linear forward operator
    rxLoc = survey.srcField.rxList[0].locs
    wr = np.sum(prob.G**2., axis=0)**0.5
    wr = (wr/np.max(wr))

    # Create a regularization
    reg = Regularization.Sparse(mesh, indActive=actv, mapping=idenMap)
    reg.cell_weights = wr
    reg.norms = [0, 1, 1, 1]

    # Data misfit function
    dmis = DataMisfit.l2_DataMisfit(survey)
    dmis.W = Utils.sdiag(1/wd)

    # Add directives to the inversion
    opt = Optimization.ProjectedGNCG(maxIter=100, lower=-1., upper=1.,
                                     maxIterLS=20, maxIterCG=10,
                                     tolCG=1e-3)
    invProb = InvProblem.BaseInvProblem(dmis, reg, opt)
    betaest = Directives.BetaEstimate_ByEig()

    # Here is where the norms are applied
    # Use pick a treshold parameter empirically based on the distribution of
    # model parameters
    IRLS = Directives.Update_IRLS(f_min_change=1e-2, minGNiter=2)
    update_Jacobi = Directives.UpdatePreconditioner()
    inv = Inversion.BaseInversion(invProb, directiveList=[IRLS,
                                                          betaest,
                                                          update_Jacobi])

    # Run the inversion
    m0 = np.ones(nC)*1e-4  # Starting model
    mrec = inv.run(m0)

    if plotIt:
        # Here is the recovered susceptibility model
        ypanel = midx
        zpanel = -7
        m_l2 = actvMap * invProb.l2model
        m_l2[m_l2 == -100] = np.nan

        m_lp = actvMap * mrec
        m_lp[m_lp == -100] = np.nan

        m_true = actvMap * model
        m_true[m_true == -100] = np.nan

        vmin, vmax = mrec.min(), mrec.max()

        # Plot the data
        PF.Gravity.plot_obs_2D(rxLoc, d=data)

        plt.figure()

        # Plot L2 model
        ax = plt.subplot(321)
        mesh.plotSlice(m_l2, ax=ax, normal='Z', ind=zpanel,
                       grid=True, clim=(vmin, vmax))
        plt.plot(([mesh.vectorCCx[0], mesh.vectorCCx[-1]]),
                 ([mesh.vectorCCy[ypanel], mesh.vectorCCy[ypanel]]), color='w')
        plt.title('Plan l2-model.')
        plt.gca().set_aspect('equal')
        plt.ylabel('y')
        ax.xaxis.set_visible(False)
        plt.gca().set_aspect('equal', adjustable='box')

        # Vertica section
        ax = plt.subplot(322)
        mesh.plotSlice(m_l2, ax=ax, normal='Y', ind=midx,
                       grid=True, clim=(vmin, vmax))
        plt.plot(([mesh.vectorCCx[0], mesh.vectorCCx[-1]]),
                 ([mesh.vectorCCz[zpanel], mesh.vectorCCz[zpanel]]), color='w')
        plt.title('E-W l2-model.')
        plt.gca().set_aspect('equal')
        ax.xaxis.set_visible(False)
        plt.ylabel('z')
        plt.gca().set_aspect('equal', adjustable='box')

        # Plot Lp model
        ax = plt.subplot(323)
        mesh.plotSlice(m_lp, ax=ax, normal='Z', ind=zpanel,
                       grid=True, clim=(vmin, vmax))
        plt.plot(([mesh.vectorCCx[0], mesh.vectorCCx[-1]]),
                 ([mesh.vectorCCy[ypanel], mesh.vectorCCy[ypanel]]), color='w')
        plt.title('Plan lp-model.')
        plt.gca().set_aspect('equal')
        ax.xaxis.set_visible(False)
        plt.ylabel('y')
        plt.gca().set_aspect('equal', adjustable='box')

        # Vertical section
        ax = plt.subplot(324)
        mesh.plotSlice(m_lp, ax=ax, normal='Y', ind=midx,
                       grid=True, clim=(vmin, vmax))
        plt.plot(([mesh.vectorCCx[0], mesh.vectorCCx[-1]]),
                 ([mesh.vectorCCz[zpanel], mesh.vectorCCz[zpanel]]), color='w')
        plt.title('E-W lp-model.')
        plt.gca().set_aspect('equal')
        ax.xaxis.set_visible(False)
        plt.ylabel('z')
        plt.gca().set_aspect('equal', adjustable='box')

        # Plot True model
        ax = plt.subplot(325)
        mesh.plotSlice(m_true, ax=ax, normal='Z', ind=zpanel,
                       grid=True, clim=(vmin, vmax))
        plt.plot(([mesh.vectorCCx[0], mesh.vectorCCx[-1]]),
                 ([mesh.vectorCCy[ypanel], mesh.vectorCCy[ypanel]]), color='w')
        plt.title('Plan true model.')
        plt.gca().set_aspect('equal')
        plt.xlabel('x')
        plt.ylabel('y')
        plt.gca().set_aspect('equal', adjustable='box')

        # Vertical section
        ax = plt.subplot(326)
        mesh.plotSlice(m_true, ax=ax, normal='Y', ind=midx,
                       grid=True, clim=(vmin, vmax))
        plt.plot(([mesh.vectorCCx[0], mesh.vectorCCx[-1]]),
                 ([mesh.vectorCCz[zpanel], mesh.vectorCCz[zpanel]]), color='w')
        plt.title('E-W true model.')
        plt.gca().set_aspect('equal')
        plt.xlabel('x')
        plt.ylabel('z')
        plt.gca().set_aspect('equal', adjustable='box')
Ejemplo n.º 17
0
wr = np.sum(prob.F**2., axis=0)**0.5
wr /= np.max(wr)

# Create a regularization
# Create a regularization
reg = Regularization.Sparse(mesh, indActive=actv, mapping=idenMap)
reg.norms = [0, 0, 0, 0]
reg.cell_weights = wr
reg.mref = np.zeros(nC)

# Add directives to the inversion
opt = Optimization.ProjectedGNCG(maxIter=20,
                                 lower=[0.],
                                 upper=[10.],
                                 maxIterLS=10,
                                 maxIterCG=20,
                                 tolCG=1e-3,
                                 stepOffBoundsFact=1e-8)

invProb = InvProblem.BaseInvProblem(dmis, reg, opt)

# LIST OF DIRECTIVES
# betaest = Directives.BetaEstimate_ByEig()
IRLS = Directives.Update_IRLS(f_min_change=1e-4,
                              minGNiter=1,
                              beta_tol=1e-2,
                              coolingRate=1)
update_Jacobi = Directives.UpdatePreCond()
betaest = Directives.BetaEstimate_ByEig()
#saveModel = Directives.SaveUBCVectorsEveryIteration(mapping=actvMap,
Ejemplo n.º 18
0
Mesh.TreeMesh.writeUBC(mesh,
                       workDir + dsep + outDir + 'OctreeMeshGlobal.msh',
                       models={
                           workDir + dsep + outDir + 'SensWeights.mod':
                           activeCellsMap * wrGlobal
                       })

# Create a regularization function, in this case l2l2
reg = Regularization.Sparse(mesh, indActive=activeCells, mapping=idenMap)
reg.mref = np.zeros(nC)
reg.cell_weights = wrGlobal

# Specify how the optimization will proceed, set susceptibility bounds to inf
opt = Optimization.ProjectedGNCG(maxIter=25,
                                 lower=-np.inf,
                                 upper=np.inf,
                                 maxIterLS=20,
                                 maxIterCG=30,
                                 tolCG=1e-3)

# Create the default L2 inverse problem from the above objects
invProb = InvProblem.BaseInvProblem(ComboMisfit, reg, opt)

# Specify how the initial beta is found
betaest = Directives.BetaEstimate_ByEig(beta0_ratio=1)

# Target misfit to stop the inversion,
# try to fit as much as possible of the signal, we don't want to lose anything
targetMisfit = Directives.TargetMisfit(chifact=targetChi)

# Pre-conditioner
update_Jacobi = Directives.UpdatePreconditioner()
Ejemplo n.º 19
0
survey_inv.set_active_interval(1e-3, 1e-2)
survey_inv.dobs = fields_tot[survey_inv.t_active]
survey_inv.std = 0.05 * np.abs(fields_tot[survey_inv.t_active])
survey_inv.eps = 1e-11

# Setup and run inversion
dmis = DataMisfit.l2_DataMisfit(survey_inv)
w = mkvc((np.sum(np.array(problem_inv.A)**2, axis=0)))**0.5
w = w / np.max(w)
reg = Regularization.Simple(mesh=mesh,
                            indActive=actCells,
                            alpha_s=0.25,
                            cell_weights=w)
opt = Optimization.ProjectedGNCG(maxIter=20,
                                 lower=0.,
                                 upper=1e-2,
                                 maxIterLS=20,
                                 tolCG=1e-4)
invProb = InvProblem.BaseInvProblem(dmis, reg, opt)
directives = [
    Directives.BetaSchedule(coolingFactor=2, coolingRate=1),
    Directives.TargetMisfit()
]
inv = Inversion.BaseInversion(invProb, directiveList=directives)

xi_0 = 1e-3 * np.ones(actCells.sum())
xi_rec = inv.run(xi_0)

# Predict VRM response at all times for recovered model
survey_inv.set_active_interval(0., 1.)
fields_pre = survey_inv.dpred(xi_rec)
Ejemplo n.º 20
0
def run(N=100, plotIt=True):

    np.random.seed(1)

    std_noise = 1e-2

    mesh = Mesh.TensorMesh([N])

    m0 = np.ones(mesh.nC) * 1e-4
    mref = np.zeros(mesh.nC)

    nk = 20
    jk = np.linspace(1., 60., nk)
    p = -0.25
    q = 0.25

    def g(k):
        return (np.exp(p * jk[k] * mesh.vectorCCx) *
                np.cos(np.pi * q * jk[k] * mesh.vectorCCx))

    G = np.empty((nk, mesh.nC))

    for i in range(nk):
        G[i, :] = g(i)

    mtrue = np.zeros(mesh.nC)
    mtrue[mesh.vectorCCx > 0.3] = 1.
    mtrue[mesh.vectorCCx > 0.45] = -0.5
    mtrue[mesh.vectorCCx > 0.6] = 0

    prob = Problem.LinearProblem(mesh, G=G)
    survey = Survey.LinearSurvey()
    survey.pair(prob)
    survey.dobs = prob.fields(mtrue) + std_noise * np.random.randn(nk)

    wd = np.ones(nk) * std_noise

    # Distance weighting
    wr = np.sum(prob.G**2., axis=0)**0.5
    wr = wr / np.max(wr)

    dmis = DataMisfit.l2_DataMisfit(survey)
    dmis.Wd = 1. / wd

    betaest = Directives.BetaEstimate_ByEig(beta0_ratio=1e-2)

    reg = Regularization.Sparse(mesh)
    reg.mref = mref
    reg.cell_weights = wr

    reg.mref = np.zeros(mesh.nC)

    opt = Optimization.ProjectedGNCG(maxIter=100,
                                     lower=-2.,
                                     upper=2.,
                                     maxIterLS=20,
                                     maxIterCG=10,
                                     tolCG=1e-3)
    invProb = InvProblem.BaseInvProblem(dmis, reg, opt)
    update_Jacobi = Directives.Update_lin_PreCond()

    # Set the IRLS directive, penalize the lowest 25 percentile of model values
    # Start with an l2-l2, then switch to lp-norms
    norms = [0., 0., 2., 2.]
    IRLS = Directives.Update_IRLS(norms=norms,
                                  prctile=25,
                                  maxIRLSiter=15,
                                  minGNiter=3)

    inv = Inversion.BaseInversion(invProb,
                                  directiveList=[IRLS, betaest, update_Jacobi])

    # Run inversion
    mrec = inv.run(m0)

    print("Final misfit:" + str(invProb.dmisfit.eval(mrec)))

    if plotIt:
        fig, axes = plt.subplots(1, 2, figsize=(12 * 1.2, 4 * 1.2))
        for i in range(prob.G.shape[0]):
            axes[0].plot(prob.G[i, :])
        axes[0].set_title('Columns of matrix G')

        axes[1].plot(mesh.vectorCCx, mtrue, 'b-')
        axes[1].plot(mesh.vectorCCx, reg.l2model, 'r-')
        # axes[1].legend(('True Model', 'Recovered Model'))
        axes[1].set_ylim(-1.0, 1.25)

        axes[1].plot(mesh.vectorCCx, mrec, 'k-', lw=2)
        axes[1].legend(('True Model', 'Smooth l2-l2',
                        'Sparse lp: {0}, lqx: {1}'.format(*reg.norms)),
                       fontsize=12)

    return prob, survey, mesh, mrec
Ejemplo n.º 21
0
    def setUp(self):
        np.random.seed(0)
        H0 = (50000., 90., 0.)

        # The magnetization is set along a different
        # direction (induced + remanence)
        M = np.array([45., 90.])

        # Create grid of points for topography
        # Lets create a simple Gaussian topo
        # and set the active cells
        [xx, yy] = np.meshgrid(
            np.linspace(-200, 200, 50),
            np.linspace(-200, 200, 50)
        )
        b = 100
        A = 50
        zz = A*np.exp(-0.5*((xx/b)**2. + (yy/b)**2.))

        # We would usually load a topofile
        topo = np.c_[Utils.mkvc(xx), Utils.mkvc(yy), Utils.mkvc(zz)]

        # Create and array of observation points
        xr = np.linspace(-100., 100., 20)
        yr = np.linspace(-100., 100., 20)
        X, Y = np.meshgrid(xr, yr)
        Z = A*np.exp(-0.5*((X/b)**2. + (Y/b)**2.)) + 5

        # Create a MAGsurvey
        xyzLoc = np.c_[Utils.mkvc(X.T), Utils.mkvc(Y.T), Utils.mkvc(Z.T)]
        rxLoc = PF.BaseMag.RxObs(xyzLoc)
        srcField = PF.BaseMag.SrcField([rxLoc], param=H0)
        survey = PF.BaseMag.LinearSurvey(srcField)

        # Create a mesh
        h = [5, 5, 5]
        padDist = np.ones((3, 2)) * 100
        nCpad = [2, 4, 2]

        # Get extent of points
        limx = np.r_[topo[:, 0].max(), topo[:, 0].min()]
        limy = np.r_[topo[:, 1].max(), topo[:, 1].min()]
        limz = np.r_[topo[:, 2].max(), topo[:, 2].min()]

        # Get center of the mesh
        midX = np.mean(limx)
        midY = np.mean(limy)
        midZ = np.mean(limz)

        nCx = int(limx[0]-limx[1]) / h[0]
        nCy = int(limy[0]-limy[1]) / h[1]
        nCz = int(limz[0]-limz[1]+int(np.min(np.r_[nCx, nCy])/3)) / h[2]
        # Figure out full extent required from input
        extent = np.max(np.r_[nCx * h[0] + padDist[0, :].sum(),
                              nCy * h[1] + padDist[1, :].sum(),
                              nCz * h[2] + padDist[2, :].sum()])

        maxLevel = int(np.log2(extent/h[0]))+1

        # Number of cells at the small octree level
        nCx, nCy, nCz = 2**(maxLevel), 2**(maxLevel), 2**(maxLevel)

        # Define the mesh and origin
        # For now cubic cells
        mesh = Mesh.TreeMesh([np.ones(nCx)*h[0],
                              np.ones(nCx)*h[1],
                              np.ones(nCx)*h[2]])

        # Set origin
        mesh.x0 = np.r_[
            -nCx*h[0]/2.+midX,
            -nCy*h[1]/2.+midY,
            -nCz*h[2]/2.+midZ
        ]

        # Refine the mesh around topography
        # Get extent of points
        F = NearestNDInterpolator(topo[:, :2], topo[:, 2])
        zOffset = 0
        # Cycle through the first 3 octree levels
        for ii in range(3):

            dx = mesh.hx.min()*2**ii

            nCx = int((limx[0]-limx[1]) / dx)
            nCy = int((limy[0]-limy[1]) / dx)

            # Create a grid at the octree level in xy
            CCx, CCy = np.meshgrid(
                np.linspace(limx[1], limx[0], nCx),
                np.linspace(limy[1], limy[0], nCy)
            )

            z = F(mkvc(CCx), mkvc(CCy))

            # level means number of layers in current OcTree level
            for level in range(int(nCpad[ii])):

                mesh.insert_cells(
                    np.c_[
                        mkvc(CCx),
                        mkvc(CCy),
                        z-zOffset
                    ], np.ones_like(z)*maxLevel-ii,
                    finalize=False
                )

                zOffset += dx

        mesh.finalize()
        self.mesh = mesh
        # Define an active cells from topo
        actv = Utils.surface2ind_topo(mesh, topo)
        nC = int(actv.sum())

        model = np.zeros((mesh.nC, 3))

        # Convert the inclination declination to vector in Cartesian
        M_xyz = Utils.matutils.dip_azimuth2cartesian(M[0], M[1])

        # Get the indicies of the magnetized block
        ind = Utils.ModelBuilder.getIndicesBlock(
            np.r_[-20, -20, -10], np.r_[20, 20, 25],
            mesh.gridCC,
        )[0]

        # Assign magnetization values
        model[ind, :] = np.kron(
            np.ones((ind.shape[0], 1)), M_xyz*0.05
        )

        # Remove air cells
        self.model = model[actv, :]

        # Create active map to go from reduce set to full
        self.actvMap = Maps.InjectActiveCells(mesh, actv, np.nan)

        # Creat reduced identity map
        idenMap = Maps.IdentityMap(nP=nC*3)

        # Create the forward model operator
        prob = PF.Magnetics.MagneticIntegral(
            mesh, chiMap=idenMap, actInd=actv,
            modelType='vector'
        )

        # Pair the survey and problem
        survey.pair(prob)

        # Compute some data and add some random noise
        data = prob.fields(Utils.mkvc(self.model))
        std = 5  # nT
        data += np.random.randn(len(data))*std
        wd = np.ones(len(data))*std

        # Assigne data and uncertainties to the survey
        survey.dobs = data
        survey.std = wd

        # Create an projection matrix for plotting later
        actvPlot = Maps.InjectActiveCells(mesh, actv, np.nan)

        # Create sensitivity weights from our linear forward operator
        rxLoc = survey.srcField.rxList[0].locs

        # This Mapping connects the regularizations for the three-component
        # vector model
        wires = Maps.Wires(('p', nC), ('s', nC), ('t', nC))

        # Create sensitivity weights from our linear forward operator
        # so that all cells get equal chance to contribute to the solution
        wr = np.sum(prob.G**2., axis=0)**0.5
        wr = (wr/np.max(wr))

        # Create three regularization for the different components
        # of magnetization
        reg_p = Regularization.Sparse(mesh, indActive=actv, mapping=wires.p)
        reg_p.mref = np.zeros(3*nC)
        reg_p.cell_weights = (wires.p * wr)

        reg_s = Regularization.Sparse(mesh, indActive=actv, mapping=wires.s)
        reg_s.mref = np.zeros(3*nC)
        reg_s.cell_weights = (wires.s * wr)

        reg_t = Regularization.Sparse(mesh, indActive=actv, mapping=wires.t)
        reg_t.mref = np.zeros(3*nC)
        reg_t.cell_weights = (wires.t * wr)

        reg = reg_p + reg_s + reg_t
        reg.mref = np.zeros(3*nC)

        # Data misfit function
        dmis = DataMisfit.l2_DataMisfit(survey)
        dmis.W = 1./survey.std

        # Add directives to the inversion
        opt = Optimization.ProjectedGNCG(maxIter=30, lower=-10, upper=10.,
                                         maxIterLS=20, maxIterCG=20, tolCG=1e-4)

        invProb = InvProblem.BaseInvProblem(dmis, reg, opt)

        # A list of directive to control the inverson
        betaest = Directives.BetaEstimate_ByEig()

        # Here is where the norms are applied
        # Use pick a treshold parameter empirically based on the distribution of
        #  model parameters
        IRLS = Directives.Update_IRLS(
            f_min_change=1e-3, maxIRLSiter=0, beta_tol=5e-1
        )

        # Pre-conditioner
        update_Jacobi = Directives.UpdatePreconditioner()

        inv = Inversion.BaseInversion(invProb,
                                      directiveList=[IRLS, update_Jacobi, betaest])

        # Run the inversion
        m0 = np.ones(3*nC) * 1e-4  # Starting model
        mrec_MVIC = inv.run(m0)

        self.mstart = Utils.matutils.cartesian2spherical(mrec_MVIC.reshape((nC, 3), order='F'))
        beta = invProb.beta
        dmis.prob.coordinate_system = 'spherical'
        dmis.prob.model = self.mstart

        # Create a block diagonal regularization
        wires = Maps.Wires(('amp', nC), ('theta', nC), ('phi', nC))

        # Create a Combo Regularization
        # Regularize the amplitude of the vectors
        reg_a = Regularization.Sparse(mesh, indActive=actv,
                                      mapping=wires.amp)
        reg_a.norms = np.c_[0., 0., 0., 0.]  # Sparse on the model and its gradients
        reg_a.mref = np.zeros(3*nC)

        # Regularize the vertical angle of the vectors
        reg_t = Regularization.Sparse(mesh, indActive=actv,
                                      mapping=wires.theta)
        reg_t.alpha_s = 0.  # No reference angle
        reg_t.space = 'spherical'
        reg_t.norms = np.c_[2., 0., 0., 0.]  # Only norm on gradients used

        # Regularize the horizontal angle of the vectors
        reg_p = Regularization.Sparse(mesh, indActive=actv,
                                      mapping=wires.phi)
        reg_p.alpha_s = 0.  # No reference angle
        reg_p.space = 'spherical'
        reg_p.norms = np.c_[2., 0., 0., 0.]  # Only norm on gradients used

        reg = reg_a + reg_t + reg_p
        reg.mref = np.zeros(3*nC)

        Lbound = np.kron(np.asarray([0, -np.inf, -np.inf]), np.ones(nC))
        Ubound = np.kron(np.asarray([10, np.inf, np.inf]), np.ones(nC))

        # Add directives to the inversion
        opt = Optimization.ProjectedGNCG(maxIter=20,
                                         lower=Lbound,
                                         upper=Ubound,
                                         maxIterLS=20,
                                         maxIterCG=30,
                                         tolCG=1e-3,
                                         stepOffBoundsFact=1e-3,
                                         )
        opt.approxHinv = None

        invProb = InvProblem.BaseInvProblem(dmis, reg, opt, beta=beta*10.)

        # Here is where the norms are applied
        IRLS = Directives.Update_IRLS(f_min_change=1e-4, maxIRLSiter=20,
                                      minGNiter=1, beta_tol=0.5,
                                      coolingRate=1, coolEps_q=True,
                                      betaSearch=False)

        # Special directive specific to the mag amplitude problem. The sensitivity
        # weights are update between each iteration.
        ProjSpherical = Directives.ProjectSphericalBounds()
        update_SensWeight = Directives.UpdateSensitivityWeights()
        update_Jacobi = Directives.UpdatePreconditioner()

        self.inv = Inversion.BaseInversion(
            invProb,
            directiveList=[
                ProjSpherical, IRLS, update_SensWeight, update_Jacobi
            ]
        )
Ejemplo n.º 22
0
    def setUp(self):

        np.random.seed(0)

        # Define the inducing field parameter
        H0 = (50000, 90, 0)

        # Create a mesh
        dx = 5.

        hxind = [(dx, 5, -1.3), (dx, 5), (dx, 5, 1.3)]
        hyind = [(dx, 5, -1.3), (dx, 5), (dx, 5, 1.3)]
        hzind = [(dx, 5, -1.3), (dx, 6)]

        mesh = Mesh.TensorMesh([hxind, hyind, hzind], 'CCC')

        # Get index of the center
        midx = int(mesh.nCx / 2)
        midy = int(mesh.nCy / 2)

        # Lets create a simple Gaussian topo and set the active cells
        [xx, yy] = np.meshgrid(mesh.vectorNx, mesh.vectorNy)
        zz = -np.exp((xx**2 + yy**2) / 75**2) + mesh.vectorNz[-1]

        # Go from topo to actv cells
        topo = np.c_[Utils.mkvc(xx), Utils.mkvc(yy), Utils.mkvc(zz)]
        actv = Utils.surface2ind_topo(mesh, topo, 'N')
        actv = np.asarray([inds for inds, elem in enumerate(actv, 1) if elem],
                          dtype=int) - 1

        # Create active map to go from reduce space to full
        actvMap = Maps.InjectActiveCells(mesh, actv, -100)
        nC = len(actv)

        # Create and array of observation points
        xr = np.linspace(-20., 20., 20)
        yr = np.linspace(-20., 20., 20)
        X, Y = np.meshgrid(xr, yr)

        # Move the observation points 5m above the topo
        Z = -np.exp((X**2 + Y**2) / 75**2) + mesh.vectorNz[-1] + 5.

        # Create a MAGsurvey
        rxLoc = np.c_[Utils.mkvc(X.T), Utils.mkvc(Y.T), Utils.mkvc(Z.T)]
        rxLoc = PF.BaseMag.RxObs(rxLoc)
        srcField = PF.BaseMag.SrcField([rxLoc], param=H0)
        survey = PF.BaseMag.LinearSurvey(srcField)

        # We can now create a susceptibility model and generate data
        # Here a simple block in half-space
        model = np.zeros((mesh.nCx, mesh.nCy, mesh.nCz))
        model[(midx - 2):(midx + 2), (midy - 2):(midy + 2), -6:-2] = 0.02
        model = Utils.mkvc(model)
        self.model = model[actv]

        # Create active map to go from reduce set to full
        actvMap = Maps.InjectActiveCells(mesh, actv, -100)

        # Creat reduced identity map
        idenMap = Maps.IdentityMap(nP=nC)

        # Create the forward model operator
        prob = PF.Magnetics.MagneticIntegral(mesh, chiMap=idenMap, actInd=actv)

        # Pair the survey and problem
        survey.pair(prob)

        # Compute linear forward operator and compute some data
        d = prob.fields(self.model)

        # Add noise and uncertainties (1nT)
        data = d + np.random.randn(len(d))
        wd = np.ones(len(data)) * 1.

        survey.dobs = data
        survey.std = wd

        # Create sensitivity weights from our linear forward operator
        wr = np.sum(prob.G**2., axis=0)**0.5
        wr = (wr / np.max(wr))

        # Create a regularization
        reg = Regularization.Sparse(mesh, indActive=actv, mapping=idenMap)
        reg.cell_weights = wr
        reg.norms = np.c_[0, 0, 0, 0]
        reg.gradientType = 'component'
        # reg.eps_p, reg.eps_q = 1e-3, 1e-3

        # Data misfit function
        dmis = DataMisfit.l2_DataMisfit(survey)
        dmis.W = 1 / wd

        # Add directives to the inversion
        opt = Optimization.ProjectedGNCG(maxIter=100,
                                         lower=0.,
                                         upper=1.,
                                         maxIterLS=20,
                                         maxIterCG=10,
                                         tolCG=1e-3)

        invProb = InvProblem.BaseInvProblem(dmis, reg, opt)
        betaest = Directives.BetaEstimate_ByEig()

        # Here is where the norms are applied
        IRLS = Directives.Update_IRLS(f_min_change=1e-4, minGNiter=1)
        update_Jacobi = Directives.UpdatePreconditioner()
        self.inv = Inversion.BaseInversion(
            invProb, directiveList=[IRLS, betaest, update_Jacobi])
Ejemplo n.º 23
0
    mstart = np.ones(nC) * 1e-4
    mref = np.zeros(nC)

    # Create a regularization
    reg = Regularization.Sparse(mesh,
                                indActive=actv,
                                mapping=Maps.IdentityMap(nP=nC))
    reg.cell_weights = wrGlobal
    reg.norms = np.c_[driver.lpnorms].T
    reg.mref = mref

    # Add directives to the inversion
    opt = Optimization.ProjectedGNCG(maxIter=100,
                                     lower=-10.,
                                     upper=10.,
                                     maxIterCG=20,
                                     tolCG=1e-3)

    invProb = InvProblem.BaseInvProblem(ComboMisfit, reg, opt)
    betaest = Directives.BetaEstimate_ByEig()

    # Here is where the norms are applied
    IRLS = Directives.Update_IRLS(f_min_change=1e-3, minGNiter=1)

    update_Jacobi = Directives.UpdateJacobiPrecond()
    targetMisfit = Directives.TargetMisfit()

    saveModel = Directives.SaveUBCModelEveryIteration(mapping=actvMap)
    saveModel.fileName = work_dir + out_dir + 'GRAV'
    inv = Inversion.BaseInversion(
Ejemplo n.º 24
0
reg_t = Regularization.Sparse(regMesh, mapping=wires.t)
reg_t.cell_weights = wires.t * wr
reg_t.norms = [2, 2, 2, 2]

reg = reg_p + reg_s + reg_t
reg.mref = np.zeros(3 * nC)

# Data misfit function
dmis = DataMisfit.l2_DataMisfit(survey)
dmis.W = 1. / survey.std

# Add directives to the inversion
opt = Optimization.ProjectedGNCG(maxIter=10,
                                 lower=-10.,
                                 upper=10.,
                                 maxIterCG=20,
                                 tolCG=1e-3)

invProb = InvProblem.BaseInvProblem(dmis, reg, opt, beta=1e+5)
betaest = Directives.BetaEstimate_ByEig()

# Here is where the norms are applied
IRLS = Directives.Update_IRLS(f_min_change=1e-4, minGNiter=3, beta_tol=1e-2)

update_Jacobi = Directives.UpdateJacobiPrecond()
targetMisfit = Directives.TargetMisfit()

saveModel = Directives.SaveUBCModelEveryIteration(mapping=actvMap)
saveModel.fileName = work_dir + out_dir + 'MVI_C'
inv = Inversion.BaseInversion(invProb,
Ejemplo n.º 25
0
def run(plotIt=True, cleanAfterRun=True):

    # Start by downloading files from the remote repository
    # directory where the downloaded files are

    url = "https://storage.googleapis.com/simpeg/Chile_GRAV_4_Miller/Chile_GRAV_4_Miller.tar.gz"
    downloads = download(url, overwrite=True)
    basePath = downloads.split(".")[0]

    # unzip the tarfile
    tar = tarfile.open(downloads, "r")
    tar.extractall()
    tar.close()

    input_file = basePath + os.path.sep + 'LdM_input_file.inp'
    # %% User input
    # Plotting parameters, max and min densities in g/cc
    vmin = -0.6
    vmax = 0.6

    # weight exponent for default weighting
    wgtexp = 3.
    # %%
    # Read in the input file which included all parameters at once
    # (mesh, topo, model, survey, inv param, etc.)
    driver = PF.GravityDriver.GravityDriver_Inv(input_file)
    # %%
    # Now we need to create the survey and model information.

    # Access the mesh and survey information
    mesh = driver.mesh
    survey = driver.survey

    # define gravity survey locations
    rxLoc = survey.srcField.rxList[0].locs

    # define gravity data and errors
    d = survey.dobs
    wd = survey.std

    # Get the active cells
    active = driver.activeCells
    nC = len(active)  # Number of active cells

    # Create active map to go from reduce set to full
    activeMap = Maps.InjectActiveCells(mesh, active, -100)

    # Create static map
    static = driver.staticCells
    dynamic = driver.dynamicCells

    staticCells = Maps.InjectActiveCells(None,
                                         dynamic,
                                         driver.m0[static],
                                         nC=nC)
    mstart = driver.m0[dynamic]

    # Get index of the center
    midx = int(mesh.nCx / 2)
    # %%
    # Now that we have a model and a survey we can build the linear system ...
    # Create the forward model operator
    prob = PF.Gravity.GravityIntegral(mesh, rhoMap=staticCells, actInd=active)
    prob.solverOpts['accuracyTol'] = 1e-4

    # Pair the survey and problem
    survey.pair(prob)

    # Apply depth weighting
    wr = PF.Magnetics.get_dist_wgt(mesh, rxLoc, active, wgtexp,
                                   np.min(mesh.hx) / 4.)
    wr = wr**2.

    # %% Create inversion objects
    reg = Regularization.Sparse(mesh,
                                indActive=active,
                                mapping=staticCells,
                                gradientType='total')
    reg.mref = driver.mref[dynamic]
    reg.cell_weights = wr * mesh.vol[active]
    reg.norms = np.c_[0., 1., 1., 1.]
    # reg.norms = driver.lpnorms

    # Specify how the optimization will proceed
    opt = Optimization.ProjectedGNCG(maxIter=20,
                                     lower=driver.bounds[0],
                                     upper=driver.bounds[1],
                                     maxIterLS=10,
                                     maxIterCG=20,
                                     tolCG=1e-3)

    # Define misfit function (obs-calc)
    dmis = DataMisfit.l2_DataMisfit(survey)
    dmis.W = 1. / wd

    # create the default L2 inverse problem from the above objects
    invProb = InvProblem.BaseInvProblem(dmis, reg, opt)

    # Specify how the initial beta is found
    betaest = Directives.BetaEstimate_ByEig(beta0_ratio=1e-2)

    # IRLS sets up the Lp inversion problem
    # Set the eps parameter parameter in Line 11 of the
    # input file based on the distribution of model (DEFAULT = 95th %ile)
    IRLS = Directives.Update_IRLS(f_min_change=1e-4,
                                  maxIRLSiter=40,
                                  beta_tol=5e-1)

    # Preconditioning refreshing for each IRLS iteration
    update_Jacobi = Directives.UpdatePreconditioner()

    # Create combined the L2 and Lp problem
    inv = Inversion.BaseInversion(invProb,
                                  directiveList=[IRLS, update_Jacobi, betaest])

    # %%
    # Run L2 and Lp inversion
    mrec = inv.run(mstart)

    if cleanAfterRun:
        os.remove(downloads)
        shutil.rmtree(basePath)

    # %%
    if plotIt:
        # Plot observed data
        PF.Magnetics.plot_obs_2D(rxLoc, d, 'Observed Data')

        # %%
        # Write output model and data files and print misft stats.

        # reconstructing l2 model mesh with air cells and active dynamic cells
        L2out = activeMap * invProb.l2model

        # reconstructing lp model mesh with air cells and active dynamic cells
        Lpout = activeMap * mrec

        # %%
        # Plot out sections and histograms of the smooth l2 model.
        # The ind= parameter is the slice of the model from top down.
        yslice = midx + 1
        L2out[L2out == -100] = np.nan  # set "air" to nan

        plt.figure(figsize=(10, 7))
        plt.suptitle('Smooth Inversion: Depth weight = ' + str(wgtexp))
        ax = plt.subplot(221)
        dat1 = mesh.plotSlice(L2out,
                              ax=ax,
                              normal='Z',
                              ind=-16,
                              clim=(vmin, vmax),
                              pcolorOpts={'cmap': 'bwr'})
        plt.plot(np.array([mesh.vectorCCx[0], mesh.vectorCCx[-1]]),
                 np.array([mesh.vectorCCy[yslice], mesh.vectorCCy[yslice]]),
                 c='gray',
                 linestyle='--')
        plt.scatter(rxLoc[0:, 0], rxLoc[0:, 1], color='k', s=1)
        plt.title('Z: ' + str(mesh.vectorCCz[-16]) + ' m')
        plt.xlabel('Easting (m)')
        plt.ylabel('Northing (m)')
        plt.gca().set_aspect('equal', adjustable='box')
        cb = plt.colorbar(dat1[0],
                          orientation="vertical",
                          ticks=np.linspace(vmin, vmax, 4))
        cb.set_label('Density (g/cc$^3$)')

        ax = plt.subplot(222)
        dat = mesh.plotSlice(L2out,
                             ax=ax,
                             normal='Z',
                             ind=-27,
                             clim=(vmin, vmax),
                             pcolorOpts={'cmap': 'bwr'})
        plt.plot(np.array([mesh.vectorCCx[0], mesh.vectorCCx[-1]]),
                 np.array([mesh.vectorCCy[yslice], mesh.vectorCCy[yslice]]),
                 c='gray',
                 linestyle='--')
        plt.scatter(rxLoc[0:, 0], rxLoc[0:, 1], color='k', s=1)
        plt.title('Z: ' + str(mesh.vectorCCz[-27]) + ' m')
        plt.xlabel('Easting (m)')
        plt.ylabel('Northing (m)')
        plt.gca().set_aspect('equal', adjustable='box')
        cb = plt.colorbar(dat1[0],
                          orientation="vertical",
                          ticks=np.linspace(vmin, vmax, 4))
        cb.set_label('Density (g/cc$^3$)')

        ax = plt.subplot(212)
        mesh.plotSlice(L2out,
                       ax=ax,
                       normal='Y',
                       ind=yslice,
                       clim=(vmin, vmax),
                       pcolorOpts={'cmap': 'bwr'})
        plt.title('Cross Section')
        plt.xlabel('Easting(m)')
        plt.ylabel('Elevation')
        plt.gca().set_aspect('equal', adjustable='box')
        cb = plt.colorbar(dat1[0],
                          orientation="vertical",
                          ticks=np.linspace(vmin, vmax, 4),
                          cmap='bwr')
        cb.set_label('Density (g/cc$^3$)')

        # %%
        # Make plots of Lp model
        yslice = midx + 1
        Lpout[Lpout == -100] = np.nan  # set "air" to nan

        plt.figure(figsize=(10, 7))
        plt.suptitle('Compact Inversion: Depth weight = ' + str(wgtexp) +
                     ': $\epsilon_p$ = ' + str(round(reg.eps_p, 1)) +
                     ': $\epsilon_q$ = ' + str(round(reg.eps_q, 2)))
        ax = plt.subplot(221)
        dat = mesh.plotSlice(Lpout,
                             ax=ax,
                             normal='Z',
                             ind=-16,
                             clim=(vmin, vmax),
                             pcolorOpts={'cmap': 'bwr'})
        plt.plot(np.array([mesh.vectorCCx[0], mesh.vectorCCx[-1]]),
                 np.array([mesh.vectorCCy[yslice], mesh.vectorCCy[yslice]]),
                 c='gray',
                 linestyle='--')
        plt.scatter(rxLoc[0:, 0], rxLoc[0:, 1], color='k', s=1)
        plt.title('Z: ' + str(mesh.vectorCCz[-16]) + ' m')
        plt.xlabel('Easting (m)')
        plt.ylabel('Northing (m)')
        plt.gca().set_aspect('equal', adjustable='box')
        cb = plt.colorbar(dat[0],
                          orientation="vertical",
                          ticks=np.linspace(vmin, vmax, 4))
        cb.set_label('Density (g/cc$^3$)')

        ax = plt.subplot(222)
        dat = mesh.plotSlice(Lpout,
                             ax=ax,
                             normal='Z',
                             ind=-27,
                             clim=(vmin, vmax),
                             pcolorOpts={'cmap': 'bwr'})
        plt.plot(np.array([mesh.vectorCCx[0], mesh.vectorCCx[-1]]),
                 np.array([mesh.vectorCCy[yslice], mesh.vectorCCy[yslice]]),
                 c='gray',
                 linestyle='--')
        plt.scatter(rxLoc[0:, 0], rxLoc[0:, 1], color='k', s=1)
        plt.title('Z: ' + str(mesh.vectorCCz[-27]) + ' m')
        plt.xlabel('Easting (m)')
        plt.ylabel('Northing (m)')
        plt.gca().set_aspect('equal', adjustable='box')
        cb = plt.colorbar(dat[0],
                          orientation="vertical",
                          ticks=np.linspace(vmin, vmax, 4))
        cb.set_label('Density (g/cc$^3$)')

        ax = plt.subplot(212)
        dat = mesh.plotSlice(Lpout,
                             ax=ax,
                             normal='Y',
                             ind=yslice,
                             clim=(vmin, vmax),
                             pcolorOpts={'cmap': 'bwr'})
        plt.title('Cross Section')
        plt.xlabel('Easting (m)')
        plt.ylabel('Elevation (m)')
        plt.gca().set_aspect('equal', adjustable='box')
        cb = plt.colorbar(dat[0],
                          orientation="vertical",
                          ticks=np.linspace(vmin, vmax, 4))
        cb.set_label('Density (g/cc$^3$)')
Ejemplo n.º 26
0
reg_t = Regularization.Sparse(mesh, indActive=actv, mapping=wires.t)
reg_t.cell_weights = wires.t * wr
reg_t.norms = [2, 2, 2, 2]

reg = reg_p + reg_s + reg_t
reg.mref = np.zeros(3 * nC)

# Data misfit function
dmis = DataMisfit.l2_DataMisfit(survey)
dmis.W = 1. / survey.std

# Add directives to the inversion
opt = Optimization.ProjectedGNCG(maxIter=10,
                                 lower=-10.,
                                 upper=10.,
                                 maxIterCG=20,
                                 tolCG=1e-3)

invProb = InvProblem.BaseInvProblem(dmis, reg, opt)
betaest = Directives.BetaEstimate_ByEig()

# Here is where the norms are applied
IRLS = Directives.Update_IRLS(f_min_change=1e-4, minGNiter=3, beta_tol=1e-2)

update_Jacobi = Directives.UpdatePreCond()
targetMisfit = Directives.TargetMisfit()

saveModel = Directives.SaveUBCModelEveryIteration(mapping=actvMap)
saveModel.fileName = work_dir + out_dir + 'MVI_C'
inv = Inversion.BaseInversion(
Ejemplo n.º 27
0
regMesh = Mesh.TensorMesh([nC])

reg_m1 = Regularization.Sparse(regMesh, mapping=wires.h**o)
reg_m1.cell_weights = wires.h**o*wr*2.
reg_m1.mref = mref

# Regularization for the voxel model
reg_m2 = Regularization.Sparse(mesh, indActive=actv, mapping=wires.hetero)
reg_m2.cell_weights = wires.hetero*wr
reg_m2.norms = np.c_[driver.lpnorms].T
reg_m2.mref =  mref

reg = reg_m1 + reg_m2

opt = Optimization.ProjectedGNCG(maxIter=30, lower=driver.bounds[0],
                                 upper=driver.bounds[1],
                                 maxIterLS = 20, maxIterCG= 30,
                                 tolCG = 1e-4)
invProb = InvProblem.BaseInvProblem(dmis, reg, opt)

betaest = Directives.BetaEstimate_ByEig(beta0_ratio = 1.)
IRLS = Directives.Update_IRLS(f_min_change=1e-4, minGNiter=2)
update_Jacobi = Directives.UpdatePreconditioner()
#saveModel = Directives.SaveUBCModelEveryIteration(mapping=actvMap*sumMap)
#saveModel.fileName = work_dir + dsep + out_dir + 'GRAV'

saveDict = Directives.SaveOutputDictEveryIteration()
inv = Inversion.BaseInversion(invProb, directiveList=[betaest, IRLS, saveDict,
                                                      update_Jacobi])
# Run inversion
mrec = inv.run(mstart)
Ejemplo n.º 28
0
                                     chiMap=idenMap,
                                     actInd=surf,
                                     equiSourceLayer=True)
prob.solverOpts['accuracyTol'] = 1e-4

# Pair the survey and problem
survey.pair(prob)

# Create a regularization function, in this case l2l2
reg = Regularization.Simple(mesh, indActive=surf)
reg.mref = np.zeros(nC)

# Specify how the optimization will proceed, set susceptibility bounds to inf
opt = Optimization.ProjectedGNCG(maxIter=500,
                                 lower=-np.inf,
                                 upper=np.inf,
                                 maxIterLS=20,
                                 maxIterCG=20,
                                 tolCG=1e-3)

# Define misfit function (obs-calc)
dmis = DataMisfit.l2_DataMisfit(survey)
dmis.W = 1. / survey.std

# Create the default L2 inverse problem from the above objects
invProb = InvProblem.BaseInvProblem(dmis, reg, opt)

# Specify how the initial beta is found
betaest = Directives.BetaEstimate_ByEig()

# Beta schedule for inversion
betaSchedule = Directives.BetaSchedule(coolingFactor=2., coolingRate=1)
Ejemplo n.º 29
0
reg_t = Regularization.Sparse(mesh, indActive=actv, mapping=wires.t)
reg_t.mref = np.zeros(3 * nC)
reg_t.cell_weights = (wires.t * wr)

reg = reg_p + reg_s + reg_t
reg.mref = np.zeros(3 * nC)

# Data misfit function
dmis = DataMisfit.l2_DataMisfit(survey)
dmis.W = 1. / survey.std

# Add directives to the inversion
opt = Optimization.ProjectedGNCG(maxIter=30,
                                 lower=-10,
                                 upper=10.,
                                 maxIterLS=20,
                                 maxIterCG=20,
                                 tolCG=1e-4)

invProb = InvProblem.BaseInvProblem(dmis, reg, opt)

# A list of directive to control the inverson
betaest = Directives.BetaEstimate_ByEig()

# Here is where the norms are applied
# Use pick a treshold parameter empirically based on the distribution of
#  model parameters
IRLS = Directives.Update_IRLS(f_min_change=1e-3, maxIRLSiter=0, beta_tol=5e-1)

# Pre-conditioner
update_Jacobi = Directives.UpdatePreconditioner()
def run(plotIt=True):

    # Define the inducing field parameter
    H0 = (50000, 90, 0)

    # Create a mesh
    dx = 5.

    hxind = [(dx, 5, -1.3), (dx, 10), (dx, 5, 1.3)]
    hyind = [(dx, 5, -1.3), (dx, 10), (dx, 5, 1.3)]
    hzind = [(dx, 5, -1.3), (dx, 10)]

    mesh = Mesh.TensorMesh([hxind, hyind, hzind], 'CCC')

    # Get index of the center
    midx = int(mesh.nCx / 2)
    midy = int(mesh.nCy / 2)

    # Lets create a simple Gaussian topo and set the active cells
    [xx, yy] = np.meshgrid(mesh.vectorNx, mesh.vectorNy)
    zz = -np.exp((xx**2 + yy**2) / 75**2) + mesh.vectorNz[-1]

    # We would usually load a topofile
    topo = np.c_[Utils.mkvc(xx), Utils.mkvc(yy), Utils.mkvc(zz)]

    # Go from topo to array of indices of active cells
    actv = Utils.surface2ind_topo(mesh, topo, 'N')
    actv = np.where(actv)[0]
    nC = len(actv)

    # Create and array of observation points
    xr = np.linspace(-20., 20., 20)
    yr = np.linspace(-20., 20., 20)
    X, Y = np.meshgrid(xr, yr)

    # Move the observation points 5m above the topo
    Z = -np.exp((X**2 + Y**2) / 75**2) + mesh.vectorNz[-1] + 5.

    # Create a MAGsurvey
    rxLoc = np.c_[Utils.mkvc(X.T), Utils.mkvc(Y.T), Utils.mkvc(Z.T)]
    rxLoc = PF.BaseMag.RxObs(rxLoc)
    srcField = PF.BaseMag.SrcField([rxLoc], param=H0)
    survey = PF.BaseMag.LinearSurvey(srcField)

    # We can now create a susceptibility model and generate data
    # Here a simple block in half-space
    model = np.zeros((mesh.nCx, mesh.nCy, mesh.nCz))
    model[(midx - 2):(midx + 2), (midy - 2):(midy + 2), -6:-2] = 0.02
    model = Utils.mkvc(model)
    model = model[actv]

    # Create active map to go from reduce set to full
    actvMap = Maps.InjectActiveCells(mesh, actv, -100)

    # Create reduced identity map
    idenMap = Maps.IdentityMap(nP=nC)

    # Create the forward model operator
    prob = PF.Magnetics.MagneticIntegral(mesh, chiMap=idenMap, actInd=actv)

    # Pair the survey and problem
    survey.pair(prob)

    # Compute linear forward operator and compute some data
    d = prob.fields(model)

    # Add noise and uncertainties
    # We add some random Gaussian noise (1nT)
    data = d + np.random.randn(len(d))
    wd = np.ones(len(data)) * 1.  # Assign flat uncertainties

    survey.dobs = data
    survey.std = wd
    survey.mtrue = model

    # Create sensitivity weights from our linear forward operator
    rxLoc = survey.srcField.rxList[0].locs
    wr = np.sum(prob.G**2., axis=0)**0.5
    wr = (wr / np.max(wr))

    # Create a regularization
    reg = Regularization.Sparse(mesh, indActive=actv, mapping=idenMap)
    reg.cell_weights = wr
    reg.mref = np.zeros(nC)
    reg.norms = np.c_[0, 0, 0, 0]
    # reg.eps_p, reg.eps_q = 1e-0, 1e-0

    # Data misfit function
    dmis = DataMisfit.l2_DataMisfit(survey)
    dmis.W = 1 / wd

    # Add directives to the inversion
    opt = Optimization.ProjectedGNCG(maxIter=100,
                                     lower=0.,
                                     upper=1.,
                                     maxIterLS=20,
                                     maxIterCG=20,
                                     tolCG=1e-3)
    invProb = InvProblem.BaseInvProblem(dmis, reg, opt)
    betaest = Directives.BetaEstimate_ByEig(beta0_ratio=1e-1)

    # Here is where the norms are applied
    # Use pick a threshold parameter empirically based on the distribution of
    #  model parameters
    IRLS = Directives.Update_IRLS(f_min_change=1e-4, maxIRLSiter=40)
    saveDict = Directives.SaveOutputEveryIteration(save_txt=False)
    update_Jacobi = Directives.UpdatePreconditioner()
    inv = Inversion.BaseInversion(
        invProb, directiveList=[IRLS, betaest, update_Jacobi, saveDict])

    # Run the inversion
    m0 = np.ones(nC) * 1e-4  # Starting model
    mrec = inv.run(m0)

    if plotIt:
        # Here is the recovered susceptibility model
        ypanel = midx
        zpanel = -5
        m_l2 = actvMap * invProb.l2model
        m_l2[m_l2 == -100] = np.nan

        m_lp = actvMap * mrec
        m_lp[m_lp == -100] = np.nan

        m_true = actvMap * model
        m_true[m_true == -100] = np.nan

        # Plot the data
        Utils.PlotUtils.plot2Ddata(rxLoc, d)

        plt.figure()

        # Plot L2 model
        ax = plt.subplot(321)
        mesh.plotSlice(m_l2,
                       ax=ax,
                       normal='Z',
                       ind=zpanel,
                       grid=True,
                       clim=(model.min(), model.max()))
        plt.plot(([mesh.vectorCCx[0], mesh.vectorCCx[-1]]),
                 ([mesh.vectorCCy[ypanel], mesh.vectorCCy[ypanel]]),
                 color='w')
        plt.title('Plan l2-model.')
        plt.gca().set_aspect('equal')
        plt.ylabel('y')
        ax.xaxis.set_visible(False)
        plt.gca().set_aspect('equal', adjustable='box')

        # Vertica section
        ax = plt.subplot(322)
        mesh.plotSlice(m_l2,
                       ax=ax,
                       normal='Y',
                       ind=midx,
                       grid=True,
                       clim=(model.min(), model.max()))
        plt.plot(([mesh.vectorCCx[0], mesh.vectorCCx[-1]]),
                 ([mesh.vectorCCz[zpanel], mesh.vectorCCz[zpanel]]),
                 color='w')
        plt.title('E-W l2-model.')
        plt.gca().set_aspect('equal')
        ax.xaxis.set_visible(False)
        plt.ylabel('z')
        plt.gca().set_aspect('equal', adjustable='box')

        # Plot Lp model
        ax = plt.subplot(323)
        mesh.plotSlice(m_lp,
                       ax=ax,
                       normal='Z',
                       ind=zpanel,
                       grid=True,
                       clim=(model.min(), model.max()))
        plt.plot(([mesh.vectorCCx[0], mesh.vectorCCx[-1]]),
                 ([mesh.vectorCCy[ypanel], mesh.vectorCCy[ypanel]]),
                 color='w')
        plt.title('Plan lp-model.')
        plt.gca().set_aspect('equal')
        ax.xaxis.set_visible(False)
        plt.ylabel('y')
        plt.gca().set_aspect('equal', adjustable='box')

        # Vertical section
        ax = plt.subplot(324)
        mesh.plotSlice(m_lp,
                       ax=ax,
                       normal='Y',
                       ind=midx,
                       grid=True,
                       clim=(model.min(), model.max()))
        plt.plot(([mesh.vectorCCx[0], mesh.vectorCCx[-1]]),
                 ([mesh.vectorCCz[zpanel], mesh.vectorCCz[zpanel]]),
                 color='w')
        plt.title('E-W lp-model.')
        plt.gca().set_aspect('equal')
        ax.xaxis.set_visible(False)
        plt.ylabel('z')
        plt.gca().set_aspect('equal', adjustable='box')

        # Plot True model
        ax = plt.subplot(325)
        mesh.plotSlice(m_true,
                       ax=ax,
                       normal='Z',
                       ind=zpanel,
                       grid=True,
                       clim=(model.min(), model.max()))
        plt.plot(([mesh.vectorCCx[0], mesh.vectorCCx[-1]]),
                 ([mesh.vectorCCy[ypanel], mesh.vectorCCy[ypanel]]),
                 color='w')
        plt.title('Plan true model.')
        plt.gca().set_aspect('equal')
        plt.xlabel('x')
        plt.ylabel('y')
        plt.gca().set_aspect('equal', adjustable='box')

        # Vertical section
        ax = plt.subplot(326)
        mesh.plotSlice(m_true,
                       ax=ax,
                       normal='Y',
                       ind=midx,
                       grid=True,
                       clim=(model.min(), model.max()))
        plt.plot(([mesh.vectorCCx[0], mesh.vectorCCx[-1]]),
                 ([mesh.vectorCCz[zpanel], mesh.vectorCCz[zpanel]]),
                 color='w')
        plt.title('E-W true model.')
        plt.gca().set_aspect('equal')
        plt.xlabel('x')
        plt.ylabel('z')
        plt.gca().set_aspect('equal', adjustable='box')

        # Plot convergence curves
        fig, axs = plt.figure(), plt.subplot()
        axs.plot(saveDict.phi_d, 'k', lw=2)
        axs.plot(np.r_[IRLS.iterStart, IRLS.iterStart],
                 np.r_[0, np.max(saveDict.phi_d)], 'k:')

        twin = axs.twinx()
        twin.plot(saveDict.phi_m, 'k--', lw=2)
        axs.text(IRLS.iterStart,
                 0,
                 'IRLS Steps',
                 va='bottom',
                 ha='center',
                 rotation='vertical',
                 size=12,
                 bbox={'facecolor': 'white'})

        axs.set_ylabel('$\phi_d$', size=16, rotation=0)
        axs.set_xlabel('Iterations', size=14)
        twin.set_ylabel('$\phi_m$', size=16, rotation=0)