Ejemplo n.º 1
0
            np.transpose(my_data[exp]['theta_v'][it, :, :, :]) -
            my_data[exp]['theta_v'][it, :, :, :].mean(axis=(1, 2)))
        for it in range(my_data[exp]['mcl_times'].size)
    ])
    my_data[exp]['q_total'] = my_data[exp][q_key] + my_data[exp][
        mcl_key] + my_data[exp][mr_key]
    my_data[exp]['q_total_prime'] = np.array([
        np.transpose(
            np.transpose(my_data[exp]['q_total'][it, :, :, :]) -
            my_data[exp]['q_total'][it, :, :, :].mean(axis=(1, 2)))
        for it in range(my_data[exp]['mcl_times'].size)
    ])
    # define RH
    my_data[exp]['RH'] = 100. * my_data[exp][q_key] / getQ(
        my_data[exp][temp_key][:] * 1., [100.],
        my_data[exp][pthe_key][:] * 1.,
        t_units='K',
        p_units='Pa')
    # define the updraught mask
    my_data[exp]['up_mask'] = np.where(
        (my_data[exp][mcl_key][:] > 0) * (my_data[exp][w_key] > 0), 1.0,
        np.nan)
    # define the core mask
    my_data[exp]['core_mask'] = np.where(
        (my_data[exp][mcl_key][:] > 0) * (my_data[exp][w_key] > 0) *
        (my_data[exp]['theta_v_prime'] > 0), 1.0, np.nan)

# calculate the profiles first
for exp in experiments:
    t_idx = [
        it for it in range(my_data[exp]['mcl_times'].size)
    path_key = path.split('/')[-2]
    my_RH_data[path_key] = {}
    with Dataset(path + 'bouy_00.nc', 'r') as bouy_nc:
        my_RH_data[path_key][q_key] = bouy_nc.variables[q_key][
            1, :-1, :, :].mean(axis=(1, 2))
        my_RH_data[path_key][temp_key] = bouy_nc.variables[temp_key][
            1, :-1, :, :].mean(axis=(1, 2))
        z = bouy_nc.variables['thlev_zsea_theta'][:-1] * 1.

    with Dataset(path + 'fluxes_00.nc', 'r') as fluxes_nc:
        my_RH_data[path_key][pthe_key] = fluxes_nc.variables[pthe_key][
            1, :-1, :, :].mean(axis=(1, 2))

    my_RH_data[path_key]['q_sat'] = getQ(my_RH_data[path_key][temp_key],
                                         [100.],
                                         my_RH_data[path_key][pthe_key],
                                         t_units='K',
                                         p_units='Pa')
    my_RH_data[path_key]['RH'] = 100. * my_RH_data[path_key][
        q_key] / my_RH_data[path_key]['q_sat']

my_colors = {'RH_BLm25': 'red', 'RH_FAm25': 'blue', 'Control_short': 'k'}
my_lw = {'RH_BLm25': '2', 'RH_FAm25': '2', 'Control_short': '1'}
my_labels = {
    'RH_BLm25': 'BLm25',
    'RH_FAm25': 'FAm25',
    'Control_short': 'Control (short)'
}

fig = plt.figure()
axa = fig.add_subplot(1, 2, 1)
Ejemplo n.º 3
0
def get_IC_from_txt(experiment):
    """
    Opens and reads the initial conditions text files.
    """
    ### Open the initial conditions text files ###
    with open('../InitialFields_Moisture/InitialFields_Moisture_' +
              experiment + '.txt') as moisture:
        moisture = moisture.read()
    with open('../InitialFields_Temperature/InitialFields_Temperature_' +
              experiment + '.txt') as temperature:
        temperature = temperature.read()
    with open('../InitialFields_Wind/InitialFields_Wind_' + experiment +
              '.txt') as wind:
        wind = wind.read()

    ### Read in the data ###
    # The heights for the moisture data, km
    mv_z = np.array(
        [float(x)
         for x in moisture.split('\n')[2].split(' ')[1].split(',')]) / 1000.
    # The moisture data
    mv_data = np.array(
        [float(x)
         for x in moisture.split('\n')[4].split(' ')[1].split(',')]) * 100.

    # The heights for the theta data, km
    theta_z = np.array([
        float(x) for x in temperature.split('\n')[2].split(' ')[1].split(',')
    ])
    # The theta data, K
    theta_data = np.array([
        float(x) for x in temperature.split('\n')[4].split(' ')[1].split(',')
    ])

    # The heights for the wind data, km
    u_z = np.array(
        [float(x)
         for x in wind.split('\n')[2].split(' ')[1].split(',')]) / 1000.
    # The wind data, m/s
    u_data = np.array(
        [float(x) for x in wind.split('\n')[3].split(' ')[1].split(',')])
    v_data = np.array(
        [float(x) for x in wind.split('\n')[4].split(' ')[1].split(',')])

    ### Estimate the pressure so that we can compute the specific humidity ###
    p_sfc = 101700.  # the surface pressure used to initialise the simulations
    temperature_data = theta_data - g * theta_z / cpd

    pressure_data = np.zeros_like(temperature_data)
    pressure_data[0] = p_sfc * 1.  # set the surface pressure

    dz = 1.
    z = 0
    temperature_interp = interpolate.interp1d(x=theta_z, y=temperature_data)
    for k in range(1, len(theta_z)):
        rho_0 = pressure_data[k - 1] / (
            Rd * temperature_interp(z)
        )  # get the air density at the level below
        p_temp = pressure_data[k - 1] - g * rho_0 * dz
        z += dz

        # use that air density to compute the pressure slightly above and iterate until just below the next level
        while (z + dz) < theta_z[k]:
            rho_0 = p_temp / (Rd * temperature_interp(z))
            p_temp = p_temp - g * rho_0 * dz
            z += dz

        # do the remaining distance to get to the next level
        rho_0 = p_temp / (Rd * temperature_interp(z))
        pressure_data[k] = p_temp - g * rho_0 * (theta_z[k] - z)
        z += (theta_z[k] - z)

    # iterate to get a better temperature estimate
    temperature_data = PTtoTemp(theta_data,
                                pressure_data,
                                t_units='K',
                                p_units='Pa')

    # iterate to get a better pressure estimate
    pressure_data[0] = p_sfc * 1.  # set the surface pressure

    dz = 1.
    z = 0
    temperature_interp = interpolate.interp1d(x=theta_z, y=temperature_data)
    for k in range(1, len(theta_z)):
        rho_0 = pressure_data[k - 1] / (
            Rd * temperature_interp(z)
        )  # get the air density at the level below
        p_temp = pressure_data[k - 1] - g * rho_0 * dz
        z += dz

        # use that air density to compute the pressure slightly above and iterate until just below the next level
        while (z + dz) < theta_z[k]:
            rho_0 = p_temp / (Rd * temperature_interp(z))
            p_temp = p_temp - g * rho_0 * dz
            z += dz

        # do the remaining distance to get to the next level
        rho_0 = p_temp / (Rd * temperature_interp(z))
        pressure_data[k] = p_temp - g * rho_0 * (theta_z[k] - z)
        z += (theta_z[k] - z)

    ### Store the data to a dictionary and return ###
    data_dict = {
        'mv_z':
        mv_z,
        'theta_z':
        theta_z / 1000.,
        'u_z':
        u_z,
        'RH_data':
        mv_data,
        'theta_data':
        theta_data,
        'u_data':
        u_data,
        'v_data':
        v_data,
        'mv_data':
        getQ(interpolate.interp1d(x=theta_z / 1000.,
                                  y=temperature_data,
                                  fill_value='extrapolate')(mv_z),
             mv_data,
             interpolate.interp1d(x=theta_z / 1000.,
                                  y=pressure_data,
                                  fill_value='extrapolate')(mv_z),
             t_units='K',
             p_units='Pa') * 1000.0
    }

    return data_dict
# Get the first point
# Calculate the distance between levels
dz = 1.
# Calculate the temperature at the lower level
T = (theta[-1] / ((p0 * 100. / p[-1])**(Rd / cpd)))
# Calculate the virtual temperature at the lower level
Tv = T * (1. + 0.608 * mv[-1])
# Calculate the air density at the lower level
rho = p[-1] / (Rd * Tv)
# Use hydrostatic balance and air density at the lower level to calculate the pressure at the upper level
p_ext = [p[-1] - g * rho * dz]

# Calculate the temperature at the upper level
T_new = T - getGM(T, 0.5 * (p[-1] + p_ext[0]), t_units='K', p_units='Pa') * dz
# Calculate the specific humidity at the upper level
RH_const = 100. * mv[-1] / getQ(T, 100., p[-1], t_units='K', p_units='Pa')
q = getQ(T_new, RH_const, p_ext[0], t_units='K', p_units='Pa')[0]
# Convert specific humidity to mixing ratio
mv_ext = [q / (1. - q)]
# Calculate the new potential temperature at the upper level
theta_ext = [T_new * (p0 * 100. / p_ext[0])**(Rd / cpd)]
z_ext_integration = [z.max() + dz]

### repeat for the remaining levels
for k in xrange(1, int((z_ext.max() - (z.max() + dz)) / dz)):
    T = (theta_ext[k - 1] / ((p0 * 100. / p_ext[k - 1])**(Rd / cpd)))
    Tv = T * (1. + 0.608 * mv_ext[k - 1])
    rho = p_ext[k - 1] / (Rd * Tv)
    p_ext.append(p_ext[k - 1] - g * rho * dz)

    T_new = T - getGM(
     mr_nc.close()
     u_nc.close()
     v_nc.close()
     
     # Convert from potential temperature to temperature
     temp = PTtoTemp(theta_data, pressure_regrid, t_units = 'K', p_units = 'Pa')
     
     # Horizontally average the temperatures
     temperature[theta_data.shape[0]*days.index(day):theta_data.shape[0]*(days.index(day)+1),:] = np.nanmean(temp, axis = (2, 3))
     pressure_rg[theta_data.shape[0]*days.index(day):theta_data.shape[0]*(days.index(day)+1),:] = np.nanmean(pressure_regrid, axis = (2, 3))
     dewpoint_rg[theta_data.shape[0]*days.index(day):theta_data.shape[0]*(days.index(day)+1),:] = np.nanmean(getDew(q_regrid, pressure_regrid, q_units = 'kg/kg', p_units = 'Pa'), axis = (2, 3))
     u_rg[theta_data.shape[0]*days.index(day):theta_data.shape[0]*(days.index(day)+1),:]        = np.nanmean(u_regrid, axis = (2, 3))
     v_rg[theta_data.shape[0]*days.index(day):theta_data.shape[0]*(days.index(day)+1),:]        = np.nanmean(v_regrid, axis = (2, 3))
     q_rg[theta_data.shape[0]*days.index(day):theta_data.shape[0]*(days.index(day)+1),:]        = np.nanmean(q_regrid, axis = (2, 3))
     mv_rg[theta_data.shape[0]*days.index(day):theta_data.shape[0]*(days.index(day)+1),:]       = np.nanmean(mv_regrid, axis = (2, 3))
     rh_rg[theta_data.shape[0]*days.index(day):theta_data.shape[0]*(days.index(day)+1),:]       = np.nanmean(q_regrid/getQ(temp, [100.], pressure_regrid, t_units = 'K', p_units = 'Pa'), axis = (2, 3))
     theta_rg[theta_data.shape[0]*days.index(day):theta_data.shape[0]*(days.index(day)+1),:]    = np.nanmean(theta_data, axis = (2, 3))
 
 # Time output every ten minutes (blindly manufactured)
 times = np.arange(1., 14400.*len(days), 10.)/60.
 
 dt_i = theta_data.shape[0] # Number of time steps per day
 if l_diagnostics: print 'Starting Temperature.'
 with open('../InitialFields_Temperature_' + ID + '.txt', 'w') as my_file:
     my_file.write('Specify initial temperature profiles\n')
     
     # Find minimum number of required levels to reproduce theta profile over the last four days
     theta_levels, theta_init = RDP(z, np.mean(theta_rg[-4*dt_i:,:], axis = 0), 0.1)
     n_thlev = len(theta_levels)
     
     # First namelist entry
Ejemplo n.º 6
0
p_sfc = 101700.0 # Pa
pressure_init = [p_sfc]
# Use the ideal gas law for dry air and the hydrostatic equation to compute p
temperature_init = theta_init - (g/cpd)*theta_init_z
temperature_fun = interpolate.interp1d(x = theta_init_z, y = temperature_init, fill_value = 'extrapolate')
dz = 1
for z in range(1, 40001, dz):
    rho = pressure_init[-1]/(Rd*temperature_fun(z-0.5*dz)) # ideal gas law
    pressure_init.append(pressure_init[-1] - rho*g*dz) # hydrostatic balance

pressure_init_theta = np.array([pressure_init[i] for i in range(len(pressure_init)) if i in theta_init_z])
pressure_init_RH    = np.array([pressure_init[i] for i in range(len(pressure_init)) if i in RH_init_z])

# Use getQ to convert from RH to q
q_init = getQ(temperature_fun(RH_init_z), RH_init*100.0, pressure_init_RH, t_units = 'K', p_units = 'Pa')

# Define the idealised forcing profiles
Q_rad   = np.array([-2.0, -2.0, 0.0, 0.0])/86400.0 # K/day -> K/s
Q_rad_z = np.array([0.0, 3217.0, 4326.0, 40000.0])

w_subs   = np.array([0.0, -0.156, -0.379, -0.588, -0.603, -0.498, -0.384, -0.337, -0.315, -0.311, -0.291, -0.300, -0.418, -0.208, 0.0, 0.0])/100.0 # cm/s -> m/s
w_subs_z = np.array([0.0, 148.0, 392.0, 628.0, 857.0, 1119.0, 1381.0, 1644.0, 1906.0, 2168.0, 2430.0, 2693.0, 3217.0, 3867.0, 4326.0, 40000.0])

# Interpolate everything onto the same grid
z = np.arange(0, 40000.1, dz)
z_half = np.arange(dz/2., 40000.1, dz)

# initial variables
theta_fun = interpolate.interp1d(theta_init_z, theta_init, fill_value = 'extrapolate')
q_fun = interpolate.interp1d(RH_init_z, q_init, fill_value = 'extrapolate')