Ejemplo n.º 1
0
def dict2TeX(d, name_dict, lhs_form='%s', split_terms=False, simpleTeX=False):
    lines = []
    for lhs, rhs in list(d.items()):
        if split_terms:
            ast = AST.strip_parse(rhs)
            pos, neg = [], []
            AST._collect_pos_neg(ast, pos, neg)
            try:
                lhsTeX = lhs_form % expr2TeX(lhs, name_dict=name_dict)
            except TypeError:
                lhsTeX = lhs_form
            rhsTeX = _ast2TeX(pos[0], name_dict=name_dict)
            lines.append(r'$ %s $ &=& $ %s $\\' % (lhsTeX, rhsTeX))

            for term in pos[1:]:
                TeXed = _ast2TeX(term, name_dict=name_dict)
                lines.append(r' & & $ + \, %s $\\' % TeXed)
            for term in neg:
                TeXed = _ast2TeX(term, name_dict=name_dict)
                lines.append(r' & & $ - \, %s $\\' % TeXed)
        else:
            lhsTeX = lhs_form % expr2TeX(lhs, name_dict=name_dict)
            rhsTeX = expr2TeX(rhs, name_dict=name_dict)
            lines.append(r'$ %s $ & = & $ %s $\\' % (lhsTeX, rhsTeX))

        if not simpleTeX:
            # Force a space between TeX'd entries
            lines[-1] = '%s[5mm]' % lines[-1]

    all = os.linesep.join(lines)

    if not simpleTeX:
        all = all.replace(r'\frac{', r'\tabfrac{')
        # This makes the fractions look much nicer in the tabular output. See
        #  http://www.texnik.de/table/table.phtml#fractions
        lines = [
            r'\providecommand{\tabfrac}[2]{%',
            r'   \setlength{\fboxrule}{0pt}%', r'   \fbox{$\frac{#1}{#2}$}}',
            r'\begin{longtable}{lll}'
        ] + [all] + [r'\end{longtable}']
        all = os.linesep.join(lines)

    return all
Ejemplo n.º 2
0
 def test__collect_pos_neg(self):
     cases = [(strip_parse('-y + z'), (['z'], ['y'])),
              (strip_parse('1-2'), (['1'], ['2'])),
              (strip_parse('1-2+3'), (['1', '3'], ['2'])),
              (strip_parse('1-(2+3)'), (['1'], ['2', '3'])),
              (strip_parse('1-(2-3)'), (['1', '3'], ['2'])),
              (strip_parse('(1-2)-(3-4)'), (['1', '4'], ['2', '3'])),
              (strip_parse('(1+2)+(3+4)'),
               (['1', '2', '3', '4'], [])),
              (strip_parse('(1+2)+(3-4)'),
               (['1', '2', '3'], ['4'])),
              (strip_parse('(1-2)+(3-4)'),
               (['1', '3'], ['2', '4'])),
              (strip_parse('(1-2)-(3-4)'),
               (['1', '4'], ['2', '3'])),
              ]
     for ast, (poss, negs) in cases: 
         p, n = [], []
         AST._collect_pos_neg(ast, p, n)
         p = [ast2str(term) for term in p]
         n = [ast2str(term) for term in n]
         assert set(poss) == set(p)
         assert set(negs) == set(n)
Ejemplo n.º 3
0
 def test__collect_pos_neg(self):
     cases = [(strip_parse('1'), (['1'], [])),
              (strip_parse('1-2'), (['1'], ['2'])),
              (strip_parse('1-2+3'), (['1', '3'], ['2'])),
              (strip_parse('1-(2+3)'), (['1'], ['2', '3'])),
              (strip_parse('1-(2-3)'), (['1', '3'], ['2'])),
              (strip_parse('(1-2)-(3-4)'), (['1', '4'], ['2', '3'])),
              (Add((Add((Const(1), Const(2))), Add((Const(3), Const(4))))),
               (['1', '2', '3', '4'], [])),
              (Add((Add((Const(1), Const(2))), Sub((Const(3), Const(4))))),
               (['1', '2', '3'], ['4'])),
              (Add((Sub((Const(1), Const(2))), Sub((Const(3), Const(4))))),
               (['1', '3'], ['2', '4'])),
              (Sub((Sub((Const(1), Const(2))), Sub((Const(3), Const(4))))),
               (['1', '4'], ['2', '3'])),
              ]
     for ast, (poss, negs) in cases: 
         p, n = [], []
         AST._collect_pos_neg(ast, p, n)
         p = [ast2str(term) for term in p]
         n = [ast2str(term) for term in n]
         assert sets.Set(poss) == sets.Set(p)
         assert sets.Set(negs) == sets.Set(n)
Ejemplo n.º 4
0
def _simplify_ast(ast):
    """
    Return a simplified ast.

    Current simplifications:
        Special cases for zeros and ones, and combining of constants, in 
            addition, subtraction, multiplication, division.
        Note that at present we only handle constants applied left to right.
          1+1+x -> 2+x, but x+1+1 -> x+1+1.
        x - x = 0
        --x = x
    """
    if isinstance(ast, Name) or isinstance(ast, Constant):
        return ast
    elif isinstance(ast, BinOp) and (isinstance(ast.op, Add)
                                     or isinstance(ast.op, Sub)):

        # We collect positive and negative terms and simplify each of them
        pos, neg = [], []
        AST._collect_pos_neg(ast, pos, neg)

        pos = [_simplify_ast(term) for term in pos]
        neg = [_simplify_ast(term) for term in neg]
        # We collect and sum the constant values
        values = [term.value for term in pos if isinstance(term, Constant)] +\
                [-term.value for term in neg if isinstance(term, Constant)]
        value = sum(values)
        # Remove the constants from our pos and neg lists
        pos = [term for term in pos if not isinstance(term, Constant)]
        neg = [term for term in neg if not isinstance(term, Constant)]
        new_pos, new_neg = [], []
        for term in pos:
            if isinstance(term, UnaryOp):
                if isinstance(term.op, USub):
                    new_neg.append(term.operand)
            else:
                new_pos.append(term)
        for term in neg:
            if isinstance(term, UnaryOp):
                if isinstance(term.op, USub):
                    new_pos.append(term.operand)
            else:
                new_neg.append(term)
        pos, neg = new_pos, new_neg
        # Append the constant value sum to pos or neg
        if value > 0:
            pos.append(Constant(value=value))
        elif value < 0:
            neg.append(Constant(value=abs(value)))
        # Count the number of occurances of each term.
        term_counts = [
            (term,
             get_count_from_ast(pos, term) - get_count_from_ast(neg, term))
            for term in pos + neg
        ]
        # Tricky: We use the str(term) as the key for the dictionary to ensure
        #         that each entry represents a unique term. We also drop terms
        #         that have a total count of 0.
        term_counts = dict([(AST.ast2str(term), (term, count))
                            for term, count in term_counts])
        # We find the first term with non-zero count.
        ii = 0
        for ii, term in enumerate(pos + neg):
            ast_out, count = term_counts[AST.ast2str(term)]
            if count != 0:
                break
        else:
            # We get here if we don't break out of the loop, implying that
            #  all our terms had count of 0
            return _ZERO
        term_counts[AST.ast2str(term)] = (ast_out, 0)
        if abs(count) != 1:
            ast_out = BinOp(left=Constant(value=abs(count)),
                            op=Mult(),
                            right=ast_out)
        if count < 0:
            ast_out = UnaryOp(op=USub(), operand=ast_out)

        # And add in all the rest
        for term in (pos + neg)[ii:]:
            term, count = term_counts[AST.ast2str(term)]
            term_counts[AST.ast2str(term)] = (term, 0)
            if abs(count) != 1:
                term = BinOp(left=Constant(value=abs(count)),
                             op=Mult(),
                             right=term)
            if count > 0:
                ast_out = BinOp(left=ast_out, op=Add(), right=term)
            elif count < 0:
                ast_out = BinOp(left=ast_out, op=Sub(), right=term)
        return ast_out

    elif isinstance(ast, BinOp) and (isinstance(ast.op, Mult)
                                     or isinstance(ast.op, Div)):
        # We collect numerator and denominator terms and simplify each of them
        num, denom = [], []
        AST._collect_num_denom(ast, num, denom)
        num = [_simplify_ast(term) for term in num]
        denom = [_simplify_ast(term) for term in denom]
        # We collect and sum the constant values
        values = [term.value for term in num if isinstance(term, Constant)] +\
                [1./term.value for term in denom if isinstance(term, Constant)]
        # This takes the product of all our values
        value = functools.reduce(operator.mul, values + [1])
        # If our value is 0, the expression is 0
        if not value:
            return _ZERO
        # Remove the constants from our pos and neg lists
        num = [term for term in num if not isinstance(term, Constant)]
        denom = [term for term in denom if not isinstance(term, Constant)]
        # Here we count all the negative (UnarySub) elements of our expression.
        # We also remove the UnarySubs from their arguments. We'll correct
        #  for it at the end.
        num_neg = 0
        for list_of_terms in [num, denom]:
            for ii, term in enumerate(list_of_terms):
                if isinstance(term, UnaryOp) and isinstance(term.op, USub):
                    list_of_terms[ii] = term.operand
                    num_neg += 1

        # Append the constant value sum to pos or neg
        if abs(value) != 1:
            num.append(Constant(value=abs(value)))
        if value < 0:
            num_neg += 1

        make_neg = num_neg % 2
        # Count the number of occurances of each term.
        term_counts = [
            (term,
             get_count_from_ast(num, term) - get_count_from_ast(denom, term))
            for term in num + denom
        ]
        # Tricky: We use the str(term) as the key for the dictionary to ensure
        #         that each entry represents a unique term. We also drop terms
        #         that have a total count of 0.
        term_counts = dict([(AST.ast2str(term), (term, count))
                            for term, count in term_counts])

        nums, denoms = [], []
        # We walk through terms in num+denom in order, so we rearrange a little
        #  as possible.
        for term in num + denom:
            term, count = term_counts[AST.ast2str(term)]
            # Once a term has been done, we set its term_counts to 0, so it
            #  doesn't get done again.
            term_counts[AST.ast2str(term)] = (term, 0)
            if abs(count) > 1:
                term = BinOp(left=term,
                             op=Pow(),
                             right=Constant(value=abs(count)))
            if count > 0:
                nums.append(term)
            elif count < 0:
                denoms.append(term)

        # We return the product of the numerator terms over the product of the
        #  denominator terms
        out = AST._make_product(nums)
        if denoms:
            denom = AST._make_product(denoms)
            out = BinOp(left=out, op=Div(), right=denom)

        if make_neg:
            out = UnaryOp(op=USub(), operand=out)
        return out
    elif isinstance(ast, BinOp) and isinstance(ast.op, Pow):
        # These cases all have a left and a right, so we group them just to
        #  avoid some code duplication.
        power = _simplify_ast(ast.right)
        base = _simplify_ast(ast.left)

        if power == _ZERO:
            # Anything, including 0, to the 0th power is 1, so this
            #  test should come first
            return _ONE
        if base == _ZERO or base == _ONE or power == _ONE:
            return base
        elif isinstance(base, Constant) and\
                isinstance(power, Constant):
            return Constant(value=base.value**power.value)
        # Getting here implies that no simplifications are possible, so just
        #  return with simplified arguments
        return BinOp(left=base, op=Pow(), right=power)

    elif isinstance(ast, UnaryOp) and isinstance(ast.op, USub):
        simple_expr = _simplify_ast(ast.operand)
        if isinstance(simple_expr, UnaryOp) and isinstance(
                simple_expr.op, USub):
            # Case --x
            return _simplify_ast(simple_expr.operand)
        elif isinstance(simple_expr, Constant):
            if simple_expr.value == 0:
                return Constant(value=0)
            else:
                return Constant(value=-simple_expr.value)
        else:
            return UnaryOp(op=USub(), operand=simple_expr)
    elif isinstance(ast, UnaryOp) and isinstance(ast.op, UAdd):
        simple_expr = _simplify_ast(ast.operand)
        return simple_expr
    elif isinstance(ast, list):
        simple_list = [_simplify_ast(elem) for elem in ast]
        return simple_list
    elif isinstance(ast, tuple):
        return tuple(_simplify_ast(list(ast)))
    elif ast.__class__ in AST._node_attrs:
        # Handle node types with no special cases.
        for attr_name in AST._node_attrs[ast.__class__]:
            attr = getattr(ast, attr_name)
            if isinstance(attr, list):
                for ii, elem in enumerate(attr):
                    attr[ii] = _simplify_ast(elem)
            else:
                setattr(ast, attr_name, _simplify_ast(attr))
        return ast
    else:
        return ast