Ejemplo n.º 1
0
def genome_basic():
    config = get_config()
    c1 = genome.ConnectionGene(1, 2, 0.1, innov_num=3)

    n1 = genome.NodeGene(sigmoid_power=config['kSigmoid_power'],
                         node_type='input',
                         innov_num=1)
    n2 = genome.NodeGene(sigmoid_power=config['kSigmoid_power'],
                         node_type='output',
                         innov_num=2)

    connections = {
        c1.innov_num: c1,
    }

    nodes = {
        n1.innov_num: n1,
        n2.innov_num: n2,
    }

    g1 = genome.Genome(config=config)

    g1.node_genes = nodes
    g1.connection_genes = connections

    return g1
Ejemplo n.º 2
0
    def create_initial_individual(self, _inputs, _outputs):
        _inputs += 1 if self.kBias_node else 0

        first_genome = genome.Genome(config=self.config)
        innov_num = 1

        for input_node in range(_inputs):
            first_genome.node_genes[innov_num] = genome.NodeGene(
                sigmoid_power=self.kSigmoid_power,
                node_type='input',
                innov_num=innov_num)
            innov_num += 1
        for output_node in range(_outputs):
            first_genome.node_genes[innov_num] = genome.NodeGene(
                sigmoid_power=self.kSigmoid_power,
                node_type='output',
                innov_num=innov_num)
            innov_num += 1

        for in_node in first_genome.node_genes.values():
            if in_node.node_type == 'input':
                for out_node in first_genome.node_genes.values():
                    if out_node.node_type == 'output':
                        first_genome.connection_genes[
                            innov_num] = genome.ConnectionGene(
                                in_node.innov_num,
                                out_node.innov_num,
                                random.gauss(0, 1),
                                innov_num=innov_num)
                        innov_num += 1
        return Individual(first_genome, self.kBias_node)
Ejemplo n.º 3
0
def genome_recursive_two_outputs():
    config = get_config()
    c1 = genome.ConnectionGene(1, 3, 1.0, innov_num=5)
    c2 = genome.ConnectionGene(2, 3, 1.0, innov_num=6)
    c3 = genome.ConnectionGene(1, 4, -1.0, innov_num=7)
    c4 = genome.ConnectionGene(2, 4, -1.0, innov_num=8)
    c5 = genome.ConnectionGene(1, 9, 0.0, innov_num=10)
    c6 = genome.ConnectionGene(9, 4, 0.5, innov_num=11)
    c7 = genome.ConnectionGene(9, 9, 1.0, innov_num=12)

    n1 = genome.NodeGene(sigmoid_power=config['kSigmoid_power'],
                         node_type='input',
                         innov_num=1)
    n2 = genome.NodeGene(sigmoid_power=config['kSigmoid_power'],
                         node_type='input',
                         innov_num=2)
    n3 = genome.NodeGene(sigmoid_power=config['kSigmoid_power'],
                         node_type='output',
                         innov_num=3)
    n4 = genome.NodeGene(sigmoid_power=config['kSigmoid_power'],
                         node_type='output',
                         innov_num=4)
    n5 = genome.NodeGene(sigmoid_power=config['kSigmoid_power'], innov_num=9)

    connections = {
        c1.innov_num: c1,
        c2.innov_num: c2,
        c3.innov_num: c3,
        c4.innov_num: c4,
        c5.innov_num: c5,
        c6.innov_num: c6,
        c7.innov_num: c7
    }

    nodes = {
        n1.innov_num: n1,
        n2.innov_num: n2,
        n3.innov_num: n3,
        n4.innov_num: n4,
        n5.innov_num: n5
    }

    g1 = genome.Genome(config=config)

    g1.node_genes = nodes
    g1.connection_genes = connections

    return g1
Ejemplo n.º 4
0
def genome_isolated_output_node():
    config = get_config()
    c1 = genome.ConnectionGene(1, 3, 0.1, innov_num=5)
    c2 = genome.ConnectionGene(2, 3, 0.25, innov_num=6)
    c3 = genome.ConnectionGene(1, 4, 0.1, innov_num=7)
    c4 = genome.ConnectionGene(2, 4, -0.6, innov_num=8)

    n1 = genome.NodeGene(sigmoid_power=config['kSigmoid_power'],
                         node_type='input',
                         innov_num=1)
    n2 = genome.NodeGene(sigmoid_power=config['kSigmoid_power'],
                         node_type='input',
                         innov_num=2)
    n3 = genome.NodeGene(sigmoid_power=config['kSigmoid_power'],
                         node_type='output',
                         innov_num=3)
    n4 = genome.NodeGene(sigmoid_power=config['kSigmoid_power'],
                         node_type='output',
                         innov_num=4)

    # Isolate output node 4
    c3.enabled = False
    c4.enabled = False

    connections = {
        c1.innov_num: c1,
        c2.innov_num: c2,
        c3.innov_num: c3,
        c4.innov_num: c4
    }

    nodes = {
        n1.innov_num: n1,
        n2.innov_num: n2,
        n3.innov_num: n3,
        n4.innov_num: n4,
    }

    g1 = genome.Genome(config=config)

    g1.node_genes = nodes
    g1.connection_genes = connections

    return g1
Ejemplo n.º 5
0
def genome_simple_shuffle():
    config = get_config()
    c1 = genome.ConnectionGene(1, 3, 0.5, innov_num=5)
    c2 = genome.ConnectionGene(2, 3, 0.5, innov_num=6)
    c3 = genome.ConnectionGene(1, 4, 0.1, innov_num=7)
    c4 = genome.ConnectionGene(4, 3, 0.8, innov_num=8)
    c5 = genome.ConnectionGene(9, 3, 0.25, innov_num=10)
    c6 = genome.ConnectionGene(4, 9, 0.333, innov_num=11)
    c7 = genome.ConnectionGene(2, 12, 0.22, innov_num=13)
    c8 = genome.ConnectionGene(12, 4, 0.22, innov_num=14)
    c9 = genome.ConnectionGene(1, 15, 0.1, innov_num=16)
    c10 = genome.ConnectionGene(15, 3, 0.1, innov_num=17)

    n1 = genome.NodeGene(sigmoid_power=config['kSigmoid_power'],
                         node_type='input',
                         innov_num=1)
    n2 = genome.NodeGene(sigmoid_power=config['kSigmoid_power'],
                         node_type='input',
                         innov_num=2)
    n3 = genome.NodeGene(sigmoid_power=config['kSigmoid_power'],
                         node_type='output',
                         innov_num=3)
    n4 = genome.NodeGene(sigmoid_power=config['kSigmoid_power'], innov_num=4)
    n5 = genome.NodeGene(sigmoid_power=config['kSigmoid_power'], innov_num=9)
    n6 = genome.NodeGene(sigmoid_power=config['kSigmoid_power'], innov_num=12)
    n7 = genome.NodeGene(sigmoid_power=config['kSigmoid_power'], innov_num=15)

    connections = {
        c1.innov_num: c1,
        c2.innov_num: c2,
        c3.innov_num: c3,
        c4.innov_num: c4,
        c5.innov_num: c5,
        c6.innov_num: c6,
        c7.innov_num: c7,
        c8.innov_num: c8,
        c9.innov_num: c9,
        c10.innov_num: c10
    }

    nodes = {
        n1.innov_num: n1,
        n2.innov_num: n2,
        n3.innov_num: n3,
        n4.innov_num: n4,
        n5.innov_num: n5,
        n6.innov_num: n6,
        n7.innov_num: n7
    }

    g1 = genome.Genome(config=config)

    g1.node_genes = nodes
    g1.connection_genes = connections

    return g1
Ejemplo n.º 6
0
def genome_four_nodes_recursive():
    config = get_config()
    c1 = genome.ConnectionGene(1, 3, 0.1, innov_num=5)
    c2 = genome.ConnectionGene(2, 3, 0.25, innov_num=6)
    c3 = genome.ConnectionGene(1, 4, 0.1, innov_num=7)
    c4 = genome.ConnectionGene(4, 3, -0.6, innov_num=8)
    c5 = genome.ConnectionGene(4, 4, 0.25, innov_num=9)  # Recursive connection

    n1 = genome.NodeGene(sigmoid_power=config['kSigmoid_power'],
                         node_type='input',
                         innov_num=1)
    n2 = genome.NodeGene(sigmoid_power=config['kSigmoid_power'],
                         node_type='input',
                         innov_num=2)
    n3 = genome.NodeGene(sigmoid_power=config['kSigmoid_power'],
                         node_type='output',
                         innov_num=3)
    n4 = genome.NodeGene(sigmoid_power=config['kSigmoid_power'], innov_num=4)

    connections = {
        c1.innov_num: c1,
        c2.innov_num: c2,
        c3.innov_num: c3,
        c4.innov_num: c4,
        c5.innov_num: c5
    }

    nodes = {
        n1.innov_num: n1,
        n2.innov_num: n2,
        n3.innov_num: n3,
        n4.innov_num: n4,
    }

    g1 = genome.Genome(config=config)

    g1.node_genes = nodes
    g1.connection_genes = connections

    return g1
Ejemplo n.º 7
0
def genome_six_nodes():
    config = get_config()
    c1 = genome.ConnectionGene(1, 3, 0.6, innov_num=5)
    c2 = genome.ConnectionGene(2, 3, 0.75, innov_num=6)
    c3 = genome.ConnectionGene(1, 4, 0.6, innov_num=7)
    c4 = genome.ConnectionGene(4, 3, -0.1, innov_num=8)
    c5 = genome.ConnectionGene(1, 9, 0.1, innov_num=10)
    c6 = genome.ConnectionGene(9, 3, 0.1, innov_num=11)
    c7 = genome.ConnectionGene(1, 12, 0.3, innov_num=13)
    c8 = genome.ConnectionGene(12, 4, 0.1, innov_num=14)

    n1 = genome.NodeGene(sigmoid_power=config['kSigmoid_power'],
                         node_type='input',
                         innov_num=1)
    n2 = genome.NodeGene(sigmoid_power=config['kSigmoid_power'],
                         node_type='input',
                         innov_num=2)
    n3 = genome.NodeGene(sigmoid_power=config['kSigmoid_power'],
                         node_type='output',
                         innov_num=3)
    n4 = genome.NodeGene(sigmoid_power=config['kSigmoid_power'], innov_num=4)
    n5 = genome.NodeGene(sigmoid_power=config['kSigmoid_power'], innov_num=9)
    n6 = genome.NodeGene(sigmoid_power=config['kSigmoid_power'], innov_num=12)

    connections = {
        c1.innov_num: c1,
        c2.innov_num: c2,
        c3.innov_num: c3,
        c4.innov_num: c4,
        c5.innov_num: c5,
        c6.innov_num: c6,
        c7.innov_num: c7,
        c8.innov_num: c8
    }

    nodes = {
        n1.innov_num: n1,
        n2.innov_num: n2,
        n3.innov_num: n3,
        n4.innov_num: n4,
        n5.innov_num: n5,
        n6.innov_num: n6
    }

    g1 = genome.Genome(config=config)

    g1.node_genes = nodes
    g1.connection_genes = connections

    return g1