def confidence_interval(num):
    x1 = population_mean(num)
    c = 0.95
    z_value = (1 - c) / 2
    d1 = population_standard_deviation(num)
    l1 = square_root(len(num))
    return [x1 - z_value * d1 / l1, x1 + z_value * d1 / l1]
def z_score(num):
    average1 = population_mean(num)
    deviation1 = population_standard_deviation(num)
    score_list = []
    for x in num:
        f = (x - average1) / deviation1
        score_list.append(f)
    return score_list
def population_variance(num):
    deviation = population_standard_deviation(num)
    return square(deviation)
Ejemplo n.º 4
0
def Sample_Standard_Deviation(num):
    sample_average = sample_mean(num)
    return population_standard_deviation(sample_average)
Ejemplo n.º 5
0
 def population_standard_deviation(self, data):
     self.result = population_standard_deviation(data)
     return self.result
def Sample_Standard_Deviation(num):
    return population_standard_deviation(num)
Ejemplo n.º 7
0
 def population(self, a, b):
     self.result = population_standard_deviation(a, b)
     return self.result