Ejemplo n.º 1
0
    def testStochasticHillClimbingSearch(self):
        from StochasticAlgorithms.StochasticHillClimbing import search
        # Problem Configuration
        numBits = 64
        # Algorithm Configuration
        maxIterations = 1000

        # Execute the SHC algorithm
        result = search(numBits, maxIterations)
        print "Stochastic Hill Climbing Search Results : "
        print "*" * 20
        print "SHC Iteration "
        print "*" * 20
        print result["iteration"]
        print "*" * 20

        print "*" * 20
        print "Initial One Max Count"
        print "*" * 20
        print result["initialCost"]
        print "*" * 20
        print "Final One Max Count"
        print "*" * 20
        print result["cost"]
        print "*" * 20
        print "*" * 20
        print "*" * 20
        print "Search FormattedOutput : (Final- Initial)/Iteration"
        print "*" * 20
        efficacy = round(
            float(result["cost"] - result["initialCost"]) /
            float(result["iteration"]), 2)
        print efficacy
Ejemplo n.º 2
0
 def testTabuSearch(self):
     from StochasticAlgorithms.TabuSearch import search
     # Problem Configuration
     # Use Berlin52 instance of TSPLIB
     # Algorithm Configuration
     maxIterations = 100
     maxTabuCount = 15
     maxCandidates = 50
     # Execute the algorithm
     result = search(self.TSPLIB, maxIterations, maxTabuCount,
                     maxCandidates)
     tspResult = TSPResult(7542, "Tabu Search Results")
     print tspResult.FormattedOutput(result)
Ejemplo n.º 3
0
 def testIteratedLocalSearch(self):
     from StochasticAlgorithms.IteratedLocalSearch import search
     # Problem Configuration
     # Use Berlin52 instance of TSPLIB
     # Algorithm Configuration
     maxIterations = 100
     maxNoImprove = 50
     searchHistoryToKeep = 1  # since we don't plan to use it now
     # Execute the Algorithm
     result = search(self.TSPLIB, maxIterations, maxNoImprove,
                     searchHistoryToKeep)
     tspResult = TSPResult(7542, "Iterated Local Search Results")
     print tspResult.FormattedOutput(result)
Ejemplo n.º 4
0
 def testReactiveTabuSearch(self):
     from StochasticAlgorithms.ReactiveTabuSearch import search
     # Problem Configuration
     # Use Berlin52 instance of TSPLIB
     # Algorithm Configuration
     maxIterations = 100
     maxCandidates = 50
     increase = 1.3
     decrease = 0.9
     #Execute the algorithm
     result = search(self.TSPLIB, maxIterations, increase, decrease,
                     maxCandidates)
     tspResult = TSPResult(7542, "Reactive Tabu Search")
     print tspResult.FormattedOutput(result)
Ejemplo n.º 5
0
 def testRandomSearch(self):
     from StochasticAlgorithms.RandomSearch import search
     # Problem Configuration
     searchVector = [-5, 5]
     size = 2
     # Algorithm Configuration
     iterations = 10000
     # Execute the random search algorithm
     # Outputs a tuple containing the best cost and best input values
     result = search(searchVector, iterations, size)
     self.assertTrue(
         basinFunction(result["vector"]) == result["cost"],
         "Failed to get correct best basin value.")
     basin = BasinResult("Random Search")
     print basin.FormattedOutput(result)
Ejemplo n.º 6
0
 def testGuidedLocalSearch(self):
     from StochasticAlgorithms.GuidedLocalSearch import search
     # Problem Configuration
     # Use Berlin52 instance of TSPLIB
     # Algorithm Configuration
     maxIterations = 150
     maxNoImprove = 20
     localSearchOptima = 12000.0
     alpha = 0.3
     scalingFactor = alpha * (localSearchOptima / float(len(self.TSPLIB)))
     # Execute the algorithm
     result = search(self.TSPLIB, maxIterations, maxNoImprove,
                     scalingFactor)
     tspResult = TSPResult(7542, "Guided Local Search Results")
     print tspResult.FormattedOutput(result)
Ejemplo n.º 7
0
    def testGreedyRandomizedAdaptiveSearch(self):
        from StochasticAlgorithms.GreedyRandomizedAdaptiveSearch import search
        # Problem Configuration
        # Use Berlin52 instance of TSPLIB
        # Algorithm Configuration
        maxNoImprove = 50
        maxIterations = 50
        greedinessFactor = 0.3  # should be in the range [0,1]. 0 is more greedy and 1 is more generalized

        # Execute the algorithm
        result = search(self.TSPLIB, maxIterations, maxNoImprove,
                        greedinessFactor)
        tspResult = TSPResult(7542,
                              "Greedy Randomized Adaptive Search Results")
        print tspResult.FormattedOutput(result)
Ejemplo n.º 8
0
    def testVariableNeighborhoodSearch(self):
        from StochasticAlgorithms.VariableNeighborhoodSearch import search
        # Problem Configuration
        # Use Berlin52 instance of TSPLIB
        # Algorithm Configuration
        maxNoImprove = 50
        maxNoImproveLocal = 70
        neighborhoods = range(
            1, 21)  # since we want 20 runs for neighborhood starting with 1

        # Execute the algorithm
        result = search(self.TSPLIB, neighborhoods, maxNoImprove,
                        maxNoImproveLocal)
        tspResult = TSPResult(7542, "Variable Neighborhood Search Results")
        print tspResult.FormattedOutput(result)
Ejemplo n.º 9
0
    def testAdaptiveRandomSearch(self):
        from StochasticAlgorithms.AdaptiveRandomSearch import search
        # Problem Configuration
        searchVector = [-5, 5]
        size = 2
        # Algorithm Configuration
        maxIterations = 10000
        initFactor = 0.05
        lFactor = 3.0
        sFactor = 1.3
        iterFactor = 10
        maxNoChange = 25

        # Execute the adaptive random search algorithm
        # Outputs a tuple containing the best cost and best input values
        result = search(maxIterations, size, searchVector, initFactor, sFactor,
                        lFactor, iterFactor, maxNoChange)
        self.assertTrue(
            basinFunction(result["vector"]) == result["cost"],
            "Failed to get correct best basin value.")
        basin = BasinResult("Adaptive Random Search")
        print basin.FormattedOutput(result)
Ejemplo n.º 10
0
    def testScatterSearch(self):
        from StochasticAlgorithms.ScatterSearch import search
        # Problem Configuration
        searchVector = [-5, 5]
        problemSize = 2
        # Algorithm Configuration
        maxIterations = 100
        stepSize = (searchVector[1] -
                    searchVector[0]) * 0.05  # 5 percent of search space
        maxNoImprove = 30
        refSetSize = 10
        diverseSetSize = 20
        eliteCount = 5

        # execute the algorithm
        result = search(searchVector, problemSize, refSetSize, diverseSetSize,
                        maxIterations, maxNoImprove, eliteCount, stepSize)
        self.assertTrue(
            basinFunction(result["vector"]) == result["cost"],
            "Failed to get correct best basin value.")
        basin = BasinResult("Scatter Search")
        print basin.FormattedOutput(result)