Ejemplo n.º 1
0
def genRollAutocorr():
    output = {}
    for ind in standardIndices+HFIndices_raw:
        ROR, indNew = getIndData(ind, 'ROR')
        Date, indNew = getIndData(ind, 'Date')
        end = len(ROR)
        rollingac = []
        upbound = []
        lowbound = []
        for i in range(36, end):
            sampleY = ROR[i-36:i]
            #sampleX = Date[i]
            r, se = autocorr(sampleY, 1)
            rollingac.append(r[-1])
            upbound.append(r+1.96*se)
            lowbound.append(r-1.96*se)
        rAC = np.array(rollingac)
        uB = np.array(upbound)
        lB = np.array(lowbound)
        tAxis = Date[36:]
        print len(tAxis), len(rAC)
        #fig, ax = plt.subplots()
        #ax.plot_date(tAxis, rAC, linestyle='--')
        #ax.set_title('%s'%(indNew))
        #ax.annotate('Test', (mdates.date2num(tAxis[1]), rAC[1]), xytext=(15, 15), textcoords='offset points', arrowprops=dict(arrowstyle='-|>'))
        
        #fig.autofmt_xdate()
        #plt.show()
        output[indNew] = [rAC, uB, lB]
Ejemplo n.º 2
0
def genRollAutocorr():
    output = {}
    for ind in standardIndices + HFIndices_raw:
        ROR, indNew = getIndData(ind, 'ROR')
        Date, indNew = getIndData(ind, 'Date')
        end = len(ROR)
        rollingac = []
        upbound = []
        lowbound = []
        for i in range(36, end):
            sampleY = ROR[i - 36:i]
            #sampleX = Date[i]
            r, se = autocorr(sampleY, 1)
            rollingac.append(r[-1])
            upbound.append(r + 1.96 * se)
            lowbound.append(r - 1.96 * se)
        rAC = np.array(rollingac)
        uB = np.array(upbound)
        lB = np.array(lowbound)
        tAxis = Date[36:]
        print len(tAxis), len(rAC)
        #fig, ax = plt.subplots()
        #ax.plot_date(tAxis, rAC, linestyle='--')
        #ax.set_title('%s'%(indNew))
        #ax.annotate('Test', (mdates.date2num(tAxis[1]), rAC[1]), xytext=(15, 15), textcoords='offset points', arrowprops=dict(arrowstyle='-|>'))

        #fig.autofmt_xdate()
        #plt.show()
        output[indNew] = [rAC, uB, lB]
Ejemplo n.º 3
0
'''
for the given index names and time window, calculates the eigVal and eigVectors

===Input===
index_names:  the name of the indices
index:  if true, then perform analysis on indices. If false, the perform analysis on top 100 companies
startDate:  Datetime object, which specifies the beginning of time to select data
endDate:  Datetime object, which specifies the end of time to select data
===Output===
eigVal:  the eigenvalues of the PCA analysis
eigVec:  the eigenvectors of the PCA analysis
'''
def PCA(index_names=[], window = 36, index=False, startDate = dt.date(1994, 01, 01), endDate = dt.date(2013, 01, 01)):
    if index:
        for i, ind in enumerate(index_names):
            ROR, newInd = getIndData(ind, 'ROR', startDate, endDate)
            #print newInd
            listtmp = np.ndarray.tolist(ROR)
            #print len(listtmp)
            if i==0:
                RORs = np.array([listtmp])
            else:
                RORs = np.append(RORs, [listtmp], axis= 0)
        #print RORs
        covMat = np.cov(RORs)
    else:
        npNarr, npDarr = getNames(endDate, window=window)
        covMat = np.cov(npDarr)
        
    eigVal, eigVec = np.linalg.eig(covMat)
    return eigVal, eigVec
Ejemplo n.º 4
0
def rollCrossCorr():
    Indices = ["", 'brokers', 'banks', 'insurers']
    #note, ROR of hedge fund starts one month before the other 3 indices
    RORs = []
    newIndices = []
    for ind in Indices:
        ROR, newInd = getIndData(ind, 'ROR')
        newIndices.append(newInd)
        if ind == "":
            ROR = ROR[1:]
        RORs.append(ROR)
    end = len(ROR)
    print end
    Date, indNew = getIndData(ind, 'Date')
    
    resultsDict = {}
    for i in range(len(Indices)-1):
        for j in range(i+1, len(Indices)):
            rollcc = []
            rollcc_lag1 = []  #-1 lag
            rollcc_flag1 = []  #+1 lag
            ror1 = RORs[i]
            ror2 = RORs[j]
            for k in range(37, end-1):
                Y1 = ror1[k-36:k]
                Y20 = ror2[k-36:k] #lag 0
                Y21  = ror2[k-37:k-1]  #lag 1
                Y22 = ror2[k-35:k+1]   #lag -1
                
                set1 = np.array([Y1, Y20])
                set2 = np.array([Y1, Y21])
                set3 = np.array([Y1, Y22])
                #print i, set1
                r1 = np.corrcoef(set1)
                r2 = np.corrcoef(set2)
                r3 = np.corrcoef(set3)
                rollcc.append(r1[0, 1])
                rollcc_lag1.append(r2[0, 1])
                rollcc_flag1.append(r3[0, 1])
            rcc = np.array(rollcc)
            rccl1 = np.array(rollcc_lag1)
            rccfl1 = np.array(rollcc_flag1)
            resultsDict['%s vs. %s'%(newIndices[i], newIndices[j])] = [rcc, rccl1, rccfl1]

    tAxis = Date[37:-1]
    for title in resultsDict.keys():
        fig, ax = plt.subplots()
        ax.plot_date(tAxis, resultsDict[title][0], linestyle='--', color='r', fillstyle='none', label="No Lag")
        ax.plot_date(tAxis, resultsDict[title][1], linestyle='--', color = 'b',fillstyle='none', label="Lag = 1")
        ax.plot_date(tAxis, resultsDict[title][2], linestyle='--', color = 'g', fillstyle='none',label="Lag = -1")
        ax.set_title('%s'%(title))
        
        
        handles, labels = ax.get_legend_handles_labels()
        
        # reverse the order
        ax.legend(handles, labels)
        ax.legend(bbox_to_anchor=(0., -.1, 1., .102), loc=2,ncol=3, mode="expand", borderaxespad=0.)
        #ax.annotate('Test', (mdates.date2num(tAxis[1]), rAC[1]), xytext=(15, 15), textcoords='offset points', arrowprops=dict(arrowstyle='-|>'))
        
        fig.autofmt_xdate()
        plt.show()
    
    return resultsDict
Ejemplo n.º 5
0
def rollCrossCorr():
    Indices = ["", 'brokers', 'banks', 'insurers']
    #note, ROR of hedge fund starts one month before the other 3 indices
    RORs = []
    newIndices = []
    for ind in Indices:
        ROR, newInd = getIndData(ind, 'ROR')
        newIndices.append(newInd)
        if ind == "":
            ROR = ROR[1:]
        RORs.append(ROR)
    end = len(ROR)
    print end
    Date, indNew = getIndData(ind, 'Date')

    resultsDict = {}
    for i in range(len(Indices) - 1):
        for j in range(i + 1, len(Indices)):
            rollcc = []
            rollcc_lag1 = []  #-1 lag
            rollcc_flag1 = []  #+1 lag
            ror1 = RORs[i]
            ror2 = RORs[j]
            for k in range(37, end - 1):
                Y1 = ror1[k - 36:k]
                Y20 = ror2[k - 36:k]  #lag 0
                Y21 = ror2[k - 37:k - 1]  #lag 1
                Y22 = ror2[k - 35:k + 1]  #lag -1

                set1 = np.array([Y1, Y20])
                set2 = np.array([Y1, Y21])
                set3 = np.array([Y1, Y22])
                #print i, set1
                r1 = np.corrcoef(set1)
                r2 = np.corrcoef(set2)
                r3 = np.corrcoef(set3)
                rollcc.append(r1[0, 1])
                rollcc_lag1.append(r2[0, 1])
                rollcc_flag1.append(r3[0, 1])
            rcc = np.array(rollcc)
            rccl1 = np.array(rollcc_lag1)
            rccfl1 = np.array(rollcc_flag1)
            resultsDict['%s vs. %s' %
                        (newIndices[i], newIndices[j])] = [rcc, rccl1, rccfl1]

    tAxis = Date[37:-1]
    for title in resultsDict.keys():
        fig, ax = plt.subplots()
        ax.plot_date(tAxis,
                     resultsDict[title][0],
                     linestyle='--',
                     color='r',
                     fillstyle='none',
                     label="No Lag")
        ax.plot_date(tAxis,
                     resultsDict[title][1],
                     linestyle='--',
                     color='b',
                     fillstyle='none',
                     label="Lag = 1")
        ax.plot_date(tAxis,
                     resultsDict[title][2],
                     linestyle='--',
                     color='g',
                     fillstyle='none',
                     label="Lag = -1")
        ax.set_title('%s' % (title))

        handles, labels = ax.get_legend_handles_labels()

        # reverse the order
        ax.legend(handles, labels)
        ax.legend(bbox_to_anchor=(0., -.1, 1., .102),
                  loc=2,
                  ncol=3,
                  mode="expand",
                  borderaxespad=0.)
        #ax.annotate('Test', (mdates.date2num(tAxis[1]), rAC[1]), xytext=(15, 15), textcoords='offset points', arrowprops=dict(arrowstyle='-|>'))

        fig.autofmt_xdate()
        plt.show()

    return resultsDict
Ejemplo n.º 6
0
startDate:  Datetime object, which specifies the beginning of time to select data
endDate:  Datetime object, which specifies the end of time to select data
===Output===
eigVal:  the eigenvalues of the PCA analysis
eigVec:  the eigenvectors of the PCA analysis
'''


def PCA(index_names=[],
        window=36,
        index=False,
        startDate=dt.date(1994, 01, 01),
        endDate=dt.date(2013, 01, 01)):
    if index:
        for i, ind in enumerate(index_names):
            ROR, newInd = getIndData(ind, 'ROR', startDate, endDate)
            #print newInd
            listtmp = np.ndarray.tolist(ROR)
            #print len(listtmp)
            if i == 0:
                RORs = np.array([listtmp])
            else:
                RORs = np.append(RORs, [listtmp], axis=0)
        #print RORs
        covMat = np.cov(RORs)
    else:
        npNarr, npDarr = getNames(endDate, window=window)
        covMat = np.cov(npDarr)

    eigVal, eigVec = np.linalg.eig(covMat)
    return eigVal, eigVec