Ejemplo n.º 1
0
    def __loadAll(self):
        for nIndex, sFileRec in enumerate(self.ResultFiles):
            _, sEpochNumber, _ = Storage.SplitFileName(sFileRec[0])
            sFileNameFull = sFileRec[1]

            oMetrics = ClassificationMetrics()
            oMetrics.Load(sFileNameFull)

            print(
                "Accuracy:%f  Top%dAccuracy%s" %
                (oMetrics.Accuracy, oMetrics.TopKappa, oMetrics.TopKAccuracy))

            self.EpochNumber[nIndex] = int(sEpochNumber)
            self.Accuracy[nIndex] = oMetrics.Accuracy
            self.Recall[nIndex] = oMetrics.AverageRecall
            self.Precision[nIndex] = oMetrics.AveragePrecision
            self.F1Score[nIndex] = oMetrics.AverageF1Score
            if oMetrics.ClassCount == 2:
                self.IsBinary = True
                # Cross entropy of the F1 scores for binary classification.
                self.CrossF1Score[nIndex] = -(
                    oMetrics.F1Score[0] * np.log10(oMetrics.F1Score[1]) +
                    oMetrics.F1Score[1] * np.log10(oMetrics.F1Score[0]))
                self.ObjectiveF1Score[
                    nIndex] = self.F1Score[nIndex] / self.CrossF1Score[nIndex]
                # Special binary classification, with the class 0 the class positives
                self.PositiveF1Score[nIndex] = oMetrics.F1Score[0]

                print(sEpochNumber, oMetrics.F1Score[0], oMetrics.F1Score[1],
                      self.CrossF1Score[nIndex], self.ObjectiveF1Score[nIndex])
Ejemplo n.º 2
0
 def __determineInitialModelUID(self):
     sFiles = Storage.GetFilesSorted(self.RunSub.ArchitectureCommonFolder)
     sUID = None
     for sFile in sFiles:
         if sFile.startswith("initial-model_"):
             _, sName, _ = Storage.SplitFileName(sFile)
             sUID = sName[-12:]
     # A standard fold number 1 and the last saved initial experiment in the common folder will be returned
     return sUID
Ejemplo n.º 3
0
    def ListSavedResults(self):
        if Storage.IsExistingPath(self.ExperimentResultsFolder):
            sModelResultFiles = Storage.GetFilesSorted(
                self.ExperimentResultsFolder)

        oModelResults = []
        for sResultFile in sModelResultFiles:
            _, sFileName, _ = Storage.SplitFileName(sResultFile)
            nEpochNumber = int(sFileName)
            oModelResults.append([nEpochNumber, sResultFile, None])

        return oModelResults
Ejemplo n.º 4
0
    def GetNextConfigToEvaluate(self):
        sFiles = Storage.GetFilesSorted(self.ToEvaluteFolder)
        sConfigFiles = []
        for sFile in sFiles:
            _, _, sExt = Storage.SplitFileName(sFile)
            if sExt == ".cfg":
                sConfigFiles.append(
                    Storage.JoinPath(self.ToEvaluteFolder, sFile))

        if len(sFiles) > 0:
            sResult = sConfigFiles[0]
        else:
            sResult = None

        return sResult
Ejemplo n.º 5
0
    def __sequenceFoldNumber(self, p_sSourceFileName, p_nFoldSequence,
                             p_nCounter):
        print("  -> Sequencing fold numbers from template")
        sResult = []
        nCounter = p_nCounter
        for nFoldNumber in p_nFoldSequence:
            oNewConfig = NNLearnConfig()
            oNewConfig.LoadFromFile(p_sSourceFileName)
            oNewConfig.FoldNumber = nFoldNumber
            _, sName, _ = Storage.SplitFileName(p_sSourceFileName)
            sDestFileName = Storage.JoinFileName(
                self.PendingFolder,
                "%.3d-" % p_nCounter + sName + "-fold%d" % nFoldNumber, ".cfg")
            sResult.append(sDestFileName)
            oNewConfig.SaveToFile(sDestFileName)
            nCounter += 1

        return nCounter, sResult
Ejemplo n.º 6
0
    def GetNextConfig(self):
        # By priority first evaluates models to save disk space and then start training
        sResult = self.GetNextConfigToEvaluate()

        if sResult is None:
            sFiles = Storage.GetFilesSorted(self.PendingFolder)
            sConfigFiles = []
            for sFile in sFiles:
                _, _, sExt = Storage.SplitFileName(sFile)
                if sExt == ".cfg":
                    sConfigFiles.append(
                        Storage.JoinPath(self.PendingFolder, sFile))

            if len(sFiles) > 0:
                sResult = sConfigFiles[0]
            else:
                sResult = None

        return sResult
Ejemplo n.º 7
0
    def __sequenceLearningRate(self, p_sSourceFileName,
                               p_nLearningRateSequence, p_nCounter):
        print("  -> Sequencing learning rates from template")
        sResult = []
        nCounter = p_nCounter
        for nLearningRate in p_nLearningRateSequence:
            oNewConfig = NNLearnConfig()
            oNewConfig.LoadFromFile(p_sSourceFileName)
            oNewConfig.Learn.LearningRate = nLearningRate
            _, sName, _ = Storage.SplitFileName(p_sSourceFileName)
            sDestFileName = Storage.JoinFileName(
                self.PendingFolder,
                "%.3d-" % p_nCounter + sName + "-lr%.6f" % nLearningRate,
                ".cfg")
            sResult.append(sDestFileName)
            oNewConfig.SaveToFile(sDestFileName)
            nCounter += 1

        return nCounter, sResult
Ejemplo n.º 8
0
    def ArchiveFileName(self, p_nCounter):

        _, sName, sExt = Storage.SplitFileName(self.FileName)

        sPrefix = None
        if (self.IsTraining == True):
            # Training run
            sPrefix = "r"
        elif (self.IsTraining == False) and ((self.IsEvaluating == True) or
                                             (self.IsDeterminingBest == True)):
            # Evaluation run
            sPrefix = "e"

        assert sPrefix is not None
        # Prefix is valid for display up to 1000 experiments
        assert p_nCounter < 1000

        sResult = sPrefix + "%.3d-" % p_nCounter + sName + sExt

        return sResult
Ejemplo n.º 9
0
    def AddConfig(self, p_sConfigFileName=None):
        if p_sConfigFileName is None:
            sSourceFileName = self.TemplateConfigFileName
        else:
            sSourceFileName = p_sConfigFileName
        _, sName, _ = Storage.SplitFileName(sSourceFileName)

        # Gets the current run/evaluation counter
        nCounter = self.__readCounter()

        oConfig = NNLearnConfig()
        oConfig.LoadFromFile(sSourceFileName)

        sDestFileNames = None
        if oConfig.LearningRateSequence is not None:
            nCounter, sDestFileNames = self.__sequenceLearningRate(
                sSourceFileName, oConfig.LearningRateSequence, nCounter)
        elif oConfig.FoldSequence is not None:
            nCounter, sDestFileNames = self.__sequenceFoldNumber(
                sSourceFileName, oConfig.FoldSequence, nCounter)
#             for nFoldNumber in oConfig.FoldSequence:
#                 oNewConfig = NNLearnConfig()
#                 oNewConfig.LoadFromFile(sSourceFileName)
#                 oNewConfig.FoldNumber = nFoldNumber
#                 sDestFileName = Storage.JoinFileName(self.PendingFolder, "%.3d-" % nCounter + sName, ".cfg")
#                 oNewConfig.SaveToFile(sDestFileName)
#                 nCounter += 1
        else:
            sDestFileNames = [
                Storage.JoinFileName(self.PendingFolder,
                                     "%.3d-" % nCounter + sName, ".cfg")
            ]
            Storage.CopyFile(sSourceFileName, sDestFileNames[0])
            nCounter += 1

        # Saves the current run/evaluation counter
        self.__writeCounter()

        return sDestFileNames
Ejemplo n.º 10
0
 def ParseUID(self):
     if len(self.FileName) >= 12:
         _, sName, _ = Storage.SplitFileName(self.FileName)
         self.SavedExperimentUID = sName[-12:]