Ejemplo n.º 1
0
def chimera_to_tempy_model(model):
    """ Convert a chimera collection of atoms (model) into a tempy biopy structure """
    atomlist = []
    for atom in model.atoms:
        atomlist.append(chimera_to_tempy_atom(atom, len(atomlist)))

    return BioPy_Structure(atomlist)
Ejemplo n.º 2
0
    def _biommCIF_strcuture_to_TEMpy(filename,
                                     structure,
                                     hetatm=False,
                                     water=False):
        #imported if and when the function is executed.
        """
        PRIVATE FUNCTION to convert to Structure Instance
        filename = name of mmCIF file
        hetatm = Boolean representing whether to add hetatm to the structure.Default and Raccomanded is False.
        water = Boolean representing whether to add water to the structure.Default and Raccomanded is False.
        """
        from Bio.PDB import MMCIFParser as MMCIFParserBiopy

        p = MMCIFParserBiopy()

        atomList = []
        hetatomList = []
        wateratomList = []
        footer = ''
        header = ''
        cif_code = filename.split("/")[-1]  #use os.1FAT.cif
        structure_id = "%s" % cif_code[:-4]
        structure = p.get_structure(structure_id, filename)
        residues = structure.get_residues()
        for res in residues:
            hetfield = res.get_id()[0]
            if hetfield[0] == "H":
                for atom in res:
                    BioPyAtom(atom)
                    hetatomList.append(BioPyAtom(atom))
            elif hetfield[0] == "W":
                for atom in res:
                    BioPyAtom(atom)
                    wateratomList.append(BioPyAtom(atom))
            else:
                for atom in res:
                    BioPyAtom(atom)
                    atomList.append(BioPyAtom(atom))
        if hetatm:
            atomList = append(atomList, hetatomList)
        if water:
            atomList = append(atomList, wateratomList)

        return BioPy_Structure(atomList,
                               filename=filename,
                               header=header,
                               footer=footer)
Ejemplo n.º 3
0
def score(session, atomic_model, map_model, rez):
    ''' Perform the CCC score. Takes a session, a single model and map.'''

    print("Calculating CCC Score")

    # make class instances for density simulation (blurring), scoring and plot scores
    blurrer = StructureBlurrer()
    scorer = ScoringFunctions()

    atomlist = []
    for atom in atomic_model.atoms:
        atomlist.append(chimera_to_tempy_atom(atom, len(atomlist)))

    bio_atom_structure = BioPy_Structure(atomlist)
    bio_map_structure = chimera_to_tempy_map(map_model)
    map_probe = blurrer.gaussian_blur(bio_atom_structure,
                                      rez,
                                      densMap=bio_map_structure)
    score = scorer.CCC(bio_map_structure, map_probe)
    print(score)
    return score
Ejemplo n.º 4
0
def score(session,
          atomic_models,
          map_model,
          rigid_filename,
          rez,
          sim_sigma=0.187,
          window=9,
          colour_atoms=True):

    # TODO - rigid_filename might be optional?
    # TODO - this function is too long

    sc = ScoringFunctions()
    rvals = []

    for atomic_model in atomic_models:
        atomlist = []

        for atom in atomic_model.atoms:
            atomlist.append(chimera_to_tempy_atom(atom, len(atomlist)))

        bio_atom_structure = BioPy_Structure(atomlist)
        bio_map_structure = chimera_to_tempy_map(map_model)
        slow = 0.50
        shigh = 0.25  # fraction of structure fitted reasonably well initially
        list_zscores = []
        curdir = os.getcwd()
        rerun_ct = 0
        flag_rerun = 0
        it = 0
        dict_reslist = {}
        dict_chains_scores = {}
        dict_ch_scores, dict_chain_res = sc.SMOC(bio_map_structure, rez,
                                                 bio_atom_structure, window,
                                                 rigid_filename, sim_sigma)

        for ch in dict_ch_scores:
            flagch = 1
            dict_res_scores = dict_ch_scores[ch]
            #get res number list (for ref)
            if it == 0:
                dict_reslist[ch] = dict_chain_res[ch][:]
            try:
                if len(dict_reslist[ch]) == 0:
                    print('Chain missing:', out_iter_pdb, ch)
                    flagch = 0
                    continue
            except KeyError:
                print('Chain not common:', ch, out_iter_pdb)
                flagch = 0
                continue
            try:
                reslist = dict_reslist[ch]
            except KeyError:
                print('Chain not common:', ch, out_iter_pdb)
                flagch = 0
                continue
            if not ch in dict_chains_scores: dict_chains_scores[ch] = {}
            scorelist = []
            for res in reslist:
                try:
                    scorelist.append(dict_res_scores[res])
                except KeyError:
                    if reslist.index(res) <= 0:
                        scorelist.append(
                            dict_res_scores[reslist[reslist.index(res) + 1]])
                    else:
                        try:
                            scorelist.append(
                                dict_res_scores[reslist[reslist.index(res) -
                                                        1]])
                        except IndexError:
                            scorelist.append(0.0)
                #save scores for each chain
                curscore = "{0:.2f}".format(round(scorelist[-1], 2))
                try:
                    dict_chains_scores[ch][res][it] = str(curscore)
                except KeyError:
                    dict_chains_scores[ch][res] = [str(0.0)]
                    dict_chains_scores[ch][res][it] = str(curscore)

            #calc ratio between current and prev scores
            if it > 0:
                score_cur = scorelist[:]
                score_inc = [(1 + x) / (1 + y)
                             for x, y in zip(score_cur, score_prev)][:]
                score_diff = [(x - y)
                              for x, y in zip(score_cur, score_prev)][:]
            #calculate z-scores
            npscorelist = np.array(scorelist)
            try:
                list_zscores.append(
                    (npscorelist - np.mean(npscorelist)) / np.std(npscorelist))
            except:
                list_zscores.append((npscorelist - np.mean(npscorelist)))
            #calculate low and high score bounds
            list_sccc = scorelist[:]
            score_prev = scorelist[:]
            list_sccc.sort()

            #save avg of highest and lowest 20%
            avglow = list_sccc[int(len(list_sccc) * slow)]
            if avglow == 0.0: avglow = 0.00001
            avghigh = list_sccc[int(len(list_sccc) * (1 - shigh))]
            if it == 0: avghigh1 = list_sccc[int(len(list_sccc) * (1 - shigh))]
            curratio = avghigh / avglow

            #print it, 'Num of good scoring residues', len(goodset)
            print(ch, 'avg-top25%, avg-low25%, avg-high/avg-low', avghigh,
                  avglow, avghigh / avglow)
            print(ch, 'avg', sum(scorelist) / len(scorelist))

        #include smoc scores as b-factor records
        for x in bio_atom_structure.atomList:
            cur_chain = x.chain
            cur_res = x.get_res_no()
            if not cur_chain in dict_reslist.keys(): continue
            if cur_chain in dict_chains_scores.keys():
                try:
                    x.temp_fac = dict_chains_scores[cur_chain][cur_res][it]
                except:
                    print('Residue missing: ', cur_res, ch, out_iter_pdb)
                    x.temp_fac = 0.0
            else:
                x.temp_fac = 0.0

        rvals.append((dict_chains_scores, dict_reslist))

    return rvals
Ejemplo n.º 5
0
def score(session,
          atomic_model,
          map_model,
          rigid_filename,
          rez,
          sim_sigma=0.187,
          colour_atoms=True):
    """ Perform the SCCC score 
  Takes a session, a single model, map, rigid file path and some tuneable 
  optional variables
  """

    print("Calculating SCCC Score")

    # make class instances for density simulation (blurring), scoring and plot scores
    blurrer = StructureBlurrer()
    scorer = ScoringFunctions()

    atomlist = []

    # Pre-defines
    bio_atom_structure = ""
    bio_map_structure = ""

    try:
        for atom in atomic_model.atoms:
            atomlist.append(chimera_to_tempy_atom(atom, len(atomlist)))

        bio_atom_structure = BioPy_Structure(atomlist)
        bio_map_structure = chimera_to_tempy_map(map_model)

        # read rigid body file and generate structure instances for each segment
        listRB = RBParser.read_FlexEM_RIBFIND_files(rigid_filename,
                                                    bio_atom_structure)
    except Exception as e:
        print(e)
        print(
            "Error in reading Model and Map. Make sure you have selected one model and one map, and the rigid file is correct."
        )
        return

    # score each rigid body segment
    listsc_sccc = []
    print('calculating SCCC')

    for RB in listRB:
        # sccc score
        score_SCCC = scorer.SCCC(bio_map_structure,
                                 rez,
                                 sim_sigma,
                                 bio_atom_structure,
                                 RB,
                                 c_mode=False)

        print('>>', score_SCCC)
        listsc_sccc.append((RB, score_SCCC))

        # Colour the atoms based on the rating from white (1.0) to red (0.0)
        # TODO - maybe a faster way? Also 'all_atoms' mentioned in the API doesnt exist but atoms does! :S
        # TODO - move this to somewhere better maybe?
        if colour_atoms:
            dr = 255
            dg = 255
            db = 255
            if score_SCCC >= 0.5:
                dr = 255 - int(math.floor(255 * ((score_SCCC - 0.5) * 2.0)))
                dg = dr
            else:
                db = int(math.floor(255 * (score_SCCC * 2.0)))
                dg = db

            residues = []
            for a in RB.atomList:
                if a.res_no not in residues:
                    residues.append(a.res_no)

            for r in residues:
                cr = atomic_model.residues[r]
                for catm in cr.atoms:
                    catm.color = [dr, dg, db, 255]
                cr.ribbon_color = [dr, dg, db, 255]

    return listsc_sccc