Ejemplo n.º 1
0
def T12():
    '''
    Tests saving a model to file
    '''
    A = np.random.rand(32, 4)
    Y = (A.sum(axis = 1) ** 2).reshape(-1, 1)
    m1 = ANNR([4], [('F', 4), ('AF', 'tanh'), ('F', 1)], maxIter = 16, name = 't12ann1')
    m1.fit(A, Y)
    m1.SaveModel('./t12ann1')
    return True
Ejemplo n.º 2
0
def T14():
    '''
    Tests saving and restore a model
    '''
    A = np.random.rand(32, 4)
    Y = (A.sum(axis = 1) ** 2).reshape(-1, 1)
    m1 = ANNR([4], [('F', 4), ('AF', 'tanh'), ('F', 1)], maxIter = 16, name = 't12ann1')
    m1.fit(A, Y)
    m1.SaveModel('./t12ann1')
    R1 = m1.GetWeightMatrix(0)
    ANN.Reset()
    m1 = ANNR([4], [('F', 4), ('AF', 'tanh'), ('F', 1)], maxIter = 16, name = 't12ann2')
    m1.RestoreModel('./', 't12ann1')
    R2 = m1.GetWeightMatrix(0)
    if (R1 != R2).any():
        return False
    return True
Ejemplo n.º 3
0
layers = [('F', int(h)), ('AF', 'tanh'), ('F', int(h / 2)), ('AF', 'tanh'),
          ('F', int(h / 4)), ('AF', 'tanh'), ('F', int(h / 8)), ('AF', 'tanh'),
          ('F', int(h / 16)), ('AF', 'tanh'), ('F', int(h / 16)),
          ('AF', 'tanh'), ('F', int(h / 32)), ('AF', 'tanh'),
          ('F', int(h / 64)), ('AF', 'tanh'), ('F', o)]
#    """
mlpr = ANNR([i],
            layers,
            batchSize=256,
            maxIter=100000,
            tol=0.05,
            reg=1e-4,
            verbose=True,
            name='Stocker')

#Learn the data
mlpr.fit(A[0:(n - nDays)], y[0:(n - nDays)])

#save the model
mlpr.SaveModel('model/' + mlpr.name)
#Begin prediction
yHat = mlpr.predict(A)
#Plot the results
mpl.plot(A[-20:], y[-20:], c='#b0403f')
mpl.plot(A[-20:], yHat[-20:], c='#5aa9ab')
mpl.show()

mpl.plot(A, y, c='#b0403f')
mpl.plot(A, yHat, c='#5aa9ab')
mpl.show()